
Information-Theoretically Secure Voting
Without an Honest Majority

Anne Broadbent and Alain Tapp

Département d’informatique et de recherche opérationnelle
Université de Montréal, C.P. 6128, Succ. Centre-Ville

Montréal (QC), H3C 3J7 Canada
{broadbea, tappa}@iro.umontreal.ca

Abstract. We present three voting protocols with unconditional privacy
and information-theoretic correctness, without assuming any bound on
the number of corrupt voters or voting authorities. All protocols have
polynomial complexity and require private channels and a simultaneous
broadcast channel. Our first protocol is a basic voting scheme which al-
lows voters to interact in order to compute the tally. Privacy of the ballot
is unconditional, but any voter can cause the protocol to fail, in which
case information about the tally may nevertheless transpire. Our second
protocol introduces voting authorities which allow the implementation
of the first protocol, while reducing the interaction and limiting it to be
only between voters and authorities and among the authorities them-
selves. The simultaneous broadcast is also limited to the authorities. As
long as a single authority is honest, the privacy is unconditional, however,
a single corrupt authority or a single corrupt voter can cause the proto-
col to fail. Our final protocol provides a safeguard against corrupt voters
by enabling a verification technique to allow the authorities to revoke
incorrect votes. We also discuss the implementation of a simultaneous
broadcast channel with the use of temporary computational assump-
tions, yielding versions of our protocols achieving everlasting security.

Keywords: multiparty computation, election protocol, dining cryptog-
raphers, information-theoretic security, election authorities, ballot veri-
fication.

1 Introduction

Multiparty secure computation enables a group of n participants to collabo-
rate in order to compute a function on their private inputs. Assuming that
private random keys are shared between each pair of participants, every func-
tion can be securely computed if and only if less than n/3 participants are cor-
rupt; this fundamental result is due to David Chaum, Claude Crépeau and Ivan
Damg̊ard [CCD88] and to Michael Ben-Or, Shafi Goldwasser and Avi Wigder-
son [BOGW88]. When a broadcast channel is available, the results of Tal Rabin
and Michael Ben-Or [RBO89] tell us that this proportion can be improved to n/2.

2 Anne Broadbent and Alain Tapp

Among all functions that can be computed with these general-purpose proto-
cols, perhaps the one that has the most obvious application is voting. If we have
a guarantee on the proportion of honest participants, a secure voting protocol
based only on pairwise private channels can be implemented (if, in addition to
this, we have a broadcast channel, then we can tolerate more cheaters). Here, we
are interested in the case where no such guarantee is available. The first protocol
for voting that is information-theoretically secure even in a presence of a ma-
jority of dishonest participants was presented in [BT07]. Along with the use of
private communication, the protocol uses a simultaneous broadcast channel. In
this extended abstract, we first give a new presentation of the original protocol,
followed by two protocols which present significant improvements on the original
one. Although our initial motivation was of theoretical nature, we believe that
this work may lead to interesting practical applications.

All three protocols are obtained from two simple yet powerful observations.
First, if the dinning cryptographer’s protocol [Cha88] is used to compute the
parity function and is implemented with a simultaneous broadcast channel, then
it is perfect. The second observation is that if a string of n bits is shared among
n participants is such that the parity of the n bits is random (and unknown),
then it is impossible for any strict subset of participants to locally derandomize
this parity.

In our first protocol, we assume that each pair of voters is connected by
a private authentic channel. In our second and third protocols, we relax this
assumption by introducing voting authorities. The assumption then becomes that
there are private and authentic channels only between voters and the authorities
and among the authorities themselves.

All three protocols require a simultaneous broadcast channel [CGMA85,HM05],
which, for our purpose, is a collection of broadcast channels where the input of
one participant cannot depend on the input of any other participant. This could
be achieved if all participants simultaneously performed a broadcast. In the con-
text of our second and third protocols, a simultaneous broadcast among the
authorities is sufficient.

It is not uncommon in multiparty computation to allow additional resources,
even if these resources cannot be implemented with the threshold on the honest
participants (the results of [RBO89] which combine a broadcast channel with n/2
honest participants being the most obvious example). Our work suggests that
a simultaneous broadcast channel is an interesting primitive to study in this
context. Furthermore, given a resource to implement bit commitment, we can
implement a simultaneous broadcast: all participants commit to their values,
and then all participants open these values. Since bit commitment can be im-
plemented based on the laws of relativity [Ken99] (or more precisely, based on
the postulate that information cannot travel faster then the speed of light), we
conclude that simultaneous broadcast can also be achieved in this model. It may
also be possible to directly implement a simultaneous broadcast using the laws
of relativity.

Information-Theoretically Secure Voting 3

Since a simultaneous broadcast channel can be achieved using bit commit-
ment, which itself can be implemented with computational assumptions, we can
replace in all our protocols the use of a simultaneous broadcast channel with
temporary computational assumptions. Our protocols then provide everlasting
security: as long as the computational assumptions are not broken during the
execution of the protocol (more precisely, during the simulation of the simulta-
neous broadcast), the security of the protocols is perfect. Note that the privacy
of individual votes remains perfect even if these computational assumptions are
broken during the protocol.

1.1 Common Features to All Protocols

Our voting protocols involve n voters, each casting a ballot for a single choice
among m candidates. The goal of the protocols is to faithfully count the number
of ballots in favour of each candidate in such a way that voter’s ballots remain
private, honest ballots are counted and dishonest voters cannot influence the
vote any more than by honestly voting. The protocols we present are based on a
technique presented in [BT07]. The first protocol involves only the voters but the
last two involve r voting authorities. In all protocols, dishonest participants can
make the protocol fail (in our last protocol, only dishonest authorities can achieve
this). All three protocols use probabilistic techniques to correctly evaluate the
tally for each candidate. For this reason, the protocols are only correct with
probability 1− 2−Ω(s), with s being a chosen security parameter.

We present our protocols in the regular setup where each voter casts a ballot
with a choice for a single candidate. Our protocols can easily be adapted to
allow any number of voices per ballot (allowing, for instance, each voter to either
choose two candidates, or to vote twice for the same candidate). We can also
add a dummy candidate to allow voters to honestly cancel their ballots.

1.2 Summary of Results

All three protocols are exclusively based on private authentic channels and a
simultaneous broadcast channel. In the first protocol, no assumption is made on
the number of honest voters and in the last two, the only assumption is that
at least one authority is honest. Under these assumption, our protocols provide
perfect privacy and correctness. This was believed to be impossible [Gra08]. The
major drawback is that any dishonest participant can make any protocol fail
(except in our third protocol, where only dishonest authorities can make the
protocol fail).

Protocols 2 and 3 make use of voting authorities. If we group the authorities
together, they act as a trusted third party, which means that collectively they
can violate privacy and correctness of the protocol. However, taken individually,
both privacy and correctness are guaranteed as long as a single authority is
honest. This suggests that in practice, authorities could be chosen to represent
different interest groups, with each voter needing to trust only a single authority
(note that it is not necessary for the voters to trust the same authority!).

4 Anne Broadbent and Alain Tapp

It is common in multiparty computation to compare an implementation of a
functionality with its ideal functionality. This ideal functionality is represented
as a black box, accepting private inputs from each participant and privately
communicating the function evaluation on these private inputs back to each
participant. We now review the main features of each protocol.

Basic Voting (section 2)

• Only voters are involved in the protocol.
• A coalition of dishonest voters can only learn through the protocol what

they would learn in the ideal functionality, and this even (and also) if the
protocol fails.

• A single dishonest voter can make the protocol fail.
• If the protocol does not fail, then it is consistent with all ballots of the honest

voters and some assignment of ballots for the dishonest voters.
• Dishonest voters cannot vote adaptively.

Voting with Authorities (section 3)

• Voters and a small number of authorities are involved in the protocol.
• Voters only interact with authorities.
• If at least one authority is honest, a coalition of dishonest voters and au-

thorities can only learn what they would learn in the ideal functionality, and
this even (and also) if the protocol fails.

• A single dishonest voter or authority can make the protocol fail.
• If at least one authority is honest and if the protocol does not fail, then it

is consistent with all ballots of the honest voters and some assignment of
ballots for the dishonest voters.

