Improved efficiency of Kiltz07-KEM
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Abstract. Kiltz proposed a practical key encapsulation mechanism(Kiltz07-KEM) which is secure
against adaptive chosen ciphertext attacks(IND-CCA2) under the gap hashed Diffie-Hellman(GHDH)
assumption[8]. We show a variant of Kiltz07-KEM which is more efficient than Kiltz07-KEM in en-
cryption. The new scheme can be proved to be IND-CCA2 secure under the same assumption, GHDH.
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1 Introduction

Security against adaptive chosen ciphertext attacks (IND-CCA2 security) [1-3] is now commonly
accepted as the standard security notion for public key encryption schemes. Currently, most of
the practical IND-CCA2 secure public key encryption schemes in standard model are variants of
ElGamal[4] scheme. Cramer and Shoup[5, 6] proposed the first provably IND-CCA2 secure prac-
tical public key encryption scheme based on the decisional Diffie-Hellman(DDH) assumption in
the standard model. This was further improved by Kurosawa and Desmedt and yield a more effi-
cient scheme(KD04)[7]. Kiltz proposed a IND-CCA2 secure KEM(key encapsulation mechanism)
under the Gap Hashed Diffie-Hellman(GHDH) assumption[8]. Combined with a redundancy-free
DEM(data encapsulation mechanism) it will yield a IND-CCA2 secure hybrid encryption scheme
more efficient than KDO04.

1.1 Owur Contributions

We show a variant of Kiltz07-KEM which can be proved to be IND-CCA2 secure under the same
assumption, GHDH. The new scheme is similar to Kiltz07-KEM, while the only difference is that the
second item of the ciphertext u™v" is replaced with u"v"*. Thus, the encryption of the new scheme
only need three exponentiations. Compared with KiltzO7-KEM, the efficiency of the encryption is
improved by 14.3%.

2 Definitions

In this section we describe the definitions of KEM, GHDH assumption and target collision resistant
hash function. In describing probabilistic processes, we write x & X to denote the action of
assigning to the variable x a value sampled according to the distribution X. If S is a finite set, we
simply write s £ S to denote assignment to s of an element sampled from uniform distribution on
S. If A is a probabilistic algorithm and z an input, then A(z) denotes the output distribution of A

on input x. Thus, we write y ki3 A(z) to denote of running algorithm A on input x and assigning
the output to the variable y.



2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists the following algorithms:

— KEM.KeyGen(1¥): A probabilistic polynomial-time key generation algorithm takes as input a

security parameter (1%) and outputs a public key PK and secret key SK. We write (PK,SK) «
KEM.KeyGen(1¥)

— KEM.Encrypt(PK): A probabilistic polynomial-time encryption algorithm takes as input the

public key PK, and outputs a pair (K1), where K € Kp(Kp is the key space) is a key and 1
is a ciphertext. We write (K, 1) « KEM.Encrypt(PK)

— KEM.Decrypt(SK, ¢): A decryption algorithm takes as input a ciphertext ¢ and the secret key

SK. It returns a key K. We write K < KEM.Decrypt(SK, v).

We require that for all (PK,SK) output by KEM.KeyGen(1*%), all (K,) € [KEM.Encrypt(PK)],
we have KEM.Decrypt(SK, ¢)=K.

A KEM scheme is secure against adaptive chosen ciphertext attacks if the advantage of any

adversary in the following game is negligible in the security parameter k:

1.

The adversary queries a key generation oracle. The key generation oracle computes (PK,SK) «—
KEM.KeyGen(1¥) and responds with PK.

The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext 1, and the decryption oracle responds with
KEM.Decrypt(SK, v).

The adversary queries an encryption oracle. The encryption oracle computes:

b & {0,1}; (Ko, ") — PKE.Encrypt(PK); K1 & Kp;

and responds with (Kj, ™).

The adversary continues to make calls to the decryption oracle except that it may not request
the decryption of ¥*.

Finally, the adversary outputs a guess b'.

The adversary’s advantage in the above game is AdvCCAxp\g 4(k) = |Pr[b =0b'] — 1/2]. If a

KEM is secure against adpative chosen ciphertext attack defined in the above game we say it is
IND-CCA secure.

2.2 Gap Hashed Diffie-Hellman Assumption

Now we review the definition of gap hashed Diffie-Hellman assumption[8]. Let G be a group of large
prime order ¢, H : G — {0,1}! be a cryptographic hash function and consider the following two
experiment:

experiments Exp&' 4  (I):

2y & 75 W — {0, 1} Wo — H(g™);b & {0,1}

b — Aoddh()(g“c,gy, Wy);If b = b/ return 1 else return 0;



Here the oracle Ogqn(g, g%, ¢, g¢) returns 1 if ab = ¢ otherwise return 0; We define the advantage
of the A in violating the gap hashed Diffie-Hellman assumption as

hdh hdh
Advgy A (1) = | Pr[Expg g 4 () = 1] = 1/2]

We say that the GHDH assumption holds if Adv%’?}f 4(1) is negligible for all polynomial-time
adversaries A.

2.3 Target collision resistant hash function

A (t,e) target collision resistant hash function (TCR) family is a collection F of functions fx :
{0,1}™ — {0,1}" indexed by a key K € K (where K denotes the key space), and such that any
attack algorithm A running in time ¢ has success probability at most € in the following game:

Key Sampling: A uniformly random key K € K is chosen (but not yet revealed to A).
— A Commits: A runs (with no input) and outputs a hash function input s; € {0, 1}".
Key Revealed: The key K is given to A.

A Collides: A continues running and outputs a second hash function input s9 € {0,1}".

We say that A succeeds in the above game if it finds a valid collision for fx, i.e. if s1 # so but
fr(s1) = fr(s2). We define the advantage of A as AdvT'CR = |Pr[fx(s1) = fx(s2) : s1 # s2]—1/2].
We say H is target collision resistant hash function if AdvT'C'R is negligible.

3 Variant of Kiltz07-KEM

In this section we describe the new scheme as follow:
— KeyGen: Assume that G is group of order ¢ where ¢ is a large prime number.
g & Giay & Zhu— %0 — ¢ PK = (g,u,v, H, TCR); SK = (z,y)

Where H : G — {0,1} is the hash function used in the GHDH assumption, [ is the length of
the key, TCR is a target collision resistant hash function.
— Encrypt: Given PK, the encryption algorithm runs as follow:

r& Zyicr gt = TCR(c1); 2 u vk — H(u");9 «— (c1,c2)
— Decrypt: Given a ciphertext 1 = (¢1,c2) and SK, the decryption algorithm runs as follow:
t — TCOR(c1);if (¢ = ) k — H(c%); else return L
Now we prove that the KEM above is secure against adaptive chosen ciphertext attacks:

Theorem 1. The key encapsulation above is secure against adaptive chosen ciphertext attack as-
suming that: (1)GHDH problem is hard in the group G, (2)TCR is a target collision resistant hash
function.



To prove the theorem, we will assume that there is an adversary A that can break the hybