
Secure Biometric Authentication
With Improved Accuracy

Manuel Barbosa2, Thierry Brouard1

, Stéphane Cauchie1,3, and Simão Melo De Sousa3

1 Laboratoire Informatique de l’Université François Rabelais de Tours
stephane.cauchie@univ-tours.fr,

2 Departamento de Informática, Universidade do Minho
mbb@di.uminho.pt

3 Departamento de Informática, Universidade da Beira Interior
desousa@ubi.pt

Abstract. We propose a new hybrid protocol for cryptographically se-
cure biometric authentication. The main advantages of the proposed pro-
tocol over previous solutions can be summarised as follows: (1) poten-
tial for much better accuracy using different types of biometric signals,
including behavioural ones; and (2) improved user privacy, since user
identities are not transmitted at any point in the protocol execution.
The new protocol takes advantage of state-of-the-art identification clas-
sifiers, which provide not only better accuracy, but also the possibility
to perform authentication without knowing who the user claims to be.
Cryptographic security is based on the Paillier public key encryption
scheme.
Keywords: Secure Biometric Authentication, Cryptography, Classifier.

1 Introduction

Biometric techniques endow a very appealing property to authentication mech-
anisms : the user is the key, meaning there is no need to securely store secret
identification data. Presently, most applications of biometric authentication con-
sist of closed self-contained systems, where all the stages in the authentication
process and usually all static biometric profile information underlying it, are
executed and stored in a controlled and trusted environment. This paper ad-
dresses the problem of implementing distributed biometric authentication sys-
tems, where data acquisition and feature recognition are performed by separate
sub-systems, which communicate over an insecure channel. This type of sce-
nario may occur, for instance, if one intends to use biometric authentication to
access privileged resources over the Internet. Distributed biometric authentica-
tion requires hybrid protocols integrating cryptographic techniques and pattern
recognition tools. Related work in this area has produced valid solutions from
a cryptographic security point of view. However, these protocols can be seen
as rudimentary from a pattern-recognition point of view. In fact, regardless of
the security guarantees that so-called fuzzy cryptosystems provide, they present

great limitations on the accuracy that can be achieved, when compared to purely
biometric solutions resorting to more powerful pattern recognition techniques.

In this paper, we propose a solution which overcomes this accuracy limitation.
Our contribution is a protocol offering the accuracy of state-of-the-art pattern
recognition classifiers and strong cryptographic security. To achieve our goals
we follow an approach to hybrid authentication protocols proposed by Bringer
et al. [1]. In our solution we adapt and extend this approach to use a more
accurate and stable set of models, or classifiers, which are widely used in the
pattern recognition community in settings where cryptographic security aspects
are not considered. Interestingly, the characteristics of these classifiers allow us,
not only to achieve better accuracy, but also to improve the degree of privacy
provided by the authentication system. This is possible because we move away
from authentication classifiers and take advantage of an identification classifier.
An identification classifier does not need to know who the user claims to be,
in order to determine if she belongs to the set of valid users in the system
and determine her user identifier. An additional contribution of this paper is
to formalise the security models for the type of protocol introduced by Bringer
et al. [1]. We show that the original protocol is actually insecure and under
the original security model, although it can be easily fixed. We also extend the
security model to account for eavesdroppers external to the system, and provide
a security argument that our solution is secure in this extended security model.

The remaining of the paper is organized as follows. We first summarise related
work in Section 2 and we introduce our notational framework for distributed
biometric authentication systems in Section 3. We propose our secure biometric
authentication protocol and security models in Section 4. In Section 5 we present
a concrete implementation based on the Support Vector Machine classifier and
the Paillier public key encryption scheme, including the corresponding security
analysis. Finally, we discuss our contributions in Section 6.

2 Related Work

Fuzzy extractors are a solution to secure biometric authentication put forward
by the cryptographic community [2]. Here, the pattern recognition component
is based on error correction. A fuzzy extractor is defined by two algorithms. The
generation algorithm takes a user’s biometric data w and derives secret random-
ness r. To allow for robustness in reconstructing r, the generation algorithm
also produces public data pub. On its own, pub reveals no useful information
about the biometric data or the secret randomness. The reconstruction algo-
rithm permits recovering r given a sufficiently close measurement w′ and pub.
To use a fuzzy extractor for secure remote authentication, the server would store
(pub, r) during the enrolment stage. When the user wants to authenticate, the
server provides the corresponding public information pub, so that it is possible
reconstruct r from a fresh reading w′. The user is authenticated once the server
confirms that r has been correctly reconstructed; for example, r can be used to
derive a secret key.

A problem with this solution is that security is only guaranteed against eaves-
droppers: the server must be authenticated and the public information transmit-
ted reliably. Additionally, Boyen [3] later showed that, even in this scenario, it
is not possible to guarantee that security is preserved if the same fuzzy extrac-
tor is used to authenticate a user with multiple servers. An adversary might
put together public information and secrets leaked from some of the servers to
impersonate the user in another server. The same author proposed improved
security models and constructions to solve this problem. Boyen et al. [4] later
addressed a different problem which arises when the channel to the server is not
authenticated and an active adversary can change the value of pub. The original
fuzzy extractor definition and security model does not ensure that such an adver-
sary is unable to persuade the user that it is the legitimate server. The authors
propose a robust fuzzy extractor that permits achieving mutual authentication
over an insecure channel.

The protocol proposed by Bringer et al. [1] uses the Goldwasser-Micali en-
cryption scheme, taking advantage of its homomorphic properties. The protocol
performs biometric classification using the Hamming distance between fresh bio-
metric readings and stored biometric profiles. User privacy protection is ensured
by hiding the association between biometric data and user identities. For this to
be possible one must distribute the server-side functionality: an authentication
service knows the user’s claimed identity and wants to verify it, a database ser-
vice stores user biometric data in such a way that it cannot possibly determine
to whom it belongs, and a matching service ensures that it is possible to au-
thenticate users without making an association between their identity and their
biometric profile. These servers are assumed to be honest-but-curious and, in
particular, they are assumed to follow the protocol and not to collude to break
its security.
Authentication Accuracy In this paper we propose a protocol which improves
authentication accuracy while ensuring strong cryptographic security. It is im-
portant to support our claims from a pattern recognition accuracy perspective.
In the following table we present experimental results found in literature, to com-
pare the accuracy (Equal Error Rate1) of advanced pattern recognition classifiers
(Classifier Error) with that of those adopted in existing hybrid authentication
protocols, or so called fuzzy cryptosystems (Fuzzy Error).

Biometric Data References Bit Length Fuzzy Error Classifier Error

Key stroke [5]/[6] 12 48% 1.8%

Voice [7]/[8] 46 20% 5%

Tactim [9] 16 15% 1%

Signature [10]/[11] 40 28% 5%

Face [12]/[13] 120 5% 0.6%

Fingerprint [14]/[15] 128 17% 8%

Iris [16] 140 5% 5%

1 Percentage of recognition errors when the biometric system is adjusted in order to
obtain the same false positive and false negative rates.

Results are presented for both physiological (iris, face and fingerprint) and be-
havioural (key stroke, voice, tactim, signature) biometric data. From the results
in the table, one can conclude that advanced classifiers consistently outperform
simple distance-based (fuzzy) classification techniques. However, this is most im-
portant for behavioural biometry, where fuzzy techniques present significantly
worse accuracy rates. An empirical explanation for this shortcoming is that fuzzy
pattern recognition components can deal with acquisition variability but not with
the user variability, which plays a major role in behavioral biometry. From a pat-
tern recognition point of view, advanced classifiers are built on the assumption
that two users may produce close measurements. Classification focuses on the
boundaries between users, and some of them like the Support Vector Machine
(SVM) classifier [17], can optimally minimize the error risk.

3 Biometric systems

In this section we present a precise definition of a pattern recognition system
for biometric authentication and identification, which we will later use in the
definition of our hybrid authentication protocol. We take a particular type of
biometric parameter b ∈ B, where B denotes the complete set of biometric pa-
rameters. The basic tool associated with b is an adequate sensor, denoted by the
application ρb : U → V where U is a set representing the universe of possible
users and V represents a sensor-dependent space of biometric features (usually
an n-tuple of real numbers). We will refer to the output of the sensor as a feature.
2

Consider a set of users U ⊂ U. The goal is to recover the pre-image of a
feature ρb(u), for u ∈ U , using prior knowledge of a users profile w∗U ∈ W,
where W is a sensor-dependent set of possible users profiles, and an inversion
function called a classifier. Usually a classifier is a two-stage procedure: (1) there
is a pre-decision processing stage cl, which takes a feature and pre-established
profile information and returns classification data such as confidence intervals,
distances, etc.; and (2) a decision stage D which makes the final decision using
an appropriate criterion, for example a pre-defined threshold, majority rules, etc.
Ideally, one expects that classification satisfies

∀u ∈ U,D(cl(ρb(u), w∗U)) = u

∀u ∈ U/U,D(cl(ρb(u), w∗U)) = ⊥

At this stage a distinction must be made between biometric authentication and
biometric identification systems. A system satisfying the previous predicate (or
a close enough relaxation that is good enough for practical applications) for a
set of users U such that |U | > 1 is called a biometric identification system.

2 In practice raw sensor outputs must be pre-processed using feature extraction before
classification can be performed. To be precise, we could denote the acquisition of
the raw signal by a non deterministic application ab, and feature extraction by a
deterministic application f . We would then have ρb = ab ◦ f .

Systems satisfying these conditions for only a single user are called biometric
authentication systems. Note that it is possible to use a biometric authentication
system for identification, e.g. by trying all possible users in a database. However,
depending on the biometric parameter and sensor technology, the accuracy of
such a system may suffer from overlaps in user profiles. From the point of view of
cryptographic protocols, this distinction is also important. In fact, all solutions
we have encountered in literature assume that we are dealing with a biometric
authentication system, which means that the user’s claimed identity must be
transmitted over the network. If we move to a biometric identification system,
the authentication protocol can be implemented by transmitting only the user’s
biometric data. We will return to this issue in the next section.

Setting-up and operating a biometric authentication system involves two sep-
arate procedures: a set-up stage called Enrolment, and the actual operation stage
called Generalisation. We now describe these in more detail.

Enrolment This is usually split into two steps: (1) the acquisition and feature
extraction step, and (2) the learning step. The first step constructs a reference
set of feature values ρb(u) (∀u ∈ U), called a training set. The learning step
uses the training set to construct the users’ profile w∗U .

Generalisation This is also split in two steps: (1) the acquisition and feature
extraction step, and (2) the decision step. The former consists of collecting
a feature v = ρb(unknown) for an unknown user. The decision step uses the
classifier cl and profile data w∗ to determine which user is unknown. More
precisely the decision check is {u ∈ U,⊥} ← D(cl(v, w∗U)).

In this context, we define a pattern recognition system for biometric identifica-
tion Γ as follows.

Definition 1. A pattern recognition system for biometric identification Γ is a
5-tuple < b,U, ρb,D ◦ cl, w∗U >, where the tuple elements are as described above.

Remark. We stress that the concept of profile w∗U usually adopted within the
pattern recognition community constitutes, in the context of our work, a security-
critical parameter. This is because it usually reveals private user information such
as a user-specific region in a sensor-dependent parameter space W. In particular,
if this information is leaked, anyone can determine whether a feature belongs to a
particular user. The vulnerability detected in the protocol proposed by Bringer et
al. is based on the fact that an attacker may recover a user profile from a protocol
trace. This means that it can perform classification itself, even thought it would
never be able to break the encryption scheme protecting the user features used
in an authentication run.

4 Proposed Authentication Protocol

In this section we propose a new authentication protocol based on the approach
in [1]. We take advantage of a biometric identification scheme implemented us-
ing a more powerful pattern recognition technique in the form of a multi-class
classifier to achieve improved accuracy and security properties.

4.1 Participants and their roles

The following diagram depicts the data flow between the different participants
in our protocol.

S A S

D B

V S

1 : a u t h

2 : a u t h

3 : c l a s s

4 : s c l a s s
5 : d

S e r v e r - s i d e

C l i e n t - s i d e

The server-side functionality is partitioned in three components to ensure that
no single entity can associate a user’s identity with the biometric data being
collected during authentication. The participants in the authentication protocol
are the following:

1. The Sensor (S) is the only client-side component. Following the approach in
[1], we assume that the sensor is capable of capturing the user’s biometric
data, extracting it into a binary string, and performing cryptographic oper-
ations such as public key encryption. We also assume a liveness link between
the sensor and the server-side components, to provide confidence that the
biometric data received on the server-side is from a present living person.

2. The Authentication Service (AS) is responsible for communicating with the
user who wants to authenticate and organizing the entire server-side proce-
dure. In a successful authentication the AS will obviously learn the user’s
identity, which means that it should learn nothing about the biometric data
being submitted.

3. The Database Server (DB) securely stores the users’ profile (w∗U) and its
job is to execute the pre-decision part of classification (cl). Since the DB is
aware of privileged biometric data, it should learn nothing about the user’s
identity, or even be able to correlate or trace authentication runs from a
given (unknown) user.

4. The Verification Server (V S) completes the authentication process by taking
the output produced by the DB server and computing the final decision (D)
step. This implies that the V S possesses privileged information that allows
it to make a final decision, and again that it should not be able to learn
anything about the user’s real identity, or even be able to correlate or trace
authentication runs from a given (unknown) user.

4.2 Enrolment and system set-up

In this section we describe the procedures that must be carried out to prepare a
system using the proposed authentication protocol for normal operation. These
include the data collection procedures associated with enrolment, the construc-
tion of the static data sets assigned to each actor in the protocol, and the security
assumptions/requirements we impose on these elements.

The output of the initialisation procedure are three sets of static data (ASdata,
DBdata and V Sdata) which allow the different servers to carry out their roles:

– ASdata consists of a list U = {ID1, . . . , ID|U |} of user identities IDi ∈ {0, 1}∗.
The index of the user in this list will be used as the application-specific user
identifier uid ∈ {1 . . . |U |}.

– DBdata consists of biometric classification data (w∗U) for the set of valid users.
This should permit computing pre-decision classification information (cl)
over authentication requests, but should be totally anonymous for the DB.
In particular, we require that the DB obtains information which permits
performing pre-classification for the |U | system users consistently with the
application-specific user identifiers assigned by the AS. However, it should
not receive any information about the user identities themselves.

– V Sdata consists of information which will allow the V S to obtain a verdict
from obfuscated pre-decision classification information. The need for obfus-
cation is justified by the apparently contradictory requirement that only the
V S is capable of producing a decision verdict, but still should be unable to
learn the user’s real identity, or even trace requests by the same user.

We assume that some trusted authority is available to control the enrolment
procedure, and ensure that the static data is assigned to the servers in a secure
way: no server obtains any information concerning another server’s static data,
and no information is leaked to eavesdroppers external to the system.

4.3 Authentication Protocol Definition

The proposed authentication protocol is a five-tuple of probabilistic polynomial
time algorithms that the different participants will execute. Each server-side
participant stores corresponding static information ASdata, DSdata and V Sdata.
The algorithms are:

Participant Algorithm

V S (params, kd) ← Gen(1κ)
S auth ← S(vID, params)
DB class ← Classify(params, auth, DBdata)
AS (sclass, π) ← Shuffle(params, class, ASdata)
V S d ← Decide(sclass, params, kd, V Sdata)
AS ID/⊥ ← Identify(d, π,ASdata)

1. The key generation algorithm Gen is executed by the V S, which stores the
secret key kd securely, and publishes a set of public parameters params.

2. On each authentication run, the sensor encrypts fresh biometric data vID
from a user with identity ID using algorithm S and the public parameters,
and produces the authentication request auth.

3. The AS receives the authentication request and passes it on to the DB
for pre-decision classification. This operation is represented by algorithm
Classify which takes also public parameters and profile information DBdata

and returns encrypted classification information class.
4. The AS takes class and scrambles it in order to disassociate the decision

result from previous authentication runs. This operation is represented by al-
gorithm Shuffle which outputs scrambled data sclass and a de-scrambling
key π which the AS keeps to itself.

5. The V S uses the secret key kd and sclass to perform the final decision
step and produces a verdict d. This operation is represented by algorithm
Decide.

6. Finally, the AS can recover the user’s real identity, or a failure symbol, from
the verdict d and the de-scrambling key π using algorithm Identify.

The soundness condition for our protocol is that the server-side system as
a whole, and the AS in particular, produces a correct decision on the user’s
authenticity, i.e. recognises whether a new feature belongs to a valid user, and
determines the correct identity. Formally, for soundness we require that the fol-
lowing probability yields a value sufficiently close to one for practical use as an
authentication protocol, for valid static data ASdata, DBdata and V Sdata result-
ing from a successful enrolment procedure, and for all fresh features vID:

Pr

266664
(params, kd)← Gen(1κ)
auth← S(vID, params)

Identify(d, π,ASdata) = r class← Classify(params, auth, DBdata)
(sclass, π)← Shuffle(params, class, ASdata)
d← Decide(sclass, params, kd, V Sdata)

377775 .
where r = ID when ID is in the valid set of users, and r = ⊥ otherwise.

4.4 Security Model

Intuitively, the security requirements we want to impose are the following:

– Privacy None of the services (and no passive attacker observing commu-
nications) gets enough information to reconstruct an identity/feature pair.
More precisely, none of the services can distinguish whether a particular
measurement belongs to a particular person.

– Untraceability Except for the authentication service, none of the other
services (and no passive attacker observing communications) gets enough
information to recognize a previously authenticated user. More precisely,
the database service and the matching service cannot distinguish whether
two authentication requests belong to the same person.

We assume that the servers are honest-but-curious, namely that they do not
collude and follow the protocol rules, but may try to use the information they
obtain to subvert the previous requirements. Formally, this translates into two
security models.

