Another approach to pairing computation in
Edwards coordinates

Sorina Ionica? and Antoine Joux!?2

! Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats—Unis,
78035 Versailles CEDEX, France
> DGA
sorina.ionica,antoine. joux@mé4x.org

Abstract. The recent introduction of Edwards curves has significantly
reduced the cost of addition on elliptic curves. This paper presents new
explicit formulae for pairing implementation in Edwards coordinates.
We prove our method gives performances similar to those of Miller’s
algorithm in Jacobian coordinates and is thus of cryptographic interest
when one chooses Edwards curve implementations of protocols in elliptic
curve cryptography. The method is faster than the recent proposal of Das
and Sarkar for computing pairings on supersingular curves using Edwards
coordinates.

Keywords: Tate pairing, Miller’s algorithm, Edwards coordinates.

1 Introduction

Pairings on elliptic curves are currently of great interest due to their applica-
tions in a number of cryptographic protocols such as the tripartite Diffie-Hellman
protocol [20], identity-based encryption [6], short signatures [7] and group signa-
tures [8]. In this paper we propose to reassess the computational cost of pairings
in the light of the introduction by Edwards [14] of a new representation of the
addition law on elliptic curves. Recently, a method for computing pairings in Ed-
wards coordinates for supersingular curves was proposed in [13]. The approach
proposed in the present paper is very different from [13].

Our starting point concerning Edwards curves is a generalized result of Bern-
stein and Lange [3]. They showed that an elliptic curve defined over a field K
of characteristic different from 2 is birationally equivalent over some extension
of K to an Edwards curve, i.e. a curve of the form z? + y? = 1 + dz?y? with
d ¢ {0,1}. A simple and symmetric addition law can be defined on such a curve:

(x1 yl) (a:2 y2) — (T1y2 + Y122 Yry2 — T1t2) (1)
PR 1+ dzizoyrys’ 1 — dzizoyiye

Bernstein and Lange showed that this addition law is, in fact, the standard
addition law on the corresponding elliptic curve and gave explicit formulae for
additions and doublings, which are faster than all previously known formulae.

The basic algorithm used in pairing computation was first described by Miller
and is an extension of the double-and-add method for finding a point multiple.
Our goal in this paper is to extend Miller’s algorithm to allow computation of
pairings on curves given in Edwards coordinates. The difficulty when trying to
express Miller’s algorithm in Edwards coordinates is that it is hard to find the
equations of rational functions that need to be evaluated at each addition step.
On a curve in Weierstrass form, these equations correspond to straight lines. For
curves in Edwards form matters are more complex.

Our main idea is to describe a map of degree 4 from the Edwards curve to
a curve Ey , : s2p = (14 dp)? — 4p. This curve has an equation of total degree
3 and, as in the Weierstrass case, we can easily compute the equations of the
two lines that appear naturally when adding two points P; and Ps, i.e. the line
[passing through P; and P> and the vertical line v that passes through P; + P;.
We then pullback ! and v to the Edwards curve. The output of our algorithm is
essentially the desired pairing. More precisely, we obtain the 4-th power of the
usual pairing.

The remainder of this paper is organised as follows: Section 2 recalls basic
properties of Edwards curves and of the Edwards addition law. It also presents
Miller’s algorithm on an elliptic curve given by a Weierstrass equation. Section 3
introduces the curve E, and explains how to compute pairings on Edwards
curves by using this representation. Finally, in section 4 we give estimates of
the computational cost of the Tate pairing in Edwards coordinates and compare
this cost to that of a pairing implementation in Jacobian coordinates (for a
Weierstrass equation). We only treat the case of curves with even embedding
degree, which is prefered in most of the cryptographic applications. We compare
the efficiency of our suggestion to the use of Jacobian coordinates, which is, to
the best of our knowledge, the fastest existing method for computing pairings. A
proposal for the operation count in Jacobian coordinates using recent formulas
from [2] is presented in Appendix A. In the case of supersingular curves, we also
compare our method to results obtained for supersingular curves in [13].

2 Preliminaries

2.1 Edwards coordinates

Edwards showed in [14] that every elliptic curve E defined over an algebraic
number field is birationally equivalent over some extension of that field to a
curve given by the equation:

22 +y? = (1 + 232, (2)

In this paper, we make use of the results concerning elliptic curves over finite
fields obtained by Bernstein et al. [1]:

Theorem 1. Fix a finite field F, with char(F,;)#2. Let E be an elliptic curve
over F,. I is birationally equivalent over F, to a curve 22 4+ y? =1+ dz?y? if
and only if the group E(F,) has an element of order 4.

In the sequel, we call the curve 2 +y? = 1+dz?y? an Edwards curve. It was
shown in [3] that an Edwards curve E is birationally equivalent to the elliptic
curve By : (1/(1 —d))v? = u® +2((1 +d)/(1 — d))u? + u via the rational map:

’LZ)Z Ed—>E (3)

o= (F-65m)

On an Edwards curve, we consider the following addition law:

(1,91), (T2, 42) — (T1Y2 + Y122 Y1Y2 — T1T2) @
R 1+drizoyiye’ 1 — dxizayiys

The neutral element of this addition law is O = (0,1). For every point P =
(z,y) the opposite element is —P = (—z,y). The curve has a 4-torsion subgroup
defined over F,. We note T» = (0,—1) the point of order 2 and Ty = (1,0),
—T4 = (—1,0) the two points of order 4.

In [3], it was shown that this addition law is complete when d is not a square.
This means it is defined for all pairs of input points on the Edwards curve
with no exceptions for doublings, neutral element etc. Moreover, this addition
law is the same as the one induced by the birational map described above,
ie. Py + P, = v Y(P) + ¢~ 1(P), where the last + stands for the standard
addition law on the elliptic curve F,. Note that ¢ extends to exceptional points:
¥(Og,) = (0,1), where O, is the neutral element of E4, ¥((0,0)) = (0,-1).
See [1] for a complete description on exceptional points.

In the following sections we use projective coordinates. A projective point
(XY, Z) satisfying (X2 +Y?)Z? = Z* + dX?Y? and Z # 0 corresponds to the
affine point (X/Z,Y/Z) on the curve 22 + y? = 1 + da?y?. The Edwards curve
has two points at infinity (0 : 1 : 0) and (1 : 0 : 0). These points are actually
singularities of the curve and, as stated in [3], resolving them produces four
points defined over Fq(\/g). If d is not a square in F, then this is a quadratic
extension of F,.

Edwards curves became interesting for elliptic curve cryptography when it
was proven by Bernstein and Lange in [3] that they provide addition and dou-
bling formulae faster than all addition formulae known at that time. In the
sequel we also make use of inverted Edwards coordinates [4]. A point (X,Y, Z)
in inverted Edwards coordinates stands for the point (Z/X,Z/Y) on the affine
Edwards curve. Table 1 below gives a cost comparison between operations of
addition, doubling and mixed addition (i.e. the Z-coordinate of one of the two
points is 1) on the Edwards curve and on the Weierstrass form in Jacobian
coordinates. We briefly remind the reader that a point (X,Y,Z) in Jacobian
coordinates corresponds to the affine point (z,y) with x = X/Z? and y = Y/Z3.
We denote by M the cost of a field multiplication and by S the cost of a field
squaring. We assume that the cost of addition and that of multiplication by d
are negligible (we choose d a small constant). Results are taken from [2].

Table 1. Performance evaluation: Edwards versus Jacobian

Edwards coordinates |inverted Edwards coordinates| Jacobian coordinates
addition 10M+1S IM+1S 11M+5S

. 1M+8S
doubling 3M-+4S 3M+4S or 3M45S for a — —3
mixed addition IM+1S SM+1S TM+4S

2.2 Background on pairings

In this section we give a brief overview of the definition of the Tate pairing and
of Miller’s algorithm [22] used in pairing computations. This algorithm heavily
relies on the double and add method for finding a point multiple. Let £ be an
elliptic curve given by a Weierstrass equation:

y* =23 +ax +0b, (5)

defined over a finite field F,;. Consider r a large prime dividing #E(F,) and k
the corresponding embedding degree, i.e. the smallest positive integer such that
r divides ¢* — 1. Let P, denote the neutral element on the elliptic curve.

Let P be an r-torsion point and for any integer i, denote by f; p the function
with divisor div (f; p) = i(P) — (iP) — (i — 1)(Pwo) (see [23] for an introduction
to divisors). Note f. p is such that div (f, p) = r(P) — r(Px).

In order to define the Tate pairing we take @ an element of E(F)/rE(F,
Let T be a point on the curve such that the support of the divisor D = (
T) — (T') is disjoint from the one of f, p. We then define the Tate pairing as:

tr(P,Q) = fr.p(D). (6)

This value is a representative of an element of I, / (sz)r. However for crypto-
graphic protocols it is essential to have a unique representative so we will raise it
to the ((¢* — 1)/r)-th power, obtaining an r-root of unity. We call the resulting
value the reduced Tate pairing:

0.
+

gk -1

T’I‘(P?Q) = tr(PvQ) o

As stated in [16] if the function f, p is normalized, i.e. (uff, p)(Px) = 1 for
some [-rational uniformizer up at P, then one can ignore the point 7" and
compute the pairing as:

T,(P,Q) = f,.p(Q) 1/,

In the sequel of this paper we only consider normalized functions. Before going
into the details of Miller’s algorithm, we recall the standard addition law on an
elliptic curve in Weierstrass form. Suppose we want to compute the sum of ¢P
and jP for 7,7 > 1. Let [be the line through P and jP. Then [intersects the
cubic curve E at one further point R according to Bezout’s theorem (see [18]).

We take v the line between R and P, (which is a vertical line when R is not
P.). Then v intersects E at one more point which is defined to be the sum of
iP and jP, that is (i + j)P.

The lines [and v are functions on the curve and the corresponding divisors
are:

div (1) = (iP) + (jP) + (R) — 3(Px),
div (v) = (R) + ((i +) P) — 2(Px).

One can then easily check the following relation:

fivip = fi,Pfj,P%- (7)

In the sequel, we will call this relation Miller’s equation. Turning back to Miller’s
algorithm, suppose we want to compute f, p(D). We compute at each step of the
algorithm on one side mP, where m is the integer with binary expansion given
by the 7 topmost bits of the binary expansion of r, and on the other side f,, p
evaluated at D, by exploiting the formula above. We call the set of operations
executed for each bit i of r a Miller operation.

Algorithm 1 Miller’s algorithm
INPUT: An elliptic curve E defined over a finite field Fy, P an r-torsion point on the
curve and Q € E(F &).
OUTPUT: the Tate pairing ¢-(P, Q).
Let i = [logy(r)], K < P,f « 1.
while 7 > 1 do
Compute equations of [and v arising in the doubling of K.
K — 2K and | — f21(Q)/0(Q).
if the i-th bit of r is 1 then
Compute equations of [and v arising in the addition of K and P.
K P+Kand f — fI(Q)/u(Q).
end if
Let 4 — i — 1.
end while

The advantage of dealing with the Weierstrass form when running the algo-
rithm is that the equations of [and v are easy to find as they already appear
in the addition process. This is obviously not the case with the Edwards curve,
whose equation has degree 4. It is difficult to describe the equation of a function
with divisor equal to div(fit;,p/fi pfj,p) and to establish a relation of type (7).
An idea would be to consider Miller’s equation on the birationally equivalent
Weierstrass curve and then transport this equation on the Edwards curve. How-
ever this yields an unefficient pairing computation. OQur proposal is to map the
Edwards curve to another genus 1 curve with an equation of degree 3, get [and
v as straight lines and then pull them back to the Edwards curve.

3 Pairings on Edwards curves

In this section, E' denotes an Edwards curve defined over some finite field F of
odd characteristic. Let us take a look at the action of the 4-torsion subgroup
defined over F on a fixed point on the Edwards curve P = (x,y), with zy # 0.
A simple computation shows that P + Ty = (y,—z), P+ T2 = (—z,—y) and
P — T, = (—y,x). We notice then that by letting p = (zy)? and s = x/y — y/x,
the pair (p, s) characterizes the point P up to an addition with a 4-torsion point.
This leads us to consider the following morphism from the Edwards curve to a
curve given by the equation Ej , : s*p = (1 +dp)? — 4p

¢o:E — Eg,
r oy
(z,y) — ((zy)?, s 2
In this section we study the arithmetic of the curve Ej ,, establish Miller’s
equation on this curve and then take its pullback, getting Miller’s equation, this
time on the Edwards curve. This yields all the tools needed to apply Miller’s
algorithm on the Edwards curve.

3.1 Arithmetic of the curve s2p = (1 + dp)? — 4p

In this section we study the arithmetic of the curve:
E,p:8°p=(1+dp)? — 4p.

The equation of E; , in homogeneous coordinates (P, S, Z) is given by S?P =
(Z +dP)?Z — 4P Z?. If we dehomogenize this equation by putting P = 1 we get
the Weierstrass equation of an elliptic curve:

s2 =23+ (2d — 4)2* + d*z. (8)

We note O, = (0,1,0) the point at infinity and s, = (1,0,0) which is
a two torsion point. The following definition is simply another way to write the
addition law on an elliptic curve in (p, s) coordinates.

Definition 1. Let P, P, € E;,,, L the line connecting P1 and Py (tangent line
to B, p if PL = P), and R the third point of intersection of L with E. Let L be
the vertical line through R (of equation p = pr). Then Py + Py is the point such
that L' intersects Es, at R and Py + P (the point symmetric to R with respect
to the p-axis).

Note that we can extend ¢ to the 4-torsion points by ¢(O) = ¢(Tz) = ¢(Ty) =
¢(7T4) = Os,p-

Theorem 2. Let Py = (x1,y1) and Py = (x2,y2) be two points on the Edwards
curve and Ps their sum. Then ¢(Ps) is the sum of ¢(P1) and ¢(Ps) in the
addition law of Definition 1.

Proof. Consider ¢ : E; — E the map defined in equation (3). By using
Proposition 2.1 in [23] one can easily see that ¢ ot is a morphism from Ej4 to
the elliptic curve Ej . As ¢ 0 9(Og,) = Os,, (where Og, is the point at infinity
of E;), we deduce that ¢ o ¢ is an isogeny. Moreover it was shown in Theorem
3.2 of [3] that the Edwards addition law on E is the same as the addition law
induced by . It follows that the addition law induced by ¢ is the same as the
standard addition law on the elliptic curve, so it corresponds to the addition law
described at Definition 1. O

As in the sequel we need to compute the pullback of certain functions on the
curve Es, we now compute the degree of this map.

Proposition 1. The map ¢ : E — E , is separable of degree 4.

Proof. Let P = (z,y) be a point on the Edwards curve. The doubling formula
gives:

op — 2xy y2 — 2 - 2xy y2 — 2
C\L+d(zy)?’ 1—dxy)?) \@2+9y2"2— (22 +y2))"
If 2y # 0 then by letting p = (vy)? and s = x/y — y/x we can write:

AP — 4ps(1 — d?p?) 4p(1 + dp)? — ps?
(1 — d2p?)2 — 4dp2?s2’ (1 — d?p?)2 + 4dp?s?)

This means that by defining:
0: E;p—FE

dps(1 — d?p?) 4p(1 + dp)* — ps®
(P, s) = ((1 — d?p?)? — 4dp?s?’ (1 — d?p?)? + 4dp232> ’
we get a rational map ¢ such that ¢ o8 = [4] on E. It follows that deg ¢ divides
16. As the inseparable degree deg; ¢ is a power of the characteristic of F,, we
deduce that ¢ is a separable map (we have supposed that char(F,) # 2). By
putting ¢(P) = Q we easily get ¢=2(Q) = {P,P + Ty,P + Ty, P — Ty}. We
conclude that deg¢ = 4.0

3.2 Miller’s algorithm on the Edwards curve
Let P be an r-torsion point on the Edwards curve. We consider slightly modified
functions fi(_g:
FiD = i((P) + (P+Tu) + (P + T) + (P = T0)) = ((iP) + (iP +)
+(iP +Ty) + (iP —Ty)) — (i — 1)((O) + (Ty) + (Tz) + (=Ty)).

Then /') = r((P)+(P+T) +(P+T2)+ (P—T4))=r((0) + (Ta) + (Ta) + (=T2)),
which means that we can compute the Tate pairing up to a 4-th power:

gk -1

T.(P,Q)* = Q)

We also get the following Miller equation:

l
) 4 4
where [/v is the function of divisor:

div (I/v) = ((iP) + (iP +Ty) + (iP + Ts) + (iP — T4))
HGP)+ (GP+Ty) + (P +To) + (P —Ty))
—((G+7)P)+ (i +)P+ Ty) + ((+)P + T2) + ((i + J) P — Ta)))
—((0) + (Ty) + (T2) + (=T4)).

Let P' = ¢(P) and let I, ,, and v, , be functions on the Ej, curve such that
div (ls.p) = (GP') + (GP') + (=i + §)P") — 2(Tr,sp) — (Os,) and div (vs,) =
(i + 5)P) + (=i + J)P) = 2(To,s).

We observe that we have [/v = ¢*(I5 ,/vs p) up to constants in F,. It is easy
to find the equations of I, , and v, as they appear naturally in the definition of
the sum iP’ +jPl, namely [, is the line connecting iP" and jP'7 and v, is the
vertical line through (i+)P". As we will see in the next section, we can compute
their pullback via the map ¢ without any significant computational cost.

4 Pairing computation in Edwards coordinates

In this section, we take a look into the details of the computation of pairings
in Edwards coordinates and give estimates of the computational costs of the
Miller operation. We start by estimating the cost of evaluating the function

fT(ﬁ); (Q) in terms of the cost of the doubling part of a Miller operation, which
is executed for every bit of r. This seems reasonable, as it gives an evaluation
which is independent from any fast exponentiation techniques that might be
used in the implementation of the algorithm, such as the sliding window method
or the use of a signed Hamming weight representation for r. We recall that a
signed representation (m,,_1...mg)s is said to be in non-adjacent form, or NAF
for short, if m;m;11 = 0, with m; € {—1,0,1} for all ¢ > 0. The advantage of
using such a representation is that on average the number of non-zero terms in
a NAF expansion of length n is n/3 (see [9] for a precise analysis of the NAF
density).

Moreover, in many cryptographic applications it is possible to choose r with
low Hamming weight. The construction of Cocks and Pinch as described in [5,
p. 210] allows for 7 to be chosen arbitrarily, so a prime of low Hamming weight
can be chosen. Further examples are provided by a construction of Brezing and
Weng [10] for prime embeddings degrees k, extended in [15] for all odd k& < 200.
Note that if the loop length parameter r does not have low Hamming weight, it
is sufficient to have some multiple of r whose Hamming weight is small (usually
the elliptic curve group order §E(Fy)).

Example 1. The following example is given in [13]. Consider E : y?> = 23 + o
over F,, with ¢ = 3 mod 4. This curve is supersingular and its corresponding
Edwards form is 2% + y? = 1 — (zy)?, so d = —1. One may choose for instance
q= 2520 + 2363 _ 2360 _ 1’ r = 2160 + 23 —1lor q= 21582 + 21551 _ 21326 _ 17T —
2256 + 2225 —1.

During the past few years, research in efficient implementation of pairings
focussed on the reduction of the loop length in Miller’s algorithm. It was proven
that for curves with a small Frobenius trace ¢, the parameter r giving the length
of the loop can be replaced by ¢. The interested reader should refer to [19] for a
discussion on the choice of the loop length parameter.

Therefore, in order to give a complete evaluation of the complexity, we also
count the number of operations in the mixed addition step of the Miller oper-
ation and compare it to the mixed addition step in Jacobian coordinates. The
reader may refer to [11] for global estimates of pairing computation in Jacobian
coordinates for some families of curves with k = 2 (in particular those in Ex-
ample 1). In a general case, estimates for the doubling part for the Weiestrass
form can be found in [21] and in [17], but we improved these results using recent
doubling formulae from [2] (see Appendix A). estimates of the cost of the mixed
addition step for Jacobian coordinates are taken from [12].

The remainder of this paper presents efficient computation of the Tate pair-
ing in Edwards coordinates for curves with even embedding degree. These curves
are preferred in cryptographic applications because a major part of the compu-
tations is performed in a proper subfield of F x. However, the results obtained
in Section 3 are independent of the embedding degree, so similar computations
can be done in a general case.

4.1 The case of an even embedding degree

Koblitz and Menezes showed in [21] that if ¢ and &k are chosen such as ¢ = 1 (
(mod)12) and k = 2°37, then the arithmetic of the extension field F . can be
implemented very efficiently as this field can be built up as a tower of extension
fields:

Fy CFpar CFpap... CFes,

where the ith field F_ ¢, is obtained by adjoining a root of some irreducible
polynomial X%/4i-1 — 3; and d;/d;_, € {2,3}.

We denote by m, M (respectively s, S) the costs of multiplications (respec-
tively squarings) in the field F, and in the extension F x. Then according to [21]
we get

M ~ v(k)m and S = v(k)s,

where v(k) = 3'57. Moreover, a multiplication of an element in F by an element
in F; costs km operations.

For efficiency reasons, we restrict the domain of the Tate pairing to a product
of cyclic subgroups of order r on the elliptic curve. In general, the point P can
be chosen such that (P) is the unique subgroup of order r in E(F,). In order

to get a non-degenerate pairing, we take @ a point of order r in E(F,»)\E(F,).
Moreover, if the embedding degree is even, it was shown that the subgroup
(Q) C E(F ;) can be taken so that the z-coordinates of all its points lie in F
and the y-coordinates are products of elements of Fr/>» with VB, where 3 is a
nonsquare in F /2 and /f is a fixed squareroot in Fyx (see [21] for details).

The same kind of considerations apply to Edwards curves. We recall that the
curve E : 22 +y? = 14 dx?y? is birationally equivalent to the curve E,, via the
rational map ¢ : E; — E. We choose P’ and Q' on the E4 curve as explained
above and then take P = ¢ (P) and Q = (Q"). It follows that the coordinates
of elements of (P) are in Fy. The subgroup (Q) € Fyx is such that its elements
have y-coordinates in the quadratic subextension Fqk, s2 and z-coordinates that
can be written as products of elements of F /> with /B, for some element 3 of
Fqk/z.

Doubling step We now take a look into the details of the computation of a
Miller iteration. We note K = (X1,Y1, Z1). Following [3] the doubling formulas
for 2K = (X3,Y3, Z3) are:

X3 = 2X1V1(227 — (X7 + V7)),
Yy = (X7 + YP) (Y] - X7),
Zs = (X7 +Y{)(227 — (XT + Y1)
On the curve E; , we consider [, , the tangent line to the curve at ¢(K) =

(p1,81) and vs,, the vertical line passing through ¢(2K) = (ps, s3). These lines
have the following equations:

lsp(s,p) = 2pTs1(s — s1) — p1(2d(1 + dp1) — (s7 +4))(p — p1),
Vs p(5,p) =D — p3.

Using the equation of the curve E; ;, and then the expressions for s and p we
get

lsp = 2p751(s — s1) — (2d(1 + dp1)p1 — (1 + dp1)?)
= Qp%sl(s —s1) 4+ (1 —dp1)(1 + dp1)
= (x191)* (27 — y}) Czayr (a/y — y/x) — (2T = 7))
+(2 =27 —) (@} + u1) ((2y)? — (211)?).

Consequently, making use of the Edwards curve equation, we get the following
equations of normalized functions [and v in projective coordinates:

lo,y) = h(z,y)/le = (XT + Y7 = Z7)(X] - Y?)(2X1Yi(a/y — y/o)
—2(XT = YD) + Z3(dZ3 (wy)? — (X7 + Y7 = Z1)))/
(X0 Y1 (XT + Y7 = Z7)(XT = V7)),
v(,y) = vi(z,y) /e = (dZ3 (xy)? — (X3 + V3§ — Z3)) /(X3 + Y3 — Z3).

We now show that the computational cost of the doubling part in Miller’s
algorithm is significantly lower because we can ignore terms that lie in a proper
subfield of F . These terms can be ignored because k is the multiplicative order

of ¢ modulo 7, so (¢* — 1)/r is a multiple of qk/ — 1 for one proper divisor k of
k. So we ignore [y and vy because they depend only of the coordinates of P, so
they lie in Fy. Since (zy)? € F /2 and hence v1(Q) € F, /2, it follows that we
can also ignore v1(Q). Hence the function evaluation step in the doubling part
of Miller’s algorithm becomes:

O = (f92%0(Q). (10)

Note that multiplications by (zy)? and x/y — y/z cost (k/2)m each (z/y —y/x
is the product of some element in F /> with V/B). Also note that computing
x/y — y/x costs one inversion in F ./2. In some protocols) is a fixed point, so
we can precompute z/y — y/x.

If k = 2, we actually have (zy)? € F,, so we compute:

hey) = (X7 4 VP - Z2)(X7 — YP)) - 2XaVala/y — yfa) — (X7 + Y7 - 2D)
(X2 =¥2))-2X2 = YP) = Zy - (427 - (wy)? — (X + VP — 22)),

For k > 2 some operations are done in F » and others in F,, so we compute
{1 as it follows:

hz,y) = (X7 +YP = ZD)(XT - YP)) - 2XaYa(a/y — y/z) — (XF + Y7 — Z7)
(XP=YP) - 2XT —YP) — Zs - dZY - (xy)* + Zs - (X7 + Y7 — Z7),
As an example, we detail the computation of the doubling step for k > 2

in Table 2. A Pari-Gp script proving correctness of this computation is given in
Appendix B. Results are summarized in Table 3. The computations in the general

Table 2. Operations of the doubling part of the Miller operation for k& > 2

A—X{, B—Y?, C— (X1+11)?, D— A+B, (3s)
E—C-D, F—B-A, G Z% H<—2G-D, (1s)
Xs—E-H Ys«—D-F, Zz—D-H [—G-F, J—(I-Y3)-E (5m)
K—J (z/y—y/z), L —(I—-Y3)-2F, M — Zs-dG (2+ %)m)
N« M- -(zy)? P—23- (A+B-G), h«— K+L+N-P (lm + £)m)
F@O — (f®H2 (1IM+18)

case for Jacobian coordinates are detailed in Appendix A, while the complexity
in the 'a = —3’ case is taken directly from [21], although some further s — m
tradeoffs might be possible.

Mixed addition Next, we take a look at the mixed addition step in a Miller
iteration. We first count the number of operations that must be executed when

Table 3. Comparison of costs for the doubling step of the Miller operation in the case
of k even

k=2 k>4
Jacobian coordinates 10s+3m+S+M [11s+ (k+1)m+S+ M
Jacobian coordinates fora=—3 | 4s4+8m+S+M |4s+ (k+7)m+S+M
Das/Sarkar Edwards coordinates
(supersingular curves)
Das/Sarkar Edwards inverted
coordinates (supersingular curves)
Edwards coordinates 4s+9m+S+M |4s+ (k+8m+S+ M

6s+9m+ S+ M -

6s+9m+ S+ M -

adding K = (X;,Y7,Z1) and P = (Xj, Yy, 1). The result is K+ P = (X3, Y3, Z3)
with:

X3 = Z1(XoY1 + Yo X1)(ZF — dXo X1 YoY1),

Vs = Z1(YoY1 — XoX1)(Z7 + dXo X1YpY1),
Zy = (Z} + dXoX1YoY1)(Z] — dXoX1YoY1).
On the E; ,, we consider I, ,, the straight line passing through ¢(K) = (p1, s1)

and ¢(P) = (po, so) and v, , the vertical line passing through the point ¢(K) +
P(P) = (p3, s3). We get:

Ls,p(8,p) = (Po — p1)(s — s1) — (S0 — s1)(p — p1);

Vs p(8,p) =P — 3.
Replacing with the expressions of pg, p1, sg, s1 and multipling the equation above
by (z1y1) we get:

Lip(s,p) = ((z191)° — (woy0)?) (z1yn (z/y — y/x) — (27 — 7))

—(2f —yi =z (25 — 95)) ((2y)? — (2191)?).

Consequently, we get normalized functions [and v of equations:

<

Wz,y) = hi(z,y)/lo = (X7 + Y7 = 27 — de(XOYO)2)(X1Y1(§ Yy

8

(0 - YD) - (0 - ¥ - Xan(E - 32)
(dZ3 (xy)® — (XT +Y{ = 27)))
[(XaYi(XF + Y = 27 — dZF(XoY0)?));
v(@,y) = vi(e,y)/ve = (dZ3 (xy)® — (X3 + Y5 — Z3)) /(X5 + Y5 = Z3).
For the same reasons as above, the mixed addition step in the case of even k
becomes:

R VAR ()} (11)

Detailed computations of the mixed addition step for k > 2 are presented in
Table 4 (please check Appendix C for a proof of the correctness of these com-
putations). We suppose having computed expressions depending only on P, the
base point (i.e. XoYp, (XoY0)?2, Xo/Yo — Yo/Xo) once and for all in the very be-
ginning. The operation count gives 4s + 15s + M. As computing Xo/Yy — Y/ Xo
costs one inversion in IFy, in some cases it will be less expensive to work with
lll = (XoYp)!; instead of I;. For protocols in which @ is a fixed point, this will give
an inversion free algorithm, but the mixed addition step will cost 4s + 16m + M
for k =2 and 4s + (k + 14)m for k > 4.

Table 4. Operations of the mixed addition step of a Miller operation for k > 2

A—X] B—Y2C— (X1 +Y1)?—A—B,D — C-(dX,Yo) (1m+3s)
E<—2(X1 —|—X0)(Y0+)/1)—C—2XOY0, (lm)
F—2(X14+Y0)- (Y1 — Xo) — C +2XoY0,G «— Z3 (lm+1s)
H«—dG - (XoYo)%, 1 — (A+B—G—-H)-C, (2m)
J—TI-(z/y—y/z),K—2(A+B—-G—-H) - (A-—B) (1+ %)m)
L« C-(Xo/Yo—Yo/X0),M «—dG-(2A —2B — L),N « M- (zy)*> ((2+ £)m)
P~ (2A-2B-L)-(A+B-G),li+—~J—-K—-N+P (1m)
fY = () (1M)

Results and performance comparison are summarized Table 5.

Table 5. Comparison of costs for the mixed addition step of the Miller operation in
the case of k even

k=2 k>4
Jacobian coordinates 3s+1lm+M [3s+ (k+9)m + 1M
Das/Sarkar Edwards coordinates Is + 18m 4 M i
(supersingular curves)
Das./ Sarkar Edwgrds inverted s+ 17m + M)
coordinates (supersingular curves)
Edwards coordinates 4s+15m+M (4s + (k+ 14)m + 1M

Comparison By looking at Tables 3 and 5 one can see that in the case of an
even embedding degree the cost of an implementation of Miller’s algorithm in
Edwards coordinates will be slightly more expensive than an implementation in
Jacobian coordinates. We also checked performances of our method in inverted
Edwards coordinates, but we did not obtain better results. We find it impor-
tant to state that, no matter the representation one might choose to implement
Miller’s algorithm in high embedding degrees, it would be impossible to avoid
the costly computation of 1M + 18 in equation (10) or the 1M in equation (11),

as these are the updates in the Miller loop.

It is clear that when Edwards coordinates are prefered for the implementa-
tion of a protocol for certain reasons (scalar multiplication is faster, resistant
to side channel attacks), a solution would be to switch to Jacobian coordinates
and to compute the pairing on the Weierstrass form. Even though pairing im-
plementation is faster in Jacobian coordinates, this approach will cost at least
one field inversion. Consequently, on restricted devices, it is preferable to use
our approach and avoid inversions.

5 Conclusion

In this paper, we have given a new algorithm to compute pairings on Edwards
curves and compared its performance to that of an implementation of Miller’s
algorithm in Jacobian coordinates and to the method for Edwards coordinates
from [13]. We showed that this algorithm is competitive and that if Edwards
coordinates were to be chosen for the implementation of a pairing-based protocol,
the presented approach gives an inversion-free algorithm, which is clearly un
advantage on restricted devices.

6 Acknowledgements

The authors are grateful to Tanja Lange for helpful comments on earlier versions
of this paper and to Vanessa Vitse for implementing pairings on Edwards curves
in the first place.

References

1. Daniel J. Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.
Twisted Edwards curves. In Serge Vaudenay, editor, AFRICACRYPT, volume
5023 of Lecture Notes in Computer Science, pages 389—405. Springer Verlag, 2008.

2. Daniel J. Bernstein and Tanja Lange. Explicit-formulas database, 2007.
http://hyperelliptic.org/EFD/.

3. Daniel J. Bernstein and Tanja Lange. Faster addition and doubling on elliptic
curves. In Kaoru Kurosawa, editor, Advances in Cryptology — ASIACRYPT 2007,
volume 4833 of Lecture Notes in Computer Science, pages 29-50. Springer Verlag,
2007.

4. Daniel J. Bernstein and Tanja Lange. Inverted Edwards coordinates. In Serdar
Boztas and H.F. Lu, editors, AAECC 2007, volume 4851 of Lecture Notes in Com-
puter Science, pages 20-27. Springer Verlag, 2007.

5. Tan F. Blake, Gadiel Seroussi, and Nigel P. Smart. Advances in FElliptic Curve
Cryptography, volume 317 of London Mathematical Society Lecture Note Series.
Cambridge University Press, 2005.

6. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil
pairing. In Joe Kilian, editor, Advances in Cryptology — CRYPTO 2001, volume
2139 of Lecture Notes in Computer Science, pages 213-229. Springer Verlag, 2001.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, Advances in Cryptology — ASIACRYPT 2001,
volume 2248 of Lecture Notes in Computer Science, pages 514-532. Springer Verlag,
2001.

Dan Boneh and Hovav Shacham. Group signatures with verifier-local revocation.
In Vijayalakshmi Atluri, Birgit Pfitzmann, and Patrick McDaniel, editors, ACM
CCS 04: 11th Conference on Computer and Communications Security, pages 168—
177. ACM Press, 2004.

Wieb Bosma. Signed bits and fast exponentiation. J. de théorie des nombres de
Bordeauz, 13(1):27-41, 2001.

Friederike Brezing and Annegret Weng. Elliptic curves suitable for pairing based
cryptography. Des. Codes Cryptography, 37(1):133-141, 2005.

Sanjit Chatterjee, Palash Sarkar, and Rana Barua. Efficient computation of Tate
pairing in projective coordinate over general characteristic fields. [CISC 2004,
3506:168-181, 2005.

Zhaohui Cheng and Manos Nistazakis. Implementing pairing-based cryptosys-
tems. 2nd International Workshop on Wireless Security Technologies IWWST-
2004, 2004.

M. Prem Laxman Das and Palash Sarkar. Pairing computation on twisted Edwards
form elliptic curves. In Steven Galbraith and Kenny Paterson, editors, Pairing
2008, volume 5209 of Lecture Notes in Computer Science, pages 192-210. Springer
Verlag, 2008.

Harold M. Edwards. A normal form for elliptic curves. Bull. AMS, 44:393-422,
2007.

David Freeman, Michael Scott, and Edlyn Teske. A taxonomy of pairing-
friendly elliptic curves. Cryptology ePrint Archive, Report 2006/372, 2006.
http://eprint.iacr.org/.

Robert Granger, Florian Hess, Roger Oyono, Nicolas Thériault, and Frederik Ver-
cauteren. Ate pairing on hyperelliptic curves. In Moni Naor, editor, FURO-
CRYPTO07, volume 4515 of Lecture Notes in Computer Science, pages 419-436.
Springer Verlag, 2007.

Robert Granger, Dan Page, and Nigel P. Smart. High security pairing-based cryp-
tography revisited. In Florian Hess, Sebastian Pauli, and Michael E. Pohst, editors,
ANTS VI, volume 4076 of Lecture Notes in Computer Science, pages 480—494, 2006.
Robin Hartshorne. Algebraic Geometry, volume 52 of Graduate texts in Mathemat-
ics. Springer, 1977.

Florian Hess, Nigel P. Smart, and Frederik Vercauteren. The Eta Pairing Revisited.
IEEFE Transactions on Information Theory, 52:4595-4602, 2006.

Antoine Joux. A one round protocol for tripartite Diffie-Hellman. Journal of
Cryptology, 17(4):263-276, September 2004.

Neal Koblitz and Alfred Menezes. Pairing-based cryptography at high security
levels. In Nigel P. Smart, editor, IMA Int. Conf., volume 3796 of Lecture Notes in
Computer Science, pages 13-36, 2005.

Victor S. Miller. The Weil pairing, and its efficient calculation. Journal of Cryp-
tology, 17(4):235-261, September 2004.

Joseph H. Silverman. The Arithmetic of Elliptic Curves, volume 106 of Graduate
texts in Mathematics. Springer, 1986.

A Pairing computation in Jacobian coordinates

One of the most efficient known ways of computing pairings on an elliptic curve
given by a Weierstrass equation is to use Jacobian coordinates, as stated in [21]
and in [17]. A point (X,Y, Z) in Jacobian coordinates represents the affine point
(X/Z%Y/Z3) on the elliptic curve. In order to permit comparison with the
results we obtained in section 4.1, we give formulae for the computation of the
doubling step of Miller’s algorithm, using more recent formulas for doubling
on elliptic curves in Jacobian coordinates given in [2]. We suppose that the
embedding degree k is even. We are interested in computing 7T..(P, @), where
P is chosen such that (P) is the unique subgroup of order r in E(F,) and
Q € E(Fg) is so that the z-coordinates of all its points lie in F /> and the
y-coordinates are products of elements of F «/> with some fixed squareroot VB
of a nonsquare element 3 in F /2. We will look at the doubling step of the Miller
operation for the i-th bit of 7. In order to be consistent with notations in [12],
we represent the point K as K = (X1,Y1, 21, W1), where (X1,Y1,Z;) are the
Jacobian coordinates of the point K on the Weierstrass curve and Wy = Z7. We
compute 2K = (X3,Y3, Z3, Ws3) as

X3 = (3X7 +aW?)? —8X, Y7,
Yz = (3X7 + aW?)(4X Y2 — X3) — 8V},
Zs =2V, 7,
Ws = Z2.
We write the normalized functions ! and v that appear in (7) as | = I1/l>
and v = vy /vg:
x,y) = li(z,y)/lo = (ZsWhy = 2Y] — (3XT + aWP)(Whz — X1))/(ZsWh)
v(z,y) = vi(z,y)/v2 = (Wsz — X3)/Ws.

As explained in [21], I3, vo and v1(Q) can be ignored as they lie in proper
subfields of Fyx. So in the doubling part of Miller’s algorithm we perform the
following operations:

K «— 2K
fi = f7h(Q).

For k =2, z € F; so we can compute the function /; as:
Lz, y) = ZsWhy — 2Y7 — (3XT + aW?)(Wiz — Xy).
For k > 2 x is in Fx/2, so the computation is slightly different:
Liz,y) = ZsWiy — 2Y2 — Wi (3X?2 + aW@)x + X1(3X2 + aW}).

Computations detailed in Table 6 for £ > 2 give an operation count of 11s +
(k+ 1)m + 1S 4+ 1M. The following lines give a Pari-Gp script which formally
verifies that computations done in Table 6 are correct.

Table 6. Operations of the doubling part of a Miller operation for k > 2

A—WEZ B—X2 C—Y: D—C? (4s)
E«— (X1 +0)?—-B-D, F—3B+aA, G« F? (2s)
X3 —4E+G, Y3+ —8D+F-(2E — X3), Z3 — (Y1 + Z1)> —=C — W1 (1m+1s)
Wi« Z3, He (Zs+W1)> - W3 — A, T« H-y (£m-+2s)
J—(F+W)?-G-A Ke—J-x, L— (F+X1)*-G-B (2m+2s)
Ih—T—4C—-K+1L
fr—ftn (1M +18)

W1=Z1"2;A=W1"2;B1=X1"2;C=Y1"2;

D=C~2;E=(X1+C) "2-B1-D;

F=3xBl+axA;G=F"2;X3=-4%E+G;

Y3=-8*D+F* (2*xE-X_3) ;Z_3=(Y_1+Z_1)"2-C-Z1"2;

W3=Z3"2;H=(Z3+W1) "2-W3-4A;

I1=Hx*y;J=(F+W1) "2-G-A;

K=J*x;L=(F+X1) "2-G-B1;

11=T1-4*C-K+L

liverif=Z3*(Z172)*y-2xY1"2-(Z172) * (3% (X172) +a* (Z174)) *x+X1* (3% (X1"2) +a*Z1"4)
11-2%11verif

B Pari-Gp script for the doubling part of Miller’s
algorithm in Edwards coordinates

The following script checks computations in Table 2:

A=X1"2;B=Y1"2;C=(X1+Y1)"2;

D=A+B;E=C-D;F=B-A;

G=Z1"2;H=2*%G-D; X3=ExH;

Y3=Dx*F ; Z3=D*H; I1=G*F;

J=(11-Y3)*E;K=J*(x/y-y/%);

L=(I1-Y3)*2*F;M=Z3*d*G;

N=Mx* (x*y) ~2;P=Z3* (A+B-G) ;

11=K+L+N-P;

11
liverif=((X1"2+Y172-Z1"2) *(X172-Y1"2)) *2*X1*Y1* (x/y-y/x) ;
liverif=11verif-((X172+Y1"2-Z1"2)*(X1"°2-Y172))* (2% (X1"2-Y1"2));
liverif=11verif+Z3*(d*(Z1°2)* ((x*xy) "2))-Z3*(X1°2+Y1"2-Z1"2)
11-11verif

C Pari-Gp script for the mixed addition part of Miller’s
algorithm

The following script checks the computations in Table 4:

A=X1"2;B=Y1"2;C=(X1+Y1) "2-A-B;

D=C* (d*X0*Y0) ; E=2*(X1+Y1) "2-A-B;
D=C*d*X0*YO0 ; E=2% (X1+X0) * (YO+Y1) -C-2*X0*YOQ;

F=2x(X1+Y0) * (Y1-X0) -C-2%X0*YO0;

G=Z1"2;X3=Z1*E*x (2*G+D) ;

Y3=Z1*F* (2*G-D) ; Z3=(2*G-D) * (2*%G+D) ;

H=d*G* (X0*Y0) “2;I1=(A+B-G-H) *C;

J=I1*(x/y-y/x) ;K=2% (A+B-G-H) * (A-B) ;

L=C*(X0/Y0-Y0/X0) ;M=d*G* (2¥A-2*B-L) ;

N=Mx* (x*y) ~2;P=(2*%A-2%B-L) * (A+B-G) ;
liverif=(X1"2+Y1"2-Z1"2-d*(Z172) * (X0*Y0) "2) * (X1*Y1* (x/y-y/x) - (X172-Y1"2)) ;
liverif=11verif-(X1"2-Y1"2-X1xY1x(X0/Y0-Y0/X0))*(d*(Z1~2) * ((x*y) "2)-(X172+Y1"2-Z1"2))
11=J-K-N+P

11-2x11verif