• If at least one authority is honest, a coalition of dishonest voters and au-
thorities cannot vote adaptively.

Voting with Authorities and Verification (section 4)

• Voters and a small number of authorities are involved in the protocol.
• Voters only interact with authorities.
• If at least one authority is honest, a coalition of dishonest voters and au-

thorities can only learn what they would learn in the ideal functionality, and
this even (and also) if the protocol fails.

• No coalition of voters alone can make the protocol fail.
• A single dishonest authority can make the protocol fail.
• If at least one authority is honest and if the protocol does not fail, then it

is consistent with all ballots of the honest voters and some assignment of
ballots for the dishonest voters.

• If at least one authority is honest, a coalition of dishonest voters and au-
thorities cannot vote adaptively.

• Dishonest voters voting inappropriately will have their ballot revoked.
• A dishonest authority can choose to revoke the ballot of an honest voter.
• When a ballot is revoked, all voters and authorities know about it.

Information-Theoretically Secure Voting 5

2 Basic Voting Protocol

We present a protocol that allows n voters to conduct an m-candidate vote.
First, some notation: we say that participants share a distributed bit with value b
if each participant holds a bit and the parity (binary XOR) of all bits is b. Within
a group of n participants, we say that a voter constructs a distributed bit with
value b if he chooses bi ∈R {0, 1} such that

⊕n
i=1 bi = b and sends privately bi

to participant i. The values {bi} (i = 1, . . . n) are called shares. For now, voters
create distributed bits among themselves. In sections 3 and 4, voters will create
distributed bits among authorities. Our basic protocol is given as Protocol 1.

Protocol 1 Basic voting protocol
Input: xi ∈ {1, . . . , m} and security parameter s
Output: for k = 1 to m, y[k] = |{xj | xj = k}|
Phase A (cast)
For each candidate k = 1 to m,

1. Each voter i sets the value of n2s bits pijk (j = 1, . . . , n2s) in the following way:
if xi 6= k, then all bits are 0; otherwise, exactly ns bits (a fraction 1/n of the total)
are randomly chosen such that pijk = 1 and the rest such that pijk = 0.

2. For each j = 1, . . . , n2s, each voter i constructs a distributed bit with value pijk.
Let the shares of each distributed bit be denoted {pijk`} (` = 1, . . . n)

Phase B (broadcast)
For every j and k, each voter `, computes the parity of all received bits, qjk` =⊕n

i=1 pijk`. All bits are then simultaneously broadcast.
Phase C (tally)
To compute the tally, y[k], for each value k = 1, . . . , m, each voter sets:

v[k]j =
⊕n

`=1 qjk`, σ[k] =
∑n2s

j=1

v[k]j
n2s

and if there exists an integer v such that

|σ[k]− pv| < 1
2e2n

, where pv = 1
2

(
n−2

n

)v
((

n
n−2

)v

− 1
)
, then y[k] = v .

If for any m, no such value v exists, or if
∑m

k=1 y[k] 6= n, the protocol fails.

The complexity of Protocol 1 is as follows: n voters each create mn2s
distributed bits, for a total of n messages of size mn2s. Phase B requires a
single simultaneous broadcast among n participants, each sending a message of
size mn2s.

Lemma 1. (Correctness) If Protocol 1 does not fail, the result of the vote is
consistent with the vote of the honest voters and some non-adaptive choice for
the dishonest voters, except with probability exponentially small in s.

Proof. Our protocol is presented in a way that minimizes the number of messages
sent by each voter; it is perhaps best understood intuitively in its sequential
version. From this point of view, the following is repeated n2s times. For each
candidate, voters create a distributed bit. The value of the distributed bit is 1
with probability 1/n if this is the candidate the voter chooses and always 0

6 Anne Broadbent and Alain Tapp

otherwise. All voters compute the XOR of all their shares and the result will
eventually be simultaneously broadcast. The probability that the parity of the
broadcast value is 1 is directly proportional to the number of voters voting for
the candidate. By repeating this process with each candidate n2s times, we can
gather enough statistics to compute the vote exactly with very high probability.

The only place a voter can deviate from the protocol is by creating dis-
tributed bits with an inappropriate ratio of 0 and 1 values. We first note that
if the corrupted voters actually transmit the correct number of private bits in
phase A and broadcast the correct number of bits in phase B, then what-
ever they actually send is consistent with some global ratio of even and odd
distributed bits.

The ratio of even and odd distributed bits, when XORed, will give rise to some
probability of an even or an odd bit in the simultaneous broadcast. It is possible
to randomize the parity but not to derandomize it: the corrupt participants
altogether can increase the probability of an odd broadcast but not make it
smaller. Because votes for each candidate are added up for a consistency check,
either the corrupted voters make a consistent number of votes or otherwise the
protocol will fail. The use of a simultaneous broadcast channel ensures that the
voter’s inputs are independent of each other.

In the rest of the proof, we give a detailed analysis, using a Chernoff-type
argument that the result of the vote will be correct with overwhelming proba-
bility.

We fix a value k and suppose that v voters have input xi = k. Thus we need
to show that in Protocol 1, y[k] = v, except with probability exponentially
small in s.

Let us look at phase C of the protocol. Let pv be the probability that
v[k]j = 1. For v ≤ n, we have p0 = 0, p1 = 1

n and pv+1 = pv

(
1− 1

n

)
+(1−pv) 1

n .
Solving this recurrence, we get

pv =
1
2

(
n− 2

n

)v ((
n

n− 2

)v

− 1
)

. (1)

Thus, the idea of phase C is for the participants to approximate pv by comput-
ing σ[k] =

∑n2s
i=1 v[k]j/n2s. If the approximation is within 1

2e2n of pv, then the
outcome is y[k] = v. We first show that if such a v exists, it is unique.

Clearly, for v < n, we have that pv+1 > pv. We also have limn→∞ pn =
1
2 − 1

2e2 . Thus the difference between pv+1 and pv is:

pv+1 − pv = pv

(
1− 1

n

)
+ (1− p)

1
n
− pv (2)

=
1− 2pv

n
>

1− 2pn

n
>

1
e2n

. (3)

Hence if such a v exists, it is unique. We now show that except with proba-
bility exponentially small in s, the correct v will be chosen. Let X =

∑n2s
j=1 v[k]j

with µ = n2spv the expected value of X. The participants have computed
σ[k] = X

n2s .

Information-Theoretically Secure Voting 7

By the Chernoff bound, for any 0 < δ ≤ 1,

Pr[X ≤ (1− δ)µ] < exp(−µδ2/2) . (4)

Let δ = 1
2e2npv

. We have

Pr[X ≤ µ− n2s

2e2n
] < exp(− n2s

8e4n2pv
) (5)

and so
Pr[σ[k]i − pv ≤ −1

2e2n
] < exp(− s

8e4pv
) (6)

Similarly, still by the Chernoff bound, for any δ < 2e− 1,

Pr[X > (1 + δ)µ] < exp(−µδ2/4) (7)

Let δ = 1
2e2npv

and we get

Pr[X > µ +
n2s

2e2n
] < exp(

−n2s

16e4n2pv
) (8)

and so
Pr[σ[k]i − pv >

1
2e2n

] < exp(
−s

16e4pv
) . (9)

Hence the protocol produces the correct value for y[k], except with probability
exponentially small in s. ut
Lemma 2. (Privacy) In Protocol 1, no group of corrupted voters can learn
more than what they would have learned in the ideal functionality, and this even
if the protocol fails.

Proof. No assumption is made about the number of dishonest voters. The case
where all voters are corrupted is trivially private and in the case where only one
voter is honest, his vote can be deduced even in the ideal functionality.

When more than one voter is honest, privacy requires that, even if the tally
of the honest voters is known, the individual ballots remain private.

In phase A, as long as at least one voter is honest, the value of each dis-
tributed bit is perfectly hidden. In phase C, no information is sent. We thus
have to concentrate on phase B where the voters broadcast their information
regarding each parity. Let H be the set of honest voters. The dishonest voters
learn

⊕
`∈H qjk` but no information on these individual values is revealed. The

dishonest voters can thus only evaluate the probability that this value is 1 but
this information could be deduced from the output of the ideal functionality, for
instance by fixing the corrupt participants’ inputs to 1. ut

It is important to note that the above results do not exclude the possibility of
corrupted voters causing the protocol to fail while still learning some information
as stipulated in Lemma 2. This information could unfortunately be used to adapt
the behaviour of the corrupted voters in a future execution of Protocol 1.

8 Anne Broadbent and Alain Tapp

3 Voting with Authorities

In this section, we introduce a variation of the previous voting protocol. Our
motivation is to reduce the message complexity for the voters and reduce the
need of private channels by introducing a relatively small number of voting
authorities and by only requiring voters to communicate with these authorities.
Additionally, the simultaneous broadcast is only required among the authorities.
In this section and the following, we say that a voter constructs a distributed
bit among the authorities if the voter creates a distributed bit as in section 2,
except that the shares are distributed only among the authorities. Our protocol
is given as Protocol 2.

Protocol 2 Voting with authorities
Input: xi ∈ {1, . . . , m} and security parameter s
Output: for k = 1 to m, y[k] = |{xj | xj = k}|
Phase A (cast)
For each candidate k = 1 to m,

1. Each voter i sets the value of n2s bits pijk (j = 1, . . . , n2s) in the following way:
if xi 6= k, then all bits are 0; otherwise, exactly ns bits (a fraction 1/n of the total)
are randomly chosen such that pijk = 1 and the rest such that pijk = 0.

2. For each j = 1, . . . , n2s, each voter i constructs a distributed bit among the au-
thorities with value pijk. Let the shares of each distributed bit be denoted {pijk`}
(` = 1, . . . r)

Phase B (broadcast)
All authorities `, for every j and k simultaneously broadcast qjk` =

⊕
i pijk`

Phase C (tally)
To compute the tally, y[k], for each value k = 1, . . . , m, each participant sets:

v[k]j =
⊕n

`=1 qjk`, σ[k] =
∑n2s

j=1

v[k]j
n2s

and if there exists an integer v such that

|σ[k]− pv| < 1
2e2n

, where pv = 1
2

(
n−2

n

)v
((

n
n−2

)v

− 1
)
, then y[k] = v .

If for any m, no such value v exists, or if
∑m

k=1 y[k] 6= n, the protocol fails.
Each authority broadcasts the outcome of the tally, if there is any disagreement, the
protocol fails.

The complexity of Protocol 2 is as follows: n voters each create mn2s dis-
tributed bits, which are distributed among r authorities, for a total of nr mes-
sages of size mn2s. Phase B requires a single simultaneous broadcast among r
authorities, each sending a message of size mn2s. Phase C requires r broadcasts
of size as most m log n.

Lemma 3. (Correctness) If at least one authority is honest, and if Protocol 2
does not fail, the result of the vote is consistent with the vote of the honest voters
and some non-adaptive choice for the dishonest voters, except with probability
exponentially small in s.

Proof. The proof is obtained by replacing voters by authorities at the appro-
priate place in proof of Lemma 1. It is important here that the correctness

Information-Theoretically Secure Voting 9

probability only depends on s and not on the number of voters or authorities.
ut

Lemma 4. (Privacy) In Protocol 2, if at least one authority is honest, no
collusion of dishonest voters and authorities can learn more than what they would
have learned in the ideal functionality, and this even if the protocol fails.

Proof. The proof is very similar to the proof of Lemma 2. In Protocol 2, part
of the work performed by the voters in Protocol 1 is done by the authorities.
If at least one authority is honest, there is no way dishonest participants (voters
or authorities) can learn any information about the value of the distributed bit
created by an honest voter. The rest of the argument is the same as in Lemma 2.

ut
Note that in Protocol 2, any participant can make the protocol fail. Voters

can do this, for instance, by setting an abnormally high number of distributed
bits to 1, and authorities can do this by changing their inputs into the simultane-
ous broadcast. Furthermore, note that in Phase B, although the simultaneous
broadcast happens among the authorities, it is not a problem if the voters are
passive listeners. At the end of Phase C, the authorities broadcast the result of
the tally. We required unanimity of these messages in order to declare that the
protocol has succeeded.

4 Voting with Authorities and Verification

One of the issues with the previous two protocols is that any voter can cause
them to fail by introducing noise. In this section, we use the cut-and-choose
technique, augmented with an equality test, to allow authorities to revoke a
noisy ballot. This is done by having each voter distribute many encrypted but
identical votes, where a vote is k lists of n2s bits (as created, for instance, in
step 1 of Phase A of Protocol 2). A vote is correct if its contents correspond
to the construction of step 1 of Phase A of Protocol 2, i.e. all bits are even
except one candidate which has exactly ns bits sets to 1. The authorities then
open half of the votes and verify the correctness; a subsequent step will ensure
that the unopened votes are equal, thus providing exponential security.

Our protocol is presented as Protocol 3, in which the authorities use the
following two simple routines.

Random choices: authorities can generate common random bits in the follow-
ing way. Each authority locally generates a random bit, after which all authorities
simultaneously broadcast these bits. The common random bit is set to be the
parity of the broadcast bits. Obviously, this value is truly random if at least
one authority is honest. This process can be done in parallel, requiring only one
simultaneous broadcast.

Distributed bit equality: suppose the authorities share two distributed bits.
They can verify if these two distributed bits have the same value without re-
vealing this value. Let a =

⊕r
i=1 ai and b =

⊕r
i=1 bi be the two distributed bits.

10 Anne Broadbent and Alain Tapp

Each authority i simultaneously broadcasts ci = ai⊕ bi. If
⊕r

i=1 ci = 0 then the
distributed bits are equal (unless an authority is cheating). A dishonest author-
ity can make the protocol output the wrong answer, but under no circumstance
will this process reveal any information about the values of a or b.

Protocol 3 Voting with authorities and verification
Input: xi ∈ {1, . . . , m} and security parameter s
Output: for k = 1 to m, y[k] = |{xj | xj = k}| as well as a list of voters with revoked
ballots

Phase A (randomness)
The authorities generate enough common random bits.
Phase B (verification and vote casting)
For each voter:

1. Each voter executes step 1 of Phase A of Protocol 2, thus creating one vote.
2. 2s copies of the vote are made, and for each vote, the shares of the distributed bits

are computed as in step 2 of Phase A of Protocol 2 (the shares are independently
randomly chosen).

3. Each vote is encrypted with two random permutations: the first permutation
changes the order of the k candidates, and the second permutation changes the or-
der of the n2s distributed bits (the same permutation is applied for each candidate
within a vote).

4. The shares of the encrypted votes are distributed among the authorities.
5. The authorities randomly choose s votes and simultaneously broadcast all bits

involved in these votes.
6. If any of the opened votes is not correct, the voter’s ballot is revoked.
7. Each authority reveals to the voter which votes were opened. If the voter receives

inconsistent messages, his ballot is revoked.
8. For the s remaining votes, the voter reveals to the authorities both the permutation

that was applied on the distributed bits and the permutation that was applied on
the candidates. The authorities permute their shares of the remaining votes so that
all votes are equal.

9. The authorities perform distributed bit equality tests between each distributed bit
of the first remaining vote and all corresponding distributed bits for all other
remaining votes. If any of these tests fail, then the voter’s ballot is revoked. If all
tests succeed, all but the first remaining vote are discarded.

Phase C (broadcast and tally)
Phases B and C of Protocol 2 are performed with all remaining non-revoked votes.

Note that in Protocol 3, any dishonest authority can make the protocol fail
and any authority can dishonestly revoke any voter’s ballot.

The complexity of Protocol 3 is as follows: each of the n voters sends r mes-
sages of size 2mn2s2 for the votes (step 4) and r messages of size n2s2 log(n2s)+
sm log(m) for the permutations (step 8). In order to generate enough random
bits, the authorities are involved in a single simultaneous broadcast of size
n log(

(
2s
s

)
) ∈ O(ns). For the rest of the protocol, the r authorities are involved

in step 5 in a simultaneous broadcasts of size mn2s2 for each voter; in step 7,
they require a message of size s for each voter, and in step 9, they broadcast

Information-Theoretically Secure Voting 11

(s−1)mn2s bits. Phase C requires one last simultaneous broadcast of size mn2s
as well as r broadcasts of size as most m log n.

Lemma 5. (Correctness) If at least one authority is honest, and if Protocol 3
does not fail, then every ballot that is not revoked is correctly counted except with
probability exponentially small in s.

Proof. The proof is identical to the proof of Lemma 3. The verification of the
vote only makes the protocol more robust. ut
Lemma 6. (Privacy) In Protocol 3, if at least one authority is honest, no
collusion of dishonest voters and authorities can learn more than what they would
have learned in the ideal functionality.

Proof. To see that privacy of the vote is guaranteed if at least one authority is
honest, we first observe that phase B of the protocol does not reveal information
about the voters’ choice; it only ensures correctness of the vote. Once this phase
is done, the rest of the protocol is identical to Protocol 2 and the same argument
as in Lemma 4 can be used here. ut

As mentioned at the beginning of this section, in Protocols 1 and 2, a
voter can vote in an inconsistent way, causing the protocol to fail with very high
probability. In Protocol 3 the votes are verified: if a vote is not correct, there
is only a probability exponentially small in s that the vote will not be revoked.
Thus, dishonest voters can only make the protocol fail with exponentially small
probability in s. We formalize this below.

Lemma 7. (Robustness) No coalition of voters can alone make the protocol fail,
except with exponentially small probability in s.

Proof. The only way for a voter not to provide the correct information in
phase B is to generate incorrect votes. Since half of the votes are opened, and
the other half is checked for equality, the only way for a voter to successfully
provide an incorrect ballot is for the s opened votes to be correct and the s
remaining votes to be incorrect, yet identical. This happens with exponentially
small probability in s. ut

5 Conclusion

We presented three voting scheme with unconditional security and information-
theoretic correctness, without assuming any bound on the number of corrupt
voters or voting authorities. For this to succeed, we had to assume pairwise
private channels and a simultaneous broadcast channel (as discussed, this as-
sumption can be replaced by temporary computational assumptions, yielding
everlasting security). We also had to allow any participant to cause the protocol
to fail. Fortunately, we were able to relax some of the above assumptions in
Protocols 1 and 3 by introducing a set of voting authorities.

12 Anne Broadbent and Alain Tapp

We are currently considering a tradeoff between the revoking power of author-
ities and the correctness of the protocol. This can be achieved as a modification
of Protocol 3 by randomly grouping the authorities and by performing the
protocol in parallel within each group.

Although our initial motivation was of theoretical nature, we believe that
this work might lead to interesting practical applications.

Acknowledgements

The authors wish to thank Sébastien Gambs for proofreading and Jeroen van de
Graaf for suggesting that we write up and submit our ideas.

References

[BOGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation. In Proceedings
of the 20th annual ACM Symposium on Theory of Computing (STOC),
pages 1–10, 1988.

[BT07] A. Broadbent and A. Tapp. Information-theoretic security without an hon-
est majority. In Proceedings of the 13th International Conference on the
Theory and Application of Cryptology and Information Security (ASIA-
CRYPT ’07), pages 410–426, 2007.

[CCD88] D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure
protocols. In Proceedings of the 20th annual ACM Symposium on Theory
of Computing (STOC), pages 11–19, 1988.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In Proceedings
of the 26th annual IEEE Symposium on Foundations of Computer Science
(FOCS), pages 383–395, 1985.

[Cha88] D. Chaum. The dining cryptographers problem: Unconditional sender and
recipient untraceability. Journal of Cryptology, 1:65–75, 1988.

[Gra08] J. van de Graaf. Private Communication, 2008.
[HM05] A. Hevia and D. Micciancio. Simultaneous broadcast revisited. In Pro-

ceedings of the 24th annual ACM symposium on Principles of distributed
computing, pages 324–333, 2005.

[Ken99] A. Kent. Unconditionally secure bit commitment. Physical Review Letters,
83:1447–1450, 1999.

[RBO89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols
with honest majority. In Proceedings of the 21st annual ACM Symposium
on Theory of Computing (STOC), pages 73–85, 1989.