Privacy: Feature Indistinguishability The three server-side components, as
well as any eavesdropper which is able to observe the message exchanges corre-
sponding to a protocol execution, must be unable to distinguish between which
of two features belongs to a particular system user. We call this requirement
feature indistinguishability (fIND). We define it using the following experiment,
which takes as input a parameter adv ∈ {AS,DB, V S,Eve}, and fresh readings
v0, from valid user ID ∈ U , and v1 from any user.

ExpfINDβ (adv, v0, v1)
(params, kd)← Gen(1κ)
auth ← S(v0, params)
class ← Classify(params, auth, DBdata)
(sclass, π) ← Shuffle(params, class, ASdata)
d ← Decide(sclass, kd, SVdata)
r ← Identify(d, π,ASdata)
Return (vβ , viewadv)

viewAS := (auth, class, sclass, π, d, r, ASdata, params)
viewDB := (auth, class, DBdata, params)
viewV S := (sclass, d, V Sdata, kd, params)
viewEve := (auth, class, sclass, d, params)

We require that, for all ID ∈ U and all adv ∈ {AS,DB, V S,Eve}, the following
distributions be computationally indistinguishable (≡):

{(ID, ExpfINDβ=1(adv, v0, v1))} ≡ {(ID, ExpfINDβ=0(adv, v0, v1))}

We define advantage AdvfIND(adv) as (the absolute value of) the deviation from
1/2 in the probability that the adversary guesses β.

Untraceability – User Indistinguishability The back-end server-side com-
ponents, DB and V S, as well as any eavesdropper which is able to observe
the message exchanges corresponding to a protocol execution, must be un-
able to distinguish if two independent authentication runs correspond to the
same system user. We call this requirement user indistinguishability (uIND).
We define it using the following experiment, which takes as input a parameter
adv ∈ {DB,V S,Eve}, and two fresh readings v0 and v1 corresponding to valid
users uid and uid′ respectively.

ExpuINDβ (adv, v0, v1)
(params, kd)← Gen(1κ)
auth ← S(vβ , params)
class ← Classify(params, auth, DBdata)
(sclass, π) ← Shuffle(params, class, ASdata)
d ← Decide(sclass, kd, SVdata)
r ← Identify(d, π,ASdata)
Return viewadv

where the different views are defined as above.
We require that, for all valid users with user identifiers uid and uid′, and all

adv ∈ {DB,V S,Eve}, the following distributions be computationally indistin-
guishable (≡):

{(uid, uid′, ExpuINDβ=1(adv, v0, v1))} ≡ {(uid, uid′, ExpuINDβ=0(adv, v0, v1))}

Again, we define advantage AdvuIND(adv) as (the absolute value of) the deviation
from 1/2 in the probability that the adversary guesses β.

5 A Concrete Implementation

5.1 The SVM Classifier

We consider a |U |-class identification classifier called the Support Vector Machine
(SVM) [17] and provide a short description of its operation. The basic SVM is
a mono class authentication classifier3. Extension to U classes follows the one-
against-all strategy: for each user u ∈ U , a mono classifier is trained using the
remaining users (U/u) as the rejected class. For each user, the learning stage of
the SVM determines both an outer and an inner hyperplane in a k-dimensional
features space. Said hyperplanes are expressed as a linear combination of S
known samples (so called support vectors SVi,j ∈ VSVM, i = 1...S, j = 1...|U |)
weighted with αi,j ∈ N coefficients. Formally, we have

VSVM = Nk and WSVM = (N× V)S×|U |

During authentication, the SVM classifier evaluates the distance of the fresh
feature v to these hyperplanes using a scalar product. To account for the fact that
the user profile regions may not be linearly separable, the SVM may compute
the scalar product in a higher dimension space. For this, the SVM classifier uses
a kernel function K to project the data into the higher dimension space and
compute the scalar product in this space in a single step. The advantage is that
the computational cost is reduced when compared to a basic projection followed
by the scalar product. The classifier function is therefore

clSVM : VSVM ×WSVM → N|U |

clSVM(v, w∗|U |) := (cl(1)SVM(v, w
∗
|U |), . . . , cl

(|U |)
SVM (v, w∗|U |))

where w∗|U | contains (αi,j , SVi,j)] for 1 ≤ i ≤ S and 1 ≤ j ≤ |U | and

cl
(j)
SVM(v, w

∗
|U |) :=

S∑
i=1

αi,j K(v, SVi,j).

In this paper, and to simplify the presentation, we will use the particular case
where K(a, b) refers to the scalar product between a and b in the initial space:
K(a, b) =

∑k
l=1 albl.

The decision is calculated by finding the index of the maximum positive
scalar contained in the vector clSVM(v, w∗). If no positive scalar exists, then the
reject symbol is returned (⊥):

DSVM(clSVM(v, w∗)) :=


d← argmax|U |j=1(cl(j)SVM(v, w∗))
If cl

(d)
SVM(v, w∗) > 0

Then return d
Else return ⊥

3 A classifier used in an authentication context “Am I who I claimed to be ?”

5.2 Algorithm Implementations

We refer the reader to Appendix A for a description of the Paillier cryptosystem.
The concrete implementations we propose for the algorithms composing our
authentication protocol are the following:
– Gen(1κ) → (params, kd). The generation primitive simply uses the key

generation algorithm for the Paillier cryptosystem to obtain (ke, kd), sets
params← ke and returns (params, kd).

– S(v)→ auth. This algorithm takes as input a fresh feature for an unknown
user. Recall that the feature space for the SVM is VSVM = Nk, but we can
look at the feature as v := (v1, . . . , vk) ∈ Zkn. Encryption is carried out one
component at a time and the algorithm returns:

auth← (EPaillier(v1, ke), . . . , EPaillier(vk, ke))
– Classify(auth, DBdata, params) → class. This algorithm uses the homo-

morphic properties of the Paillier encryption scheme to compute pre-decision
SVM classification values without ever decrypting the features in auth. More
precisely, the algorithm takes the profile data w∗|U | in DBdata and calculates
for 1 ≤ j ≤ |U |

cj =
S∏
i=1

∗
K(auth, SVi,j)αi,j = EPaillier(

S∑
i=1

αi,j K(v, SVi,j), params)

where, using [·]l to denote the lth component in a tuple, K∗ is defined by

∗
K(auth, SVi,j) :=

k∏
l=1

[authj]
[SVi,j]l
l

To prevent the AS from performing an exhaustive search of the profile space,
the DB also re-randomizes the encryptions by calculating:

classj = (cjrnj) mod n2

The algorithm returns class = (class1, . . . , class|U |).
– Shuffle(class) → (sclass, π). This algorithm generates a fresh permuta-

tion π : {1, . . . , |U |} → {1, . . . , |U |}, re-randomizes all the ciphertext compo-
nents in class and returns the permutated re-randomized vector as sclass.
More precisely, we have sclass = (sclass1, . . . , sclass|U |) where

sclassj = (classπ(j)r
n
j) mod n2

– Decide(sclass, kd, V Sdata) → d. This algorithm decrypts the components
in sclass and performs classification as described for the SVM classifier.
The result d is the index in the input vector corresponding to the largest
positive scaler, or ⊥ if no positive scalar exists.

– Identify(d, π,ASdata) → ID. For authentication runs where d 6= ⊥, this
algorithm simply finds uid such that

uid = π−1(d)

and returns the associated identity ID. Otherwise it returns ⊥.

5.3 Security Analysis

In Appendices B and C we prove two theorems, which capture the security
properties of the proposed protocol.

Theorem 1. The proposed protocol ensures feature privacy. More precisely, any
PPT adversary has negligible advantage in distinguishing the distributions asso-
ciated with ExpfIND.

Theorem 2. The proposed protocol ensures user untraceability. More precisely,
any PPT adversary has negligible advantage in distinguishing the distributions
associated with ExpuIND.

Remark: On the (in)security of the Bringer et al. protocol The fIND model we
propose is a more formal version of Security Requirement 2 proposed by Bringer
et al. [1] for their authentication protocol. The security argument presented for
this protocol describes a reduction to the semantic security of the Goldwasser-
Micali cryptosystem. However, the argument fails to cover a simple attack by the
AS. The attack is possible because the interaction between the AS server and
the DB server does not include a re-randomization of the resulting ciphertexts.
This means that it may be possible for the AS to recover the user profile data
that the DB server has used in the calculations. After recovering a biometric
profile, the AS server is able to determine on its own which features belong to
a user, without even executing the protocol. More precisely, and referring to
the notation in [1], the AS calculates (E(t1, pk), . . . , E(tN , pk)), where N is the
number of users, tj = 0 for all indexes except j = i for which tj = 1, and i is the
index of the user to be authenticated. The DB server receives these ciphertexts
and calculates E(bi,k, pk) =

∏N
j=1 E(tj , pk)bj,k mod n, for 1 ≤ k ≤ M , where

(bi,1, . . . , bi,M) is the biometric profile corresponding to user i. On receiving
E(bi,k, pk), the AS can try to work out whether bi,k is 1 or 0. To do this, it tries
to calculate E(bi,k, pk)/

∏
j∈J E(tj , pk) mod n, for all subsets J ⊂ {1 . . . N} \ i,

where E(tj , pk) are exactly the same as those passed originally to the DB. If
in these calculations the AS obtains 1, then it knows bi,k = 0; if it obtains
E(ti, pk), then it knows bi,k = 1. The feasibility of this attack depends on the
number of users N : in fact its complexity is exponential in N , which means it
may be infeasible for a very large N . However, a simple patch to the protocol,
preventing the attack altogether even for small N , is to ensure that the DB server
re-randomises ciphertexts after applying the homomorphic transformations. We
emphasise that the security reduction presented in this paper for the proposed
protocol explicitly precludes this type of attack.

6 Discussion and Conclusion

We have presented a hybrid protocol for secure biometric authentication which
permits adopting state-of-the art pattern recognition classifiers to improve over
the authentication accuracy of existing solutions. Our protocol follows the ap-
proach of Bringer et al. [1], adopting the point of view that biometric information

may be stored in public servers, as long as it is guaranteed that it remains anony-
mous if security is breached. To allow for the use of more powerful classification
techniques, namely the SVM classifier, we use the Pailler public key encryption
scheme, taking advantage of its homomorphic properties.

The main advantages of the proposed protocol over previous solutions can
be summarised as follows:

– Potential for much better accuracy using different types of biometric signals,
including behavioural ones.

– Improved user privacy, since user identities are not transmitted at any point
in the protocol execution. This is possible because the classifiers we adopt
are identification classifiers which do not need to know who the user claims
to be in order to perform authentication and recover the user identity.

Security of the proposed protocol has been formalised in two security mod-
els: feature indistinguishability and user indistinguishability. These are extended
versions of the models proposed in [1], where we also account for eavesdroppers
external to the system. We provide a reduction relating the security of our au-
thentication protocol with the security of the Paillier encryption scheme. We
also describe a simple attack against the Bringer et al. protocol, and show how
it can be easily repaired.

Acknowledgements The authors would like to thank Michel Abdalla for read-
ing and commenting on an earlier version of this paper.

References

1. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the goldwasser-micali cryptosystem to biometric authentication.
In Pieprzyk, J., Ghodosi, H., Dawson, E., eds.: ACISP. Volume 4586 of Lecture
Notes in Computer Science., Springer (2007) 96–106

2. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data. Cryptology ePrint Archive,
Report 2003/235 (2003) http://eprint.iacr.org/.

3. Boyen, X.: Reusable cryptographic fuzzy extractors. In: CCS ’04: Proceedings of
the 11th ACM conference on Computer and communications security, New York,
NY, USA, ACM (2004) 82–91

4. Boyen, X., Dodis, Y., Katz, J., Ostrovsky, R., Smith, A.: Secure remote authen-
tication using biometric data. In: Advances in Cryptology—EUROCRYPT 2005.
Volume 3494 of Lecture Notes in Computer Science., Berlin: Springer-Verlag (2005)
147–163 Available at http://www.cs.stanford.edu/~xb/eurocrypt05b/.

5. Monrose, F., Reiter, M.K., Wetzel, S.: Password hardening based on keystroke
dynamics. In: CCS ’99: Proceedings of the 6th ACM conference on Computer and
communications security, New York, NY, USA, ACM (1999) 73–82

6. Hocquet, S., Ramel, J.Y., Cardot, H.: Fusion of methods for keystroke dynamic
authentication. Automatic Identification Advanced Technologies, 2005. Fourth
IEEE Workshop on (17-18 Oct. 2005) 224–229

7. Monrose, F., Reiter, M., Li, Q., Wetzel, S.: Cryptographic key generation from
voice. Security and Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium
on (2001) 202–213

8. Yegnanarayana, B., Prasanna, S., Zachariah, J., Gupta, C.: Combining evidence
from source, suprasegmental and spectral features for a fixed-text speaker verifica-
tion system. Speech and Audio Processing, IEEE Transactions on 13 (July 2005)
575–582

9. Cauchie, S., Brouard, T., Cardot, H.: From features extraction to strong security
in mobile environment: A new hybrid system. In Meersman, R., Tari, Z., Herrero,
P., eds.: OTM Workshops (1). Volume 4277 of Lecture Notes in Computer Science.,
Springer (2006) 489–498

10. Feng, H., Choong, W.C.: Private key generation from on-line handwritten signa-
tures. Inf. Manag. Comput. Security 10 (2002) 159–164

11. Fuentes, M., Garcia-Salicetti, S., Dorizzi, B.: On-line signature verification: Fusion
of a hidden markov model and a neural network via a support vector machine.
iwfhr 00 (2002) 253

12. Goh, A., Ling, D.N.C.: Computation of cryptographic keys from face biometrics. In
Lioy, A., Mazzocchi, D., eds.: Communications and Multimedia Security. Volume
2828 of Lecture Notes in Computer Science., Springer (2003) 1–13

13. Yan, T.T.H.: Object recognition using fractal neighbor distance: eventual conver-
gence and recognition rates. Pattern Recognition, 2000. Proceedings. 15th Inter-
national Conference on 2 (2000) 781–784 vol.2

14. Uludag, U.A.J.: Securing fingerprint template: Fuzzy vault with helper data. Com-
puter Vision and Pattern Recognition Workshop, 2006 Conference on (17-22 June
2006) 163–163

15. Guo, H.: A hidden markov model fingerprint matching approach. Machine Learning
and Cybernetics, 2005. Proceedings of 2005 International Conference on 8 (18-21
Aug. 2005) 5055–5059 Vol. 8

16. Hao, F., Anderson, R., Daugman, J.: Combining crypto with biometrics effectively.
IEEE Transactions on Computers 55 (2006) 1081–1088

17. Crammer, K., Singer, Y.: On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research 2 (2001) 265–292

18. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: EUROCRYPT. (1999) 223–238

19. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure
against active adversaries. In: ASIACRYPT. (1999) 165–179

20. Bellare, M., Boldyreva, A., Micali, S.: Public-key encryption in a multi-user setting:
Security proofs and improvements. In: EUROCRYPT. (2000) 259–274

Appendix A: Paillier Public Key Encryption Scheme

The Paillier public key encryption scheme [18, 19] can be described as follows:

– Key generation: GPaillier(1κ) = (kd, ke). The PPT key generation algo-
rithm takes a security parameter 1κ as input, and randomly generates two
large prime numbers p and q, setting n = pq and λ = lcm(p− 1, q − 1). The
algorithm then randomly selects g ∈ Z∗n2 , such that n divides the order of g.
This can be ensured by checking that

gcd(L(gλ mod n2), n) = 1, where L(u) =
u− 1
n

which in turn implies that the following multiplicative inverse exists:

µ = (L(gλ mod n2))−1 mod n

The public key is then ke = (n, g) and the secret key is kd = (µ, λ).
– Encryption: EPaillier(m, ke). The PPT encryption algorithm takes a mes-

sage m ∈ Zn and the public key ke = (n, g), generates r uniformly at random
from Z∗n and outputs a ciphertext c ∈ Zn2 , where c = gm · rn mod n2.

– Decryption: DPaillier(c, kd). The deterministic decryption algorithm takes
a ciphertext c and the secret key and outputs the plaintext m, which is
recovered as m = L(cλ mod n2) · µ mod n.

It has been shown [19] that, under the composite residuosity assumption,
the Paillier cryptosystem provides semantic security against chosen-plaintext
attacks (IND-CPA). In other words, any PPT adversary A has only a negligible
advantage in the following game against the Paillier cryptosystem:

ExpIND−CPAPaillier(A)
(kd, ke) ← GPaillier(1κ)
(m0,m1, s)← A1(ke)
β ← {0, 1}
c ← EPaillier(mβ)
β′ ← A2(c, s)
return β′

where the attacker’s advantage AdvIND−CPA
Paillier is defined as:

AdvIND−CPA
Paillier = |Pr[ExpIND−CPAPaillier = 1|β = 1]− Pr[ExpIND−CPAPaillier = 1|β = 0]|

In our scheme we will be using the Paillier cryptosystem to encrypt biometric
features represented as short sequences of integer numbers. Encryption will be
component-wise, where we assume that each integer component in the feature is
in a range suitable for direct encoding into the message space4. For this reason
we require a generalisation of the IND-CPA property allowing the adversary
to make a polynomial number n of queries to a Left-or-Right challenge oracle.
We call this notion n-IND-CPA and emphasize that the security of the Paillier
encryption scheme in this setting is implied by its semantic security [20].

We will also take advantage of the following homomorphic properties of the
Paillier encryption scheme:

EPaillier(a, ke)EPaillier(b, ke) = EPaillier(a+ b, ke)

EPaillier(a, ke)b = EPaillier(ab, ke)
The aditive property also provides a method to re-randomize a given Paillier
cryptosystem which we will use:

(EPaillier(a, ke; r′) · rn) mod n2 = EPaillier(a, ke; r′r).
4 In practice, SVM features can be represented using integers in the range −100 to

100, which can be easily encoded into Zn.

Appendix B: Proof of Theorem 1

The proof is divided in four claims, corresponding to the different values that
adv can take.

Claim 1: {(ID, ExpfINDβ=1(AS, v0, v1))} ≡ {(ID, ExpfINDβ=0(AS, v0, v1))}. To prove this
claim we argue that any distinguisher with non-negligible advantage can be
used to break the security of the Paillier cryptosystem. For this we construct
a sequence of three games, where the first corresponds to distinguishing the
distributions associated with ExpfIND. The second game is identical to the original
one, with the caveat that instead of encrypting v0, the experiment now encrypts
a random value in the feature space v′0. We claim that the advantage of any
adversary in distinguishing the distributions associated with this new experiment
must be negligibly different from that in the original game. To show this we
build a distinguisher D1 which attacks the k-IND-CPA security of the Paillier
cryptosystem, where k is the length of the feature vector v, given any adversary
contradicting the previous claim. D1 works as follows:

– D1 receives the Paillier challenge public key and uses it as params.
– D1 sets up a make-believe authentication system with a set of legitimate

users U , generates one feature v0 for a particular user ID, plus an additional
feature v1 for an arbitrary user, and a random value in the feature space v′0.

– D1 passes features v0 and v′0 to the k-IND-CPA challenge oracle, obtaining a
component-wise encryption of one of these features, and takes this encryption
as auth.

– D1 then simulates the protocol trace for AS by running the Classify and
Shuffle algorithms. Since D1 does not know the secret key associated with
the challenge public key, it simply doesn’t run Decide and Identify, taking
d and r corresponding to ID as the obvious result. Note that this is consis-
tent with the feature indistinguishability security game. The protocol trace
generated for the AS is therefore

viewAS = (auth, class, sclass, π, d, r, ASdata, params)

– D1 tosses a coin β and passes {(ID, (vβ , viewAS))} to AS.
– Eventually, AS will return its guess β′, and D1 returns b = 1 if A’s guess is

correct and b = 0 otherwise.

Note that if the k-IND-CPA challenge encrypts v0 (call this event E), thenAS
is run according to the correct rules of ExpfIND and therefore game 1. Conversely,
if it encrypts v′0 then the adversary is run under the rules of game 2. Denoting
by Pr[Si]the probability of success in game i, we have:

|Pr[S1]− Pr[S2]| = |Pr[β′ = β|E]− Pr[β′ = β|¬E]| = Advk−IND−CPAPaillier (D1)

To bound the probability that the AS can distinguishing the distributions asso-
ciated with game 2 we observe that the protocol trace itself contains no infor-
mation about v0 or v1. Hence, any advantage in distinguishing the features can

only be obtained by the AS by recovering biometric profile information from the
protocol trace i.e. attacking DBdata.

To ensure that this is not possible, we introduce game 3, where DBdata is
replaced by a random value in the profile space. It is clear that under the rules of
game 3, and since no information is provided to the AS regarding the biometric
system at all, it can have no advantage in guessing β, i.e. Pr[S3] = 1/2.

To complete the proof, we show that any adversary whose behaviour changes
non-negligibly from game 2 to game 3 can be used to attack the |U |-IND-CPA
security of the Paillier encryption scheme. For this, we build a distinguisher D2

which works as follows:

– D2 receives the Paillier challenge public key and uses it as params.
– D2 sets up a make-believe authentication system with a set of legitimate

users U , generates one feature v0 for a particular user ID, plus an additional
feature v1 for an arbitrary user, and a random value in the feature space v′0.

– D2 (component-wise) encrypts v′0 of appropriate size with the challenge pub-
lic key and calls this auth.

– D2 then uses DBdata to calculate the cleartext versions of pre-classification
results corresponding to v′0 (call these scores s = (s1, . . . , s|U |)).

– D2 then generates an alternative version of DBdata by selecting a ran-
dom value in the profile space, and calculates the cleartext versions of pre-
classification results corresponding to v′0 (call these scores r = (r1, . . . , r|U |))
under this arbitrary pre-classification system .

– D2 then uses the |U |-IND-CPA challenge oracle to construct class by taking
classj as the answer to a query (sj , rj).

– D2 then executes Shuffle to obtain sclass and sets d and r to the values
corresponding to ID. The protocol trace generated for the AS is therefore

viewAS = (auth, class, sclass, π, d, r, ASdata, params)

– D2 tosses a coin β and passes {(ID, (vβ , viewAS))} to AS.
– Eventually, AS will return its guess β′, and D2 returns b = 1 if A’s guess is

correct and b = 0 otherwise.

Clearly, D2 interpolates between games 2 and 3 depending on the hidden bit in
the Left-or-Right challenge oracle, and we have:

|Pr[S2]− Pr[S3]| = Adv|U |−IND−CPAPaillier (D2)

Finally, putting the previous results together, we have
AdvfIND(AS) ≤ Advk−IND−CPAPaillier (D1) + Adv|U |−IND−CPAPaillier (D2) �

Similarly to the arguments in [1], the remaining claims follow directly from
the fact that the adversary, in each case, has no information about user identities.

Claim 2: {(ID, ExpfINDβ=1(DB, v0, v1))} ≡ {(ID, ExpfINDβ=0(DB, v0, v1))}.
Claim 3: {(ID, ExpfINDβ=1(V S, v0, v1))} ≡ {(ID, ExpfINDβ=0(V S, v0, v1))}.
Claim 4: {(ID, ExpfINDβ=1(Eve, v0, v1))} ≡ {(ID, ExpfINDβ=0(Eve, v0, v1))}. �

Appendix C: Proof of Theorem 2

The proof is divided in three claims, corresponding to the different values that
adv can take.

Claim 1: {(uid, uid′, ExpuINDβ=1(DB, v0, v1))} ≡ {(uid, uid′, ExpuINDβ=0(DB, v0, v1))}.
The DB server shares with the AS server the notion of user identifier. However,
it has no access to user features or decision results at any point, so the only means
it would have to achieve user traceability would be to break the security of the
underlying encryption scheme. More formally, we can construct a reduction to
the k-IND-CPA security of the Paillier encryption scheme, where k is as before,
by describing an algorithm B that attacks the k-IND-CPA security of the Paillier
cryptosystem given an adversary which contradicts the previous claim:

– B receives the Paillier challenge public key and uses it as params.
– B sets up a make-believe authentication system with a set of legitimate users
U and generates valid feature/user identifier pairs (v0, uid) and (v1, uid′).

– B passes (v0, v1) to the k-IND-CPA challenge oracle, obtaining a component-
wise encryption of one of these features, and takes this encryption as auth.

– B then simulates the protocol trace for DB by running the Classify algo-
rithm. The protocol trace generated for the DB is therefore

viewDB = (auth, class, DBdata, params)

– B passes (uid, uid′, viewDB) to DB.
– Eventually, DB will return its guess β′, and B simply returns this as its own

guess of which feature is encrypted in the k-IND-CPA challenge.

Note that the way in which B is constructed directly transforms any advantage
in A guessing β into an advantage in guessing the k-IND-CPA challenge bit.
More precisely, and taking into account our definitions of advantage:

AdvuIND(DB) = 2Advk−IND−CPAPaillier (B)

�

Claim 2: {(uid, uid′, ExpuINDβ=1(V S, v0, v1))} ≡ {(uid, uid′, ExpuINDβ=0(V S, v0, v1))} .
The V S is unable to trace user authentication runs due to the fact that a fresh
independent permutation π is generated each time the service is called. In fact,
in the information-theoretical sense V S’s view leaks nothing about user identi-
fiers: the V S receives no information about user identifiers in its static data, and
successive decision results produce indexes d are independent and uniformly inde-
pendently distributed, due to the action of the random permutation in Shuffle.
�

Claim 3: {(uid, uid′, ExpuINDβ=1(Eve, v0, v1))} ≡ {(uid, uid′, ExpuINDβ=0(Eve, v0, v1))}.
Eavesdroppers cannot trace user requests because they cannot correlate the
ephemeral index d associated with sclass with the static user identifier in-
dexes associated with class. This is ensured by re-randomizing the ciphertexts
contained in these protocol messages. Hence, without breaking the security of
the Paillier encryption scheme, eavesdroppers can have no advantage in tracing
user requests.

More formally, we argue that any distinguisher which contradicts the claim
can be used to break the security of the Paillier cryptosystem. For this we con-
struct a sequence of two games, where the first corresponds to distinguishing
the distributions associated with ExpuIND. The second game is identical to the
original one, with the exception that the value of d, the result of Decide, is
selected uniformly at random. We argue that the advantage of any adversary
under the rules of this slightly altered security game must be negligibly different
from its advantage in the original game. We support this argument by presenting
a distinguisher D which is able to translate A’s advantage in detecting this slight
change of rules into an advantage in attacking the |U |-IND-CPA security of the
Paillier cryptosystem:

– D receives the Paillier challenge public key and uses it as params.
– D sets up a make-believe authentication system with a set of legitimate users
U and generates valid feature/user identifier pairs (v0, uid) and (v1, uid′).

– D flips a bit β and (component-wise) encrypts vβ with the challenge public
key and calls this auth.

– D then uses the DBdata to calculate the cleartext versions of the pre-
classification results corresponding to vβ (we call these scores (s1, . . . , s|U |))
and encrypts them with the challenge public key to obtain a simulated class.

– D generates two random permutations π and π′ compatible with possible
runs of the authentication system,

– D then constructs the simulated sclass by calling the external Left-or-Right
oracle with (π(sj), π′(sj)) for each component sclassj .

– D then finalises the protocol trace for Eve by taking d = π(uid) if β = 0 or
d = π(uid′) if β = 1. The protocol trace generated for the Eve is therefore

viewEve = (auth, class, sclass, d, params)

– D passes (uid, uid′, viewEve) to Eve.
– Eventually, Eve will return its guess β′, and D returns 1 if Eve’s guess is

correct, and 0 otherwise.

Note that D perfectly simulates a protocol run under the rules of geme 1 using π,
if the Left-or-Right oracle is encrypting the left-hand messages (call this event
E). Conversely, if the oracle is encrypting the right-hand messages, then the
protocol run is using π′. However, since the value of d is calculated using π, it
will be independent and uniformly distributed under Eve’s view, which means
that D is running the adversary under the rules of game 2. Hence, any difference
in the adversary’s behaviour when run in games 1 or 2 is translated by D into an

advantage in attacking the |U |-IND-CPA security of the Paillier cryptosystem.
Denoting by Pr[Si]the probability of success in game i, we have:

|Pr[S1]− Pr[S2]| = |Pr[β′ = β|E]− Pr[β′ = β|¬E]| = Adv|U |−IND−CPAPaillier (D)

To bound the probability of success of an adversary in game 2, we present an
algorithm B which uses any attacker with non-negligible advantage in game 2
to break the k-IND-CPA security of the Paillier cryptosystem:

– B receives the Paillier challenge public key and uses it as params.
– B sets up a make-believe authentication system with a set of legitimate users
U and generates valid feature/user identifier pairs (v0, uid) and (v1, uid′).

– B passes (v0, v1) to the k-IND-CPA challenge oracle, obtaining a component-
wise encryption of one of these features. We take this encryption as auth.

– B then simulates the protocol trace for Eve by running the Classify and
Shuffle algorithms. Since B does not know the secret key associated with
the challenge public key, it simply doesn’t run Decide taking a random d
as the result. The protocol trace generated for the Eve is therefore

viewEve = (auth, class, sclass, d, params)

– B passes (uid, uid′, viewEve) to Eve.
– Eventually, Eve will return its guess β′, and B simply returns this as its own

guess of which feature is encrypted in the k-IND-CPA challenge.

Putting together the result relating games 1 and 2 with the fact that B
perfectly simulates the second game, we have:

AdvuIND(Eve) ≤ Adv|U |−IND−CPAPaillier (D) + 1/2Advk−IND−CPAPaillier (B) �

