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Abstract

Some sensor network settings involve disconnected or unattended operation with
periodic visits by a mobile sink. An unattended sensor network operating in a
hostile environment can collect data that represents a high-value target for the
adversary. Since an unattended sensor can not immediately off-load sensed
data to a safe external entity (such as a sink), the adversary can easily mount
a focused attack aiming to erase or modify target data. To maximize chances
of data survival, sensors must collaboratively attempt to mislead the adversary
and hide the location, the origin, and the contents of collected data.

In this paper, we focus on applications of well-known security techniques to
maximize chances of data survival in unattended sensor networks, where sensed
data can not be off-loaded to a sink in real time. Our investigation yields some
interesting insights and surprising results. The highlights of our work are: (1)
thorough exploration of the data survival challenge, (2) exploration of the design
space for possible solutions, (3) construction of several practical and effective
techniques, and (4) their evaluation.

Key words: Unattended WSN, data survival, security, mobile adversary,
probabilistic analysis.

1. Introduction

In recent years, sensors and sensor networks have been extremely popular
in the research community. Much of prior research explored various aspects
of Wireless Sensor Networks (WSNs), including: system architecture, routing,
security, power-awareness and data abstraction. In particular, security issues in
WSNs have received a lot of attention. One common assumption in prior WSN
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security research is that data collection is performed in, or near, real time. In
other words, a trusted entity (such as a sink) is assumed to be always present.
Individual sensors submit their data to the sink either periodically or based on
some external trigger, e.g., a change in the sensed environment or an explicit
request by the sink.

Another emerging sensor network type involves sensor mobility and oppor-
tunistic connectivity among sensors as well as between sensors and the sink
[1, 2, 3]. This concept is similar to Delay Tolerant Networks (DTNs). It is char-
acterized by sensors’ inability to communicate with other sensors, for reasons
such as: limited transmission ranges, power constraints or signal propagation
problems (e.g., line-of-sight limitations or physical obstacles).

In this paper, we focus on WSN scenarios and applications that do not fit
into either the real-time data collection model or the opportunistic DTN-like
model. We are interested in sensor networks where sensors are connected but
there is no real-time communication with the sink. We refer to such networks
as Unattended WSNs or UWSNs. We narrow our scope even further to UWSNs
operating in a hostile – or at least untrusted – environment where the adversary
has free reign. Specifically, the adversary has one central goal: to prevent
certain data collected by sensors from ever reaching the sink. We elaborate on
this below.

One example of hostile unattended environment could be a network of nu-
clear emission sensors deployed in a recalcitrant country (under, say, an interna-
tional treaty) in order to monitor any potential nuclear activity. Another exam-
ple is an underground sensor network aimed at monitoring sound and vibration
produced by troop movements (or border crossings). One can also imagine an
airborne sensor network tracking fluctuations in air turbulence and pressure to
detect enemy aircrafts. Among the features that unify these examples is the
likely presence of a powerful – yet careful – adversary. Informally speaking, we
say that the adversary is powerful if it can subvert a number of sensors at will,
while it is considered careful if it wishes to remain undetected in the process.
Quite recently, the U.S. Defense Advanced Research Projects Agency (DARPA)
initiated a new research program to develop so-called LANdroids [4]: smart
robotic radio relay nodes for battlefield deployment. LANdroid nodes are sup-
posed to be deployed in hostile environment, establish an ad-hoc network, and
provide connectivity as well as valuable information for soldiers that would later
approach the deployment area. LANdroids might retain valuable information
for a long time, until soldiers move close to the network. In the interim, the ad-
versary might attempt to delete or modify that information, without disrupting
network operations, so as to remain undetected.

In such settings, the greatest challenge is to ensure data survival for long
enough that it can be collected by the itinerant sink. Clearly, if the adversary is
unable to break into (i.e., compromise) a single sensor or inhibit communication
between a sensor and an eventual collector or sink, it has no hope of destroying
the data. However, we envisage a more realistic adversary who is aware of
the origin(s) of targeted data and is also assumed capable of compromising
any sensor it chooses, up to a specific threshold (fraction or absolute number)
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of sensors, within a certain time interval. This type of adversary has been
studied in the cryptographic literature where it is usually referred to as a Mobile
Adversary [5]. An entire branch of cryptography, called Proactive Cryptography
has been dedicated to developing cryptographic techniques (e.g., decryption and
digital signatures [6, 7]) that remain secure in the presence of a mobile adversary.
Although our adversary models are similar, the UWSN application domain is
very different from that in proactive cryptography (as described below), thus
motivating radically different solutions.

Scope. This paper represents the very first attempt to develop cryptographic
defenses for coping with a focused mobile adversary in UWSNs. However, as
becomes clear throughout, this paper does not address a number of important
problems. This is partly because of space limitations and partly due to the
novel nature of the topic and problem at hand. We expect that this paper will
result in follow-on investigations on our part as well on the part of the research
community.

We also stress that our work is oriented towards sensor networks and is
not particularly novel in terms of cryptography. Its novelty stems from apply-
ing well-known and accepted cryptographic tools to solving a novel networking
problem.

Our Contributions. This paper provides the following contributions:

1. Problem Exposure: although some recent work [8] first brought the prob-
lem to light, it focused on trivial and intuitive data survival strategies. In
contrast, the present work delves much deeper into the problem and con-
structs effective and efficient countermeasures that achieve our main goal of
maximizing data survival in UWSNs in the presence of a powerful mobile
adversary.

2. Novel Techniques & Analysis: we thoroughly explore the design space of
cryptographic solutions and – without resorting to expensive and/or exotic
techniques – develop several practical and optimal (or near-optimal) data
survival strategies. Our investigation yields some interesting results; for
instance, when using public key cryptography, continuously moving data
around the network provides the same security of combining the follow-
ing techniques: moving data just once, plus re-encryption. Further, our
evaluations of proposed techniques demonstrate a surprising degree of data
survival even when the adversary is very agile and powerful, while the sen-
sor network remains unattended for a relatively long time.

Organization. Section 2 introduces our environment assumptions. Then, Sec-
tion 3 explores potential data survival strategies for the UWSN, adversarial
counter-strategies and a number of design parameters. Section 4 investigates
encryption–related issues and parameters. Section 5 presents our analysis. Next,
Section 6 overviews relevant prior work. Finally, Section 7 provides a summary
and some directions for future work.
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2. System Assumptions

In this section we present our assumptions about the sensor network envi-
ronment and the adversary.

2.1. Network Environment
We envisage a UWSN which operates as follows:

• Sensors are programmed to sense and collect data periodically. There is
a fixed global periodicity parameter p denoting the time interval between
successive sensing operations.

• Each sensor collects a single unit of data for each interval. In an UWSN
composed of n sensors, we say, sensor sj collects data dr

j for interval r.

• The network is unattended. There exists a parameter q (q = v∗p for some
integer v) which denotes the maximum time between successive visits of
the sink or collector —we use the term sink from here on to mean both.

• As soon as each sensor off-loads its accumulated data to the sink, it erases
its entire storage. Moreover, the sink re-initializes all sensors’ secret ma-
terial upon each visit. In other words, any secret values held by a sensor
right before the sink visit are completely independent from those held after
the visit.

• The network is connected at all times. Any two sensors can communicate
either directly or indirectly, via other sensors. Although we use the term
UWSN, we make no assumption about the wireless nature of the network.
Indeed, our results are independent from the underlying routing protocol.

• There are no power constraints. At least initially, we are not concerned
with power consumption of various survival techniques —this assumption
will be re-considered later.

• Ample storage. Each sensor is equipped with enough storage to accom-
modate O(v) sensed data.

As seen from our assumptions, even apart from the unattended nature of the
network, we are considering an emerging kind of sensor network not typically
encountered in the research literature.

2.2. Portrait of the Adversary
We now focus on the description of the anticipated adversary. We refer to

it as ADV from here on.

• Compromise power: ADV is capable of compromising at most k out of n
sensors during any single interval. k may be a fixed integer value or a frac-
tion of n —number of sensors in the network. Once ADV compromises a
sensor, and as long as it remains compromised, we assume that ADV reads
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all of its storage and monitors all incoming and outgoing communications.
We do not assume that the subset of compromised sensors is clustered or
contiguous, i.e., concurrently compromised sensors can be spread through
the entire network.

• Compromise Round & Collection Round: for ease of exposition and without
loss of generality, we assume that the compromise and collection rounds
have the same duration. Moreover, and also without loss of generality, we
assume that they are synchronized, i.e., both types of rounds start and
end at the same time.

• Network knowledge: ADV knows the composition and the topology of the
network.

• Limited erasure capacity: between any two successive sink visits (within v
intervals) ADV can erase no more than a given number t of measurements
from the network. Erasing more than that, raises an alarm on the sink
and contradicts ADV’s goal of remaining undetected.1

• No interference: except for the above, ADV does not interfere with com-
munications of any sensor and does not modify any other data sensed by
– or stored on – sensors it compromises; this assumption as well will be
re-considered later.

• Atomic movement: ADV moves in one fell swoop, i.e., at the end of each
interval it selects at most k sensors to compromise in the next interval
and migrates to them in one monolithic step. Note that the two sets of
compromised sensors may intersect or even be the same. Our assumptions
about adversary movements are similar to the one in [9].

• Stealthy operation: ADV’s movements between intervals are unpredictable
and untraceable. As it moves from one set of k sensors to the next, ADV
leaves no trace behind. This implies that a compromised sensor released
by ADV is fully operational

With reference to the last item, we assume that ADV does not modify
any data it encounters as it compromises sensors. It also does not inject any
data of its own. An important consequence is that, in this paper, we are not
addressing the data authenticity problem. We are concerned only with data
survival, which motivates hiding: (1) data origin, (2) data content, and (3) time
of data collection. The reason for hiding these three values is apparent – we
want to minimize information available to ADV as it roams around the UWSN
looking for the target data.

We distinguish between a proactive and a reactive adversary. The latter
is assumed to be dormant (inactive) until it gets a signal that certain data must

1Whereas, a few missing reports might be considered by the sink as to be a consequence
of sensor malfunctioning.
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be erased. As soon as this happens, ADV reacts and starts compromising, in
each round, up to k sensors. In contrast, a proactive ADV roams the network
ahead of time, waiting for a signal to erase certain data. The reason for this
distinction is discussed later on in the paper.

Finally, in Table 1 we summarize the notation used in the rest of the paper.
We use the terms round and interval interchangeably, to denote the time between
successive sensor measurements.

n size of the UWSN
i, j sensor indices
si sensor i

r, r′ round/interval indices
dr

i data collected by sensor i at interval r
S(dr

i , r
′) sensor hosting dr

i at round r′ > r
Kr

i key used by sensor si at round r

Ur′
set of data items undecipherable by ADV in round r′

v number of rounds between successive sink visits
Cr set of compromised sensors at round r
k maximum size of Cr; assumed constant

Table 1: Notation Summary

3. Strategies and Design Parameters

In this section we introduce possible strategies adopted by the adversary
to reach its goals and the countermeasures taken up by the network to ensure
data survival. We also survey other design parameters such as encryption,
authentication and replication.

3.1. Survival and Attack Strategies
Our main goal is to maximize survival probability for data collected by sensor

si at interval r (that is, dr
i ). Survival means that this data is eventually delivered

to the sink. At round r ADV learns from an external signal which data it has
to erase, namely, it learns both si and r. Unfortunately for us, ADV does not
reveal the data it is interested in erasing; thus, we know neither of these values,
except that 1 ≤ i ≤ n and 0 ≤ r ≤ v. We must therefore assume that all data
is potentially targeted by ADV.

Focusing strictly on non-cryptographic techniques [8] considered two intu-
itive data survival strategies:
MOVE-ONCE: at every round r, each sensor sj collects data dr

j , randomly picks
a sensor —that is going to become S(dr

j , r +1)— and sends dr
j to it. Thereafter,

dr
j remains at its new “home” until the next sink visit.

KEEP-MOVING: at each round r each sensor moves each hosted data item
separately, i.e., for each data item that it stores (and collects), it picks a random
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sensor and moves there the stored item. As we show later in the paper, this
strategy does not significantly increase data survival chances.

Whichever survival strategy is used, one must assume that ADV is aware
of it. Knowing the survival strategy lets ADV pick a counter-strategy that
maximizes chances of deleting the target data. [8] considered several counter-
strategies that, given a sufficiently large v (number of rounds between sink
visits), guaranteed that ADV wins the game as long as data is kept as cleartext.
These survival strategies vary only as far as exactly how many rounds it takes
ADV to win.

The use of encryption allows us to hide the origin, the time of collection and
the content of sensed data. If ADV can not recognize target data, former attack
strategies no longer apply and ADV is forced to erase data blindly, i.e., to guess
which ciphertext hides the target data. In the analysis below, we use Ur′

to
denote the set of all encrypted data items that ADV can not decrypt at round
r′. We stress that message eavesdropping or interception does not affect our
security analysis, since we focus only on the indistinguishability of messages.
The greater the size of Ur′

, the higher the probability that the target data will
persist until the next sink visit. In particular, given t possible erasures, ADV
has probability t

|Ur′ | of succeeding. The survival strategy aims to increase the

size of Ur′
. Whereas, ADV’s counter-strategy is to roam the network and learn

as much information as possible in order to maximize the chances of finding
and erasing dr

i . To this end, ADV’s goal is to limit the growth of |Ur′ | and if
possible, even to decrease it.

3.2. Design Parameters
Encryption. In the context of this paper, the most important issue is encryption.
If sensors use encryption in conjunction to hiding data location (by moving
data around), they can hide not only the contents of collected data but also the
identity of the sensor that collected it as well as the round identifier (i.e., the
time of collection). Use of encryption is a natural choice; however, it comes with
certain non-negligible costs, such as key management and the overhead due to
cryptographic operations. Encryption also motivates certain assumptions and
technicalities which we discuss in the rest of this paper.

Authentication. Another important issue is authentication, i.e., whether the
sink can establish with certainty both data integrity and data origin authenticity.
As mentioned in Section 2.2, we are not dealing with authentication in this
paper. More concretely, we assume that all data is encrypted using Plaintext-
Aware Encryption [10] whereby any modification (without knowledge of the
secret key) will produce gibberish upon attempted decryption.

We expect that follow-on works will address richer adversary model which
allows ADV to modify existing data and/or inject fake data into compromised
sensors.
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Figure 1: Decision Tree

Replication. The final parameter we consider is replication, i.e., whether sen-
sors create multiple copies of sensed data before moving it to other locations.
Replication has some obvious advantages and drawbacks. The main advan-
tage is increased chances of data survival, while the main drawback is increased
storage and communication overhead. Replication of cleartext data was previ-
ously studied in [8]. Although replication of encrypted data is more effective
than cleartext replication for defending against our focused mobile adversary,
we consider replication an independent issue and do not discuss it further in
this paper.

4. Encryption Parameters and Features

We are primarily concerned with encryption as a means of hiding the origin
and time of collection (and to a lesser extent, the contents) of sensed data.
Furthermore, we assume that, regardless of the encryption details, encryption
is always randomized [11], which (informally) means that given two encryptions
under the same key, it is unfeasible to determine whether the corresponding
plaintexts are the same.

We now discuss encryption features and parameters. To simplify the dis-
cussion, we show the “decision tree” in Figure 1 where leaves represent specific
techniques. Note that the asterisks (*) associated with the leaves provide an
intuitive measure of the quality of the data survival strategy represented: the
more asterisks, the bigger the set |Ur′ |.2 Justifications for the rankings – as well

2However, note that ∗ has a special meaning: the exact quality depends on the relationship
between r′ and k. In particular, for r′ < n/k, it is better than that provided by a single
asterisk. On the other hand, if r′ > n/k the quality is lower than that of all other techniques.
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as the meaning of the dashed arrow – are clarified below, in the course of our
discussion.

As usual, the choice of public key or symmetric (shared key) algorithm is the
main variable when introducing encryption. We remain agnostic with respect
to this choice and consider both cases.

4.1. Symmetric Encryption
Our construction with conventional encryption is straightforward:

1. Each sensor sj shares a distinct initial key K0
j with the sink.

2. At round r, sensor sj senses data unit dr
j and encrypts it to produce Er

j =
E(Kr

j , dr
j , r, sj , etc.).

3. Finally, sj picks a random destination sensor sl and sends Er
j to it.

4. If KEEP-MOVING strategy is used, sj sends each stored data item to ran-
dom destination sensors.

Since symmetric encryption is inherently invertible, we need to worry about
what happens when ADV compromises sensor si which originated target data
dr

i . By the time ADV compromises si, dr
i is off-loaded to another sensor S(dr

i , r
′)

(assuming r′ is the current round). However, if si’s key K0
i does not change,

as soon as ADV learns this key, it becomes capable of recognizing dr
i – by

decrypting its cyphertext with K0
i – whenever, at some future round r′, ADV

compromises S(dr
i , r
′). We therefore claim that the security offered by sym-

metric encryption is the same as in the case of not using encryption. This is
why Figure 1 shows a dashed arrow from the right-most leaf to top box, denot-
ing the essential equivalence of using a constant (non-evolving) shared key for
encryption and not using encryption at all.

To cope with sensor compromise, we need a property commonly referred to
as Forward Secrecy [12] which, in our case, can be easily obtained by evolving the
key in each round, using any suitable one-way function OWF (◦). Concretely,
we introduce an additional step between steps 2 and 3 described above:

2(a) sj computes Kr+1
j = OWF (Kr

j ) where OWF (◦) is a cryptographically
suitable one-way function, such as SHA-2. Then, Kr

j is deleted.

A minor issue is how the sink would decrypt data, i.e., how it would determine
which decryption key to use. This actually does not pose a problem since the
sink has all initial keys of the form K0

j . It can attempt to decrypt a ciphertext
using all n∗ v possible keys. While this might seem excessive, we point out that
symmetric encryption is very inexpensive and the sink is assumed to have no
computational constraints.

Unfortunately, symmetric encryption offers security only against a reactive
ADV. To see this, consider a proactive ADV who roams the network for dn

k e
rounds prior to receiving a signal that, at round r =

(
dn

k e+ 1
)

sensor si gener-
ated target data dr

i . ADV has already “visited” all n sensors in previous dn
k e

rounds. Therefore, it is able to derive each symmetric keys used by every sensor
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in round r.3 At this point, ADV just needs to find the current location of Er
i

and erase it, before the sink visits the network. Of course, this is the worst-case
scenario where ADV is guaranteed to win. More generally, a proactive ADV
does not necessarily have the luxury of dn

k e rounds before receiving the signal.
One possible, but limited, measure against a proactive ADV is super-encryp-

tion, i.e., further encryption of already encrypted (Er
i ) data by the host sensor.

The motivation is to address the case when, before getting the signal, ADV
compromises only either the originator si or the host sensor sj = S(dr

i , r + 1).
If so, at round r + 1, dr

i is stored at sj as:

E(Kr
j , Er

i ) = E(Kr
j , E(Kr

i , dr
i , r, si, etc.))

To recognize dr
i , ADV needs to decrypt both layers, which is impossible without

knowledge of both Kr
i and Kr

j . Note that the above implicitly refers to the
MOVE-ONCE strategy. It is easy to extend super-encryption to the KEEP-
MOVING.

In summary, symmetric super-encryption offers only limited help against a
proactive ADV. Its exact effectiveness is assessed below in Section 5.2.3.

4.2. Public Key Encryption
In the past, public key encryption was often avoided in the sensor network

security literature since its higher cost was viewed as a poor match for low-end
sensors. However, due to recent advances, public key encryption is becoming
more appealing [13]. Furthermore, as we show below, use of public key encryp-
tion offers a level of security unattainable with symmetric encryption. The base
case for public key encryption has the following features:

1. The sink has a long-term public key, PKsink, known to all sensors.
2. At round r, sensor sj collects data dr

j and encrypts it to produce Er
j =

E(PKsink, K
r
j , dr

j , r, sj , etc.) 4.
3. As in the symmetric case, sj picks a random destination sensor sl and sends

Er
j to it.

4. As before, with KEEP-MOVING, all stored data items are sent to random
sensors as well.

Note that sensors have no secret (private) keys of their own – they merely use the
sink’s public key to encrypt data. However, even this simple approach results
in ADV being unable to distinguish target data among all other encrypted data
it finds on compromised sensors.

Since ADV does not know the sink’s decryption key (SKsink), the only way
it can attempt to detect target data is by trying to encrypt its duplicate5 under
the sink’s public key, PKsink.

3Since knowing a sensor’s key for a given round allows it to derive the same sensor’s keys
for all subsequent rounds.

4Kr
j is the random number provided at round r by the random number generator of sj

5We assume that ADV can easily guess the actual sensed data dr
i .
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This is where our randomized encryption assumption comes in handy. With
randomized encryption, each encryption operation involves generating a one-
time random number and folding it into the plaintext (e.g., as in OAEP+ [11])
such that, without knowledge of that unique random number, it is computation-
ally unfeasible to re-create the same ciphertext. Consequently, ADV is unable
to distinguish among different encrypted values it finds on compromised sensors.

There is, however, a crucial security distinction based on the source of ran-
dom numbers. If random numbers are obtained from a strong (fully or, at least
partially, physical) source of randomness, then we can achieve the maximum
level of security — we also assume that the random numbers are sufficiently
long to make exhaustive guessing computationally unfeasible, i.e., at least 128
bits. To argue this claim informally, consider that a true random number gen-
erator (TRNG) generates information-theoretically independent values. That
is, given an arbitrarily long sequence of consecutive TRNG-generated numbers,
removing any one number from the sequence makes any guess of the missing
number equally likely.

On one hand, the only way for proactive ADV to recognize Er
i is if the

compromised set Cr includes si at the exact round r when ADV receives the
signal. This is, indeed, the highest level of security we can possibly hope to
achieve —in other words, ADV can win only due to dumb luck. If, on the other
hand, random numbers are obtained from a pseudo-random number generator
(PRNG), the resulting security is equivalent to that of the symmetric encryption
case with key evolution. This is because a typical PRNG produces numbers
by starting with a seed value and repeatedly applying a suitably strong one-
way function. Hence, it is functionally equivalent to the key-evolution feature
described in the previous section. This leads us to conclude that: if sensors have
no real source of randomness, there is no reason to use public key encryption,
since it costs more than symmetric encryption and does not offer better security.
However, an interesting feature of public key encryption is that some techniques
(e.g., [14]) allow what is referred to as re-encryption. In our context, this means
that a sensor which receives an already-encrypted data from another sensor, can
re-encrypt that data such that the previous sensor would be unable to recognize
its own encrypted data thereafter. Two advantages of using re-encryption are:

• It does not require multiple decryption operations to obtain the cleartext
(unlike super-encryption).

• It does not cause ciphertext expansion.

The use of re-encryption is beneficial considering that ADV, as it breaks into
sensors, might attempt to copy and remember encrypted values that sensors in
Cr generate, encrypt and off-load during the same round: that way it could
detect them later. If all sensors re-encrypt all values they receive from others,
ADV is placed at a further disadvantage. Moreover, if all data stored on a
sensor are re-encrypted at every round, we further reduce the chances of ADV
to find out the data it is looking for. We demonstrate the effects of the above
strategy in Section 5.3.
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Unfortunately, re-encryption imposes a peculiar limitation: it precludes the
use of hybrid (envelope) encryption. By hybrid we mean the way that public key
encryption is typically used in practice: a one-time symmetric key is generated
and encrypted using the public key, and the bulk data is then encrypted using
the said symmetric key. Hybrid encryption produces a two-part ciphertext:
public and symmetric. Re-encryption can be applied to the former but not to
the latter. (Of course, super-encryption can be used instead, but that would
negate all advantages of using re-encryption.) Therefore, re-encryption is useful
only if data (dr

i ) is sufficiently short to fit into a single public key encryption
block.6

5. Analysis and Discussion

In this section we analyze the cryptographic techniques outlined above. In
doing so, we explore the leaves of the decision tree in Figure 1, and provide sur-
vival probability of the target data for both MOVE-ONCE and KEEP-MOVING
network defense strategies. We start describing the experimental testbed we
used to validate all our theoretical results.

5.1. Experimental testbed
We developed a UWSN simulator able to recreate the different combinations

of adversarial and defense strategies. For every scenario, we run the simulation
100 times: a simulation lasts for 50 rounds. In each round sensors sense, encrypt
and randomly exchange ciphertext according to the defense strategy, while ADV
compromises, acquires keys, and attempts to decrypt the captured ciphertexts.
For each round, we computed the average number of ciphertexts that ADV was
unable to distinguish from a target data sensed at the first round. Finally, the
simulator was developed in C++ and we used the Mersenne Twister [15] as
pseudorandom number generator.

5.2. Symmetric Encryption
We assess the effectiveness of symmetric encryption along with features, such

as key evolution and super-encryption.

5.2.1. Plain Encryption
With MOVE-ONCE, ADV wins in at most dn

k e rounds with the following
counter-strategy. In the first round after the occurrence of target data (round
r + 1), ADV chooses Cr+1 such that si ∈ Cr+1. This way it learns K0

i – the key
used by si to encrypt dr

i . It then uses K0
i to try to decrypt all ciphertexts found

on all currently compromised sensors. It thus takes ADV at most dn
k e rounds

6In principle, one could use public key encryption over multiple blocks of data and re-
encrypt each ciphertext block separately; however, we consider this to be a very particularly
unappealing approach.
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to visit all sensors and find dr
i . In the following, without losing of generality, we

will assume that n
k is an integer.

With KEEP-MOVING, ADV wins in n
2k rounds, on average [8]. It learns K0

i

at round r + 1 (by choosing Cr+1 such that si ∈ Cr+1), and deletes dr
i as soon

as it is found in one of the compromised sensors.
In summary, if plain symmetric encryption is used and the number of rounds

between successive sink visit exceeds n
k , ADV can always recognize and, once

found, erase target data, regardless of the data moving strategy. Furthermore,
symmetric encryption alone offers no advantage over cleartext survival strate-
gies.

5.2.2. Key Evolution
Adding a simple per round key evolution feature, results in the continual

increase of Ur′
for the first r+ n

k rounds assuming thatADV starts compromising
sensors at round r + 1. Ur′

then remains constant for all subsequent rounds.
To justify this claim, recall our discussion in Section 4.1. At each round,

every sensor’s key is computed by applying OWF (◦) to the key used at the
previous round. If ADV initially compromises a generic sensor sj at round r,
it learns Kr

j and can thus compute Kr′

j for any r′ > r. However, it can not
compute any key used by sj prior to round r. In particular, if a reactive ADV
decides to erase target data at round r and starts compromising sensors at round
r + 1, it can not learn Kr

i , even if Cr+1 is chosen such that si ∈ Cr+1.
Consequently, any data item encrypted with a key that ADV can not com-

pute at round r′, is an element of Ur′
. If ADV starts collecting keys at round

r + 1, then after n
k rounds, it learns one key for every sensor in the network and

|Ur′ | stops growing for all r′ > r + n
k . Then, the size of Ur′

will be

|Ur′
| = (r′ + 1) n−

r′−r∑
i=1

n
ik

n
(1)

until r′ < r + n
k , while |Ur′ | = |Ur+ n

k−1| afterward, as shown in Figure 2.

5.2.3. Super-Encryption
Super-encryption entails each host sensor encrypting (already-encrypted)

data items it receives. For example, dr
i originally sensed by si and sent to

sj at round r, and then sent to sl at round r + 1, will be stored by sl as:
E(Kr+1

l , E(Kr
j , Er

i )).
With MOVE-ONCE, ADV can find and erase target data in at most n

k rounds
– as in Section 5.2.1 – with the following counter-strategy:

(1) Assume dr
i is stored at sj as E(Kr

j , Er
i ).

(2) ADV chooses Cr+1 such that si ∈ Cr+1; this way it learns Kr
i .

(3) For each compromised sensor in Cr+1 and for each ciphertext found
therein, ADV first attempts decryption with the sensor’s current key, and then
attempts decrypting the output with Kr

i : if dr
i is found, ADV deletes it. Note

that it takes at most n
k rounds to traverse all sensors of the network.

13



+200

+400

+600

+800

+1000

r’=r r’=r+5 r’=r+10 r’=r+15 r’=r+20

N
um

be
r o

f i
nd

is
tin

gu
is

ha
bl

e 
m

es
sa

ge
s

Round

|Ur|

k=20

k=10

k=5

n=100, k=5
n=100, k=10
n=100, k=20

Figure 2: Growth of |Ur′ | with KEEP-MOVING and symmetric key encryption with key evolu-
tion. Once ADV has visited all sensor, the set of indistinguishable ciphertexts stops growing.

We now look at the KEEP-MOVING strategy. Let Cr′ be the set of sensors
not compromised within the first r′ rounds. At any round r′, all ciphertexts
encrypted at least once by any sensor in Cr′ are undecipherable by ADV.

The probability that dj (any data item collected at round j ≤ r′), at each
round, is encrypted and then super-encrypted with a key acquired by ADV

until round r′ is
(

(r′−r)k
n

)r′−j+2

. Thus, the probability of dj being encrypted or

super-encrypted at least once with a key unknown toADV is 1−
(

(r′−r)k
n

)r′−j+2

.
For data obtained after round r + n

k , that probability is 0, since ADV has
compromised all the sensors once and corrupted all the possible keys. Then,
with n new data items per round, for r′ ≤ r, |Ur′ | will be simply

|Ur′
| = (r′ + 1)n

while it will be:

|Ur′
| =

r′∑
j=0

n

(
1−

(
(r′ − r)k

n

)r′−j+2
)

(2)

for r < r′ ≤ r + n
k and simply

|Ur′
| = 0

for r′ > r + n
k .
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Figure 3: Super-encryption, with ADV starts at different rounds. Once ADV has visited all
sensors, all the data can be decrypted.

Equation (2) is highly influenced by r′ − r, namely the number of rounds
that ADV waited before starting compromising the first set of sensors. This
implies that the size of |Ur′ | depends on the number of already collected data at
round r. Figure 3 shows the difference of |Ur′ | between two different adversarial
behaviors. In one case, ADV starts compromising sensors at round 1, that is
when sensors have collected only one data item. In the second case, ADV starts
compromise activities at some later rounds, when sensors have several data
items in their storage, namely round 5 and 10. In the figure, the first analytical
data plot is compared with the simulation results, to endorse the validity of the
derived formulas.

Super-encryption has a small caveat: as described in Section 3.2, data is
assumed to be encrypted using Plaintext-Aware Encryption (PAE) [10] thereby
causing ciphertext expansion. Thus, for each layer of encryption, ciphertext
grows by a constant number (e.g., 128) of bits. While this is not an issue
for MOVE-ONCE, with KEEP-MOVING ciphertext size grows linearly with the
number of moves (rounds). Also, ciphertext size in KEEP-MOVING leaks number
of moves that a particular ciphertext has gone through.

5.2.4. Key Evolution and Super-encryption
We now look at the variant combining Key Evolution and Super-Encryption.

With MOVE-ONCE, at round r′, ADV can not decrypt ciphertexts in the fol-
lowing three categories:
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1. Encrypted and super-encrypted with unknown keys:(
(n− (r′ − r)k)

n− (r′ − r)k
n

)
2. Encrypted with a known key and super-encrypted with an unknown key:(

(r′ − r)k
n− (r′ − r)k

n

)
3. Encrypted with an unknown key and super-encrypted with a known key:(

(n− (r′ − r)k)
(r′ − r)k

n

)
At each round after r, from the latter category ADV can exclude k ciphertext
(on average) to be its target data: they are received by the compromised nodes
and, then, can be recognized as ciphertext of data sensed at a round later than
r. Combining the previous equations, we can state that

|Ur′
| = (r + 1)n +

r′∑
i=r+1

(
n− k − (i− 1− r)k2

n

)
(3)

when r<r′<r+n
k and stabilizes to |Ur+ n

k−1|, when r′ ≥ r + n
k , i.e. when ADV

visited all the nodes at least once.
As a matter of fact, there is an interesting subtlety involved in estimating

growth of Ur′
above: ADV can keep track of all the ciphertexts found on a

sensor storage at any round r′ > r. If it evaluates the difference of the storage
content between two subsequent visits to the same sensor, it will be able to
distinguish the newer ciphertexts from the older ones. Equation (2), in fact,
is valid only if sensors super-encrypt at each round all the ciphertexts in their
storage. If super-encryption is applied only to the received ciphertexts, its effects
will be highly reduced and the growth of Ur′

will be the same than with the
KEEP-MOVING strategy without super-encryption of Equation (1).

With super-encryption and KEEP-MOVING, things change: a ciphertext is
not in Ur′

if and only if all keys used to encrypt and super-encrypt it are known
to ADV. The number of ciphertexts ADV can decrypt is given by the following
recurrence equation:

Wr′ =
(r′ − r)2k2

n
+

(r′ − r)k
n

Wr′−1, W0 = 0

while the total number of ciphertexts is n(r′ + 1). Hence, combining these two
results, we conclude that with the KEEP-MOVING strategy |Ur′ | grows as:

|Ur′
| =

 (r′ + 1)n−W r′
if r < r′ < r + n

k

|Ur+ n
k−1| if r′ ≥ r + n

k

(4)
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5.3. Public Key Encryption
We now turn to the public key setting outlined in Section 4.2. Without

focusing on a specific public key cryptosystem, we investigate several features
of public key cryptography conducive to data survival. As mentioned in Sec-
tion 4.2, one important issue is the source of randomness: whether sensors have
true random number generators (TRNGs) or pseudo-random number gener-
ators (PRNGs). As argued in Section 4.2 and shown in Figure 1, public key
encryption with a PRNG offers the same data survival probability as symmetric
encryption with key evolution. Also, PRNG-based public key encryption with
re-encryption offers the same data survival probability as symmetric encryp-
tion with key evolution and super-encryption. We thus focus on effectiveness of
public key encryption with TRNGs, both with and without re-encryption.

5.3.1. TRNG-based Scheme
If each sensor has a TRNG, ADV can only distinguish ciphertexts produced

by sensors compromised within a given round. Further, ADV can recognize
the same ciphertexts after they are moved elsewhere, if it encounters them
later. ADV can not distinguish other ciphertexts since it is computationally
unfeasible to learn random values generated by other sensors, whether previously
compromised or not.

If MOVE-ONCE is employed, at round r + 1 (and thereafter) any ciphertext
produced at round r (Ej

r) is located at sensor S(dr
j , r + 1). But, with the

same technique seen in the above section, ADV can distinguish, between two
subsequent visits to the same sensor, the older ciphertexts from the newer ones.
Then, with the simple public key encryption, the size of Ur′

has the same growth
of Equation (1).

With KEEP-MOVING, instead, ADV can not determine whether ciphertexts
received by compromised sensors have been produced during the current round,
i.e., Ur′

grows every round by only n− k ciphertexts on average. Thus,

|Ur′
| = (r + 1)n + (r′ − r)(n− k) (5)

and |Ur′
| = (r′ + 1)(n− k) (6)

for a reactive and a proactive ADV, respectively.

5.3.2. TRNG Scheme with Re-Encryption
Combining TRNG-equipped sensors with re-encryption yields a somewhat

stronger outcome.
With MOVE-ONCE, each ciphertext is re-encrypted by the randomly selected

host sensor. Re-encryption applyed only to the received ciphertexts is not really
effective, since ADV can easily distinguish the ciphertexts between two subse-
quent visits to the same node: in this case, Equation (1) is again the growth of
the set Ur′

.
Re-encryption applyed at each round to all the ciphertexts stored on a sensor

makes impossible for ADV to evaluate the differnce between the storage of the
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same sensor in a subsequent round. Indeed, any ciphertext not directly observed
by ADV will be modified and rendered indistinguishable. In this case, ADV is
able to distinguish only the ciphertexts received by the sensors of Cr′ , since
each time it moves to another set of sensors, it finds a completely different set
of ciphertexts. Thus, the growth of Ur′

is:

|Ur′
| = (r′ + 1)n− k

KEEP-MOVING involves re-encryption of all ciphertexts upon every move. At
each round, ADV can only keep track of ciphertexts produced by and exchanged
with the set of sensors it currently compromised. At round r′, ADV can track
only k ciphertexts obtained by sensors in Cr′ and sent to sensors in the same
set, namely on average, only k · k

n . In each subsequent round, on average, a
ciphertext tracked by ADV in the previous round will be still trackable with
probability k

n . We thus have

|Ur′
| = (r′ + 1)n−

r′∑
i=r+1

ki+1

ni

for both a reactive and a proactive ADV.

5.4. Comparison
Figure 5.4 plots the size of Ur′

yielded by different strategies discussed thus
far. It assumes a UWSN with 100 sensors where ADV can compromise at most
k = 10 sensors per round. It clearly shows that, with public key encryption
and a TRNG, |Ur′ | grows at constant rate at every round, even after ADV
compromises each sensor at least once. On the other hand, with symmetric key
evolution (with or without super-encryption), ADV stops the growth of |Ur′ |
after n

k rounds, having compromised each sensor at least once. KEEP-MOVING
performs slightly better than MOVE-ONCE as the latter strategy moves only
data collected during current round, thusADV can be sure that any data moving
after round r is not the target one.

The results reflected by our analysis can be summarized as follows:

• Unlike the case of cleartext data migration explored in [8], when (any)
encryption is used, KEEP-MOVING offers very little advantage over MOVE-
ONCE.

• With re-encryption, the difference between MOVE-ONCE and KEEP-MOVING
becomes even negligible. Since KEEP-MOVING strategy requires more
overhead, its adoption is desirable only when energy consumption is not
a main issue.

• Public key encryption with PRNG and symmetric key encryption with key
evolution, offer equivalent data survival chances, regardless of the data
moving strategy. Each is secure against a reactive (but not a proactive)
ADV. Consequently, unless scalability of key management for the sink is
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an important issue, there is no reason to use public key encryption with
PRNG-equipped sensors.

• In presence of a proactive adversary, data survival can be assured only if
sensors are required use public key encryption and have TRNG.

• Re-encryption is a useful tool, however, it limits sensors to use “pure”
public key encryption, i.e., no hybrid/envelope encryption is possible.

5.5. Invasive ADV
The previous analysis is based on the assumption that ADV does not inter-

fere with sensors behavior. As mentioned in Section 2.2, we do not address the
problem of authenticity of sensed data, then we do not consider the possibility
that ADV modifies in any way data found in sensor storage. Nevertheless, we
can relax the non interference assumption, and let ADV slightly influence sen-
sor behavior. Indeed, if ADV wants to remain undetected, it is forced not to
change much in the way sensors handle sensed and received data. For exam-
ple, ADV might change compromised sensors code so that, even if the network
strategy is KEEP-MOVING, compromised sensor retain received data (as in the
MOVE-ONCE strategy). This change would not be detected by the sink, unless
super-encryption is used7. With any other crypto technique, the sink can not

7Recall that with super-encryption, ciphertext size provides a hint on the number of sensors
that added a layer of encryption.
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tell the number of sensors that processed a given ciphertext, so it can not dis-
tinguish between MOVE-ONCE and KEEP-MOVING. Nevertheless, our analysis
show that KEEP-MOVING provides little advantage compared to MOVE-ONCE,
so ADV does not gain much in changing corrupted sensor’ strategy. Moreover,
a simple analysis on the number of data units stored by each sensor, would
reveal to the sink that a part of the network is using a strategy different to the
expected one.
ADV can also change sensor behavior so that each compromised sensor sends

its data to other compromised peers. This way, re-encryption is not effective for
data generated at compromised sensors. In particular, if compromised sensors
exchange messages only among them, the size of |Ur′ | becomes:

|Ur′
| = (r + 1)n + (r′ − r) (n− 2k)

and |Ur′
| = (r′ + 1) (n− 2k)

with the MOVE-ONCE strategy, for a reactive and a proactive ADV, respec-
tively.

If we consider the KEEP-MOVING strategy, the size of |Ur′ | becomes:

|Ur′
| = (r + 1)n + (r′ − r)(n− k)

and |Ur′
| = (r′ + 1)(n− k)

for a reactive and a proactive ADV, respectively.
A more invasive adversary would be easily detected by the sink. For example,

if ADV forces to use arbitrary keys, the sink would detect the anomaly when it
visits the network to collect sensed data.

6. Related Work

The problem of data availability in MANETs has been extensively studied,
in the relatively benign context of communication faults and network partitions.
This thread of works aims to preserve data availability to any MANET node,
even when the network is fragmented.
Specifically, Hara, et al. [16] introduced simple yet effective algorithms to repli-
cate data in MANETs, such that, a node in a disconnected partition can access
any required data with high probability. The system also provides some means
to deal with replica consistency, in case of updates to the original data, and a
simple technique for location management to guarantee that nodes access the
closest data replica. The authors do assume node compromise.

In another related result, Giannuzzi, et al. [17] studied data availability
through replication when an ad hoc network is partitioned. This work shows
that the probability of accessing certain data is dependent not only on the
number of its replicas but also on the network density as well as on the nodes’
transmission radius. Neither this work takes into account the possibility of node
compromise.
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The work of Chessa, et al. [18] introduced a distributed data storage ap-
proach for mobile wireless networks, based on the peer-to-peer paradigm. This
distributed storage provides support to create and share files under a write-once
model, and also ensures data confidentiality and dependability by encoding files
in a Redundant Residue Number System (RRNS). Unfortunately, confidential-
ity is broken as soon as one node is corrupted and the adversary learns the
moduli used to encode data under the RRNS.

Finally, some results (e.g., [19, 20]) leverage the existence of multiple paths
between end-nodes to statistically improve data confidentiality and data avail-
ability in hostile MANET environments, where both insider and outsider adver-
saries may be present. Anyway, [19] envision a passive eavesdropper adversary,
while the adversary anticipated in [20] does not compromise nodes originating
a given message, but only the one along its path to the destination.

A more recent result addressing data availability in WSNs is [21]. It develops
a scheme to maximize the amount of data recovered by the sink and shows how
the proposed scheme improves data availability when a portion of the network
is invalidated by natural disasters, such as a flood or an earthquake.

Benenson, et al. [22] investigated possible strategies for preventing a mobile
adversary from learning certain sensed data and/or for preventing contiguous
unauthorized access, once the data has been learned. Data is randomly moved
around the network and an adversary who once had access to the data stored
at some captured sensor, must compromise other sensors in order to retain its
access to the target data. Several algorithms are introduced to provide efficient
data retrieval and update.

UWSNs have also recently been considered in the context of minimizing
storage and bandwidth overhead due to data authentication in the presence of a
powerful adversary [23]. The proposed forward-secure aggregate authentication
techniques can efficiently provide forward security, i.e., having compromised a
sensor, the adversary is unable to modify any data collected prior to compromise.
Our focus is in this paper is quite different: we assume that the adversary is
actively pursuing certain data and is not reluctant to delete any data it finds.

7. Conclusion

This paper represents the initial attempt to apply cryptography in the con-
text of data survival in unattended WSNs. As we have shown, the presence of
a capable focused mobile adversary, raises many challenges. However, the good
news is that simple cryptographic defenses coupled with data mobility strate-
gies can be of great help in ensuring data survival. We explored a number of
variables and evaluated several proposed techniques. Analytical and simulation
results show that proposed techniques achieve significant probabilities of data
survival. Despite our simple network model, we believe that the issues raised in
this paper can pave the way for further research. In our future work we plan to
introduce new assumptions and variables such as communication and storage
overhead, as well as new adversarial models.
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