
1
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its Application in Elliptic Curve Cryptography
Jithra Adikari, Student Member, IEEE, Vassil Dimitrov, and Laurent Imbert

Abstract

Multi-exponentiation is a common and time consuming operation in public-key cryptography. Its elliptic curve

counterpart, called multi-scalar multiplication is extensively used for digital signature verification. Several algorithms

have been proposed to speed-up those critical computations. They are based on simultaneously recoding a set of

integers in order to minimize the number of general multiplications or point additions. When signed-digit recoding

techniques can be used, as in the world of elliptic curves, Joint Sparse Form (JSF) and interleaving w-NAF are the

most efficient algorithms. In this paper, a novel recoding algorithm for a pair of integers is proposed, based on a

decomposition that mixes powers of 2 and powers of 3. The so-called Hybrid Binary-Ternary Joint Sparse Form

require fewer digits and is sparser than the JSF and the interleaving w-NAF. Its advantages are illustrated for elliptic

curve double-scalar multiplication; the operation counts show a gain of up to 18%.

Index Terms

Multi-exponentiation, Multi-scalar multiplication, Joint sparse form, Binary-ternary number system, Elliptic curves.

I. INTRODUCTION

Multi-exponentiation is a common operation in public-key cryptography. Most digital signatures are verified by

evaluating an expression of the form gahb, where g, h are elements of a multiplicative group; typically the group

F∗q of non-zero elements of the finite field Fq. To speed-up this operation, one generally uses the well known

Shamir’s trick (see [1] and [2]), which is based on the simple fact it is unnecessary to compute the two expressions

separately since only the product is needed. Shamir first suggested to apply the square-and-multiply algorithm to

the binary expansions of both a and b at the same time, and further noticed that some extra savings can be obtained

by precomputing the product gh. If t denote the bit-length of the largest exponent, this method requires t squarings

and 3t/4 multiplications on average.
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In the world of elliptic curves, the same critical operation rewrites [k]P + [l]Q, where k and l are two positive

integers, and P,Q are two elements of the group of points of an elliptic curve; a nice group, denoted additively, where

elements can be easily inverted (the cost of computing −P from P is negligible). The square-and-multiply algorithm

immediately translates into a double-and-add-subtract algorithm. Naturally, joint signed binary expansions [3], with

digits in {−1, 0, 1} have been considered. The scalars k, l are represented as a 2× t matrix

k = (kt−1 . . . k1 k0)

l = (lt−1 . . . l1 l0),

with ki, li ∈ {−1, 0, 1} for all i. The number of additions required by Shamir’s simultaneous method is equal to

the so-called joint Hamming weight; i.e., the number of non-zero columns. For example, if k and l are both written

in the Non-Adjacent Form [4], [5], the computation of [k]P + [l]Q costs t + 1 doublings and 5t/9 additions on

average.

Example 1: The 2× 9 matrix given by the NAFs of k = 145 and l = 207

145 = (0 1 0 0 1 0 0 0 1)

207 = (1 0 1̄ 0 1 0 0 0 1̄)

has joint Hamming weight 5.

In [6], Solinas introduced the Joint Sparse Form (JSF) to further reduce the average number of non-zero columns.

The main idea behind Solinas’ algorithm is to make sure that out of three consecutive columns, at least one is a

zero-column. Solinas’ algorithm is given in terms of arithmetic operations but it basically reduces to computations

modulo 8 (bit operations). By carefully choosing the positive/negative values of the remainders (mod 8), Solinas

proves the uniqueness and optimality (in the context of joint signed binary expansions) of the JSF, showing that

the computation of [k]P + [l]Q requires t doublings and t/2 additions on average.

Example 2: Using the same values as above (k = 145, l = 207), the JSF

145 = (1 0 0 1 0 0 0 1)

207 = (1 1 0 1 0 0 0 1̄)

has Hamming weight 4.

The simultaneous methods described above require precomputations of points involving both P and Q. For

example, the JSF algorithm needs the points P +Q and P −Q to be precomputed. On the other hand, interleaving

methods use precomputed values that only involve a single point, which allows the use of different methods for

each scalar (such as different width-w NAFs); the doubling steps being done jointly. When the same width-w NAF

is used for both k and l, the overall cost of interleaving methods is t doublings and 2t/(w+1) additions on average

(see [2, pp 111–113] for more details). We give an example of interleaving w-NAF in Section III.

In this paper, we describe a novel joint recoding scheme which uses both bases 2 and 3 in order to reduce the

average number of non-zero columns. In Section II, we present the basics of the so-called hybrid binary-ternary

number systems. In Section III, we extend the concept to represent pairs of integers and we introduce a new joint

recoding algorithm. We analyzes our algorithm in Section IV and present some numerical comparisons in Section V.
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II. HYBRID BINARY-TERNARY NUMBER SYSTEM

The Hybrid Binary-Ternary Number System (HBTNS) was introduced by Dimitrov and Cooklev in [7] for

speeding-up modular exponentiation. In this system, an integer is written as a sum of powers of 2 and powers of 3;

i.e., it mixes bits and trits (radix-3 digits) except that the digit 2 never occurs. The use of base 3 naturally reduces

the number of digits1 required to represent a t-bit integer. In fact, it can be shown that the average base β =

210/1333/13 ≈ 2.19617 and that the digit length is almost 12% smaller than the binary length (logβ(2) ≈ 0.88106)

digits (see [7] for more details). More importantly, this number system is also very sparse; the average number of

non-zero digits in HBTNS is 5/13, leading to ≈ t/3 for a t-bit number. Algorithm 1 computes the HBTNS of a

positive integer.

Algorithm 1 HBTNS representation
Input : An integer n > 0

Output : Arrays digits[], base[]

1: i = 0

2: while n > 0 do

3: if n ≡ 0 (mod 3) then

4: base[i] = 3; digits[i] = 0; n = n/3;

5: else if n ≡ 0 (mod 2) then

6: base[i] = 2; digits[i] = 0; n = n/2;

7: else

8: base[i] = 2; digits[i] = 1; n = n/2;

9: end if

10: i = i + 1

11: end while

12: return digits[], base[]

Example 3: The hybrid binary-ternary representation of n = 703 = (1010111111)2

digits[] = [1, 0, 0, 0, 1, 0, 0, 1]

base[] = [2, 3, 3, 3, 2, 3, 2, 2].

has only 8 digits among which 3 only are non-zero. Note that the binary representation requires 10 bits, out of

which 8 are different from zero. Observe that the least significant digit is the left-most value in digits[], such

that 703 = 1 + 2133 + 2334.

The idea of mixing bases 2 and 3 for elliptic curve scalar multiplication has been proposed by Ciet et al. in [8]

using the same decomposition as in Algorithm 1. Dimitrov, Imbert and Mishra generalized this concept in [9] by

1Although we only deal with 0s and 1s, the term ”digit” is more appropriate than ”bit” because of the use of base 3.
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Fig. 1. An example of staircase walk for a double-base chain representing 703

using a greedy approach to compute special signed double-base expansions; i.e., expressions of the form∑
i

±2ai3bi , with ai, bi ≥ 0,

where the exponents form two simultaneously decreasing sequences. These expansions, called double-base chains

(see Def. 1 below), allows for fast scalar multiplication. See [10] for more details about this number system.

Definition 1 (Double-base chain): Given k > 0, a sequence (Kn)n>0, of positive integers satisfying: K1 = 1,

Kn+1 = 2u3vKn + s, with s ∈ {−1, 1} for some u, v ≥ 0, and such that Km = k for some m > 0, is called

a double-base chain for k. The length, m, of a double-base chain is equal to the number of terms (often called

{2, 3}-integers), used to represent k.

Any elliptic curve scalar multiplication algorithm based on mixing powers of 2 and powers of 3 requires point

doublings and additions, as well as, possibly fast, point triplings. In [9], Dimitrov et al. also proposed an efficient

tripling formula in Jacobian coordinates for ordinary elliptic curves over large prime fields (see [11] for improved

formulas). In [12], Doche and Imbert further extended the concept of double-base chains by allowing digits from

larger sets as in the w-NAF algorithm.

An easy way to visualize expansions using two bases (say e.g. 2 and 3), is to use a two-dimensional array (the

columns represent the powers of 2 and the rows represent the powers of 3) into which each non-zero cell contains

the sign of the corresponding term. (by convention, the upper-left corner corresponds to 2030 = 1.) A double-base

chain can thus be represented by a staircase walk from the bottom-right corner to the upper-left corner, with non-

zero digits distributed along this path. An example of such a double-base chain is shown in Fig. 1; it was obtained

using Algorithm 1. (Since a given set of non-zero cells can lead to many different staircase walks, we adopt the

convention to walk North as much as we can before going East.)

In the next section, we consider an hybrid binary-ternary joint sparse form for a pair of integers. We propose an

algorithm which computes two double-base chains that share the same staircase walk; only the distribution of the

digits along the path differ.
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III. HYBRID BINARY TERNARY JOINT SPARSE FORM

In Algorithm 2, the hybrid binary-ternary joint sparse form of a pair of integers is calculated by first checking

whether both k1 and k2 are divisible by 3. If this is the case, both digits are set to 0 and the base set to 3, otherwise

we check whether they are both divisible by 2 and proceed accordingly. Finally, if the pair is not divisible by 3 or

2, we make both numbers divisible by 6 by subtracting ki mods 6 ∈ {−2,−1, 0, 1, 2, 3} from ki, and then divide

the results by 2. Therefore, in the next step, both numbers are divisible by 3 and we generate a zero column.

Algorithm 2 Hybrid binary-ternary joint sparse form (HBTJSF)
Input : Two positive integers k1, k2

Output : Arrays hbt1[], hbt2[], base[]

1: i = 0

2: while k1 > 0 or k2 > 0 do

3: if k1 ≡ 0 (mod 3) and k2 ≡ 0 (mod 3) then

4: base[i] = 3;

5: hbt1[i] = hbt2[i] = 0;

6: k1 = k1/3; k2 = k2/3;

7: else if k1 ≡ 0 (mod 2) and k2 ≡ 0 (mod 2) then

8: base[i] = 2;

9: hbt1[i] = hbt2[i] = 0;

10: k1 = k1/2; k2 = k2/2;

11: else

12: base[i] = 2;

13: hbt1[i] = k1 mods 6; hbt2[i] = k2 mods 6;

14: k1 = (k1 − hbt1[i])/2; k2 = (k2 − hbt2[i])/2;

15: end if

16: i = i + 1

17: end while

18: return hbt1[], hbt2[], base[]

Example 4: The following example illustrates the advantage of the HBTJSF. For k1 = 1225 and k2 = 723 the

Joint Sparse Form
1225 = (1 0 1 0 1̄ 0 0 1 0 0 1)

723 = (1 0 1̄ 0 0 1̄ 0 1̄ 1̄ 0 1̄)

has joint Hamming weight 7. The interleaving w-NAF (with w = 5 for 1225 and w = 4 for 723)

5-NAF(1225) = (1 0 0 0 0 −13 0 0 0 0 0 9)

4-NAF(723) = (0 0 0 3 0 0 0 −3 0 0 0 3)
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Fig. 2. Double-base chains for 1225 and 723

TABLE I

THE 14 POINTS THAT HAVE TO BE PRECOMPUTED FOR HBTJSF SCALAR MULTIPLICATION

P - -

Q P ±Q 2P ±Q 3P ±Q

- P ± 2Q - 3P ± 2Q

- P ± 3Q 2P ± 3Q -

has 6 non-zero elements2 (using w = 4 for 1225 and w = 5 for 723 also leads to 6 non-zero elements). Using

Algorithm 2, the hybrid binary-ternary joint sparse form

1225 = (3 0 1̄ 0 0 0 0 1)

723 = (2 0 2̄ 0 0 0 0 3)

base[] = (2 3 2 2 2 3 3 2)

only requires 8 digits and has joint Hamming weight 3. We show the corresponding double-base chains in Fig. 2.

Note the digits are distributed along the same staircase walk.

Since the HBTJSF uses the digit set {−2,−1, 0, 1, 2, 3}, a total of 14 points have to be precomputed (see Table I).

Note that the points 2P, 2Q, 3P, 3Q are not needed as they correspond to pairs of integers that are simultaneously

divisible by 2 or 3. Also, since the negation of a point is negligible, only one set of point difference need to be

calculated; for example, 2Q− P is easily deduced from P − 2Q.

IV. THEORETICAL ANALYSIS

Let us analyse the behaviour of Algorithm 2. We consider integers of the form 6k + j with j ∈ {−2, . . . , 3}. We

want to know how often our algorithm performs a division by 3 and how often it performs a division by 2. More

importantly, we want to know how many non-zero columns we can expect on average.

We consider all pairs of numbers of the form (6i + j, 6i′ + j′) with j, j′ ∈ {0, 1, 2, 3, 4, 5}. (Note that this is

equivalent to j, j′ ∈ {−2,−1, 0, 1, 2, 3}.) Clearly, we have 36 such states, that we denote Si,j . We can therefore

2In the interleaving method, the non-zero elements in both w-NAF representations are considered, instead of joint Hamming weight.

July 2, 2008 DRAFT



7

define the 36 × 36 transition matrix M , where M [6i + j, 6i′ + j′] is equal to the probability P (Si′,j′ |Si,j)

to go from state Si,j to state Si′,j′ . For example, the state S0,0 corresponds to the case where both numbers

are divisible by 6. The divisions by 3 performed in step 6 of Algorithm 2 therefore lead to any of the states

S0,0, S0,2, S0,4, S2,0, S2,2, S2,4, S4,0, S4,2, S4,4, which correspond to a pair of even numbers, with probability 1/9.

Similarly, if both numbers are even, the divisions by 2 in step 10 lead to four different states with probability

1/4. For example, we go from S0,2 to any of S0,1, S0,4, S3,1, S3,4 with probability 1/4. In the last case; i.e., when

numbers are neither simultaneously divisible by 3 or 2, we make them divisible by 6 and perform a division by

2. Hence, we reach one of the four states S0,0, S0,3, S3,0, S3,3 that correspond to pairs of multiples of 3, with

probability 1/4. The complete transition matrix is given in Appendix.

The stationary distribution π∞ is obtained as limn→∞ π0M
n, with π0 = (1/36, . . . , 1/36) our initial probabilities

(although they do not play any role). We have

π∞[i] =
27
236

if i ∈ {0, 3, 18, 21},

π∞[i] =
1
59

otherwise.

This allows us to compute the following average probabilities:

p3 =
5∑

i=0

5∑
j=0

π∞[6i + j] if i, j ≡ 0 (mod 3),

pz =
5∑

i=0

5∑
j=0

π∞[6i + j] if i, j ≡ 0 (mod 3) or i, j ≡ 0 (mod 2),

where p3 denotes the probability to perform a division by 3 and pz denote the probability to generate a zero column.

Clearly, the probability to perform a division by 2 is p2 = 1−p3 and the probability to generate a non-zero column

is pnz = 1− pz . We have

p2 =
32
59

, p3 =
27
59

, pz =
35
59

, pnz =
24
59

. (1)

Now, using p2 and p3, we can evaluate the average base

β = 59
√

232327 = 59
√

32751691810479015985152 ≈ 2.407765

For a pair of t-bit integers, the average number of columns of the HBTJSF array is thus approximately

(logβ 2)× t ≈ 0.7888× t. (2)

Finally, from (1) and (2), we derive that the expected number of elliptic curve additions per bit is approximately

24
59
× 0.7888 ≈ 0.3209.

We summarized our theoretical results in Table II, with real values rounded to the nearest hundredth. (For simplicity,

we consider that the same window width is used for both numbers in the interleaving w-NAF method.)
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TABLE II

THEORETICAL COMPARISON OF HBTJSF, JSF AND INTERLEAVING w-NAF FOR A t-BIT PAIR OF INTEGERS

Parameters HBTJSF JSF Interleaving w-NAF

Average base 2.41 2 2

Avg # col. 0.79t t + 1 t + 1

Avg # base 2 col. 0.43t t + 1 t + 1

Avg # base 3 col. 0.36t 0 0

Avg # non-zero col. 0.32t 0.5t 2t/(w + 1)

Precomp. 14 2 2w−1 − 2

TABLE III

COSTS OF SOME CURVE OPERATIONS FOR ORDINARY ELLIPTIC CURVES OVER PRIME FIELDS IN JACOBIAN COORDINATES (a = −3) AND

TRIPLING-ORIENTED DIK CURVES

Weierstrass / Jacobian (a = −3)

Cost S = 0.8M

Doubling 3M + 5S 7M

Tripling 7M + 7S 12.6M

Addition (mixed) 7M + 4S 10.2M

Tripling-oriented DIK

Cost S = 0.8M

Doubling 2M + 7S 7.6 M

Tripling 6M + 6S 10.8 M

Addition (mixed) 7M + 4S 10.2 M

V. COMPARISONS

Based on the above analysis, we compare our algorithm with the JSF and the w-NAF interleaving method

(assuming windows of size w = 4 for both scalars). We consider two kinds of curves for which we know that

triplings are useful [13]:

• Ordinary elliptic curves over large prime fields with Jacobian coordinates (with a = −3),

• tripling-oriented Doche-Icart-Kohel curves [14].

The costs of the necessary curve operations are given in Table III; the last column give equivalent multiplica-

tion counts assuming S = 0.8M . These costs are reported in the comprehensive and accurate explicit-formulas

database [11]. Our results are summarized in Table IV for 256-bit pairs of integers (similar values can be observed

for other sizes).

Remark 1: Note that the cost of precomputations is not included in our operation counts. In the case of JSF, only

P + Q and P −Q have to be computed, which is (almost, but not exactly) equivalent to two additions. In the case

of interleaving w-NAF, we have to precompute 3P , 3Q, 5P , 5Q, . . . , (2w−1−1)P , (2w−1−1)Q; that is, a total of

2w−1 − 2 points. The exact operation counts depends on the way those computations are implemented. In the case
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TABLE IV

COMPARISONS BETWEEN HBTJSF, JSF AND INTERLEAVING w-NAF FOR 256-BIT INTEGERS

Weierstrass / Jacobian (a = −3)

HBTJSF JSF Inter. 4-NAF Inter 5-NAF

Mult. counts for dbl. 770 1792 1792 1792

Mult. counts for tpl. 1159 0 0 0

Mult. counts for add 836 1306 1044 870

Total mult. counts 2765 3098 2836 2662

Precomp. 14 2 6 14

Overhead 12.04% 2.57% -3.73% (a)

Tripling-oriented DIK

HBTJSF JSF Inter. 4-NAF Inter. 5-NAF

Mult. counts for dbl. 836 1946 1946 1946

Mult. counts for tpl. 994 0 0 0

Mult. counts for add 836 1306 1044 870

Total mult. counts 2666 3252 2990 2816

Precomp. 14 2 6 14

Overhead 21.98% 12.15% 5.63%

(a) Interleaving 5-NAF seems slightly better than HBTJSF for ordinary curves

over Fp, but this is without considering precomputation costs (see Rem. 1).

of HBTJSF, 14 points are needed as shown in Table I. The exact number of field operations is less than the field

cost of 2 doublings plus 16 additions, since common subexpressions eliminations techniques can be considered. We

believe that the more compact (the largest multiples are triples) set of points used in HBTJSF should give more

opportunities for savings than for Interleaving w-NAF.

VI. CONCLUSIONS

A new recoding algorithm for a pair of integers has been proposed. It is based on a decomposition of two

integers using mixed powers of 2 and 3. Our analysis shows that it requires almost 20% fewer digits than the

binary representation and that the average number of non-zero columns per bit is less than 1/3. We have illustrated

the advantages of the so-called HBTJSF for elliptic curve double-scalar multiplication. Compared to the commonly

used JSF and interleaving w-NAF methods, the savings obtained with HBTJSF are significant (up to 18%) for

curves for which triplings are useful, such as e.g. ordinary curves over large prime fields or tripling-oriented DIK

curves.
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APPENDIX

36× 36 TRANSITION MATRIX
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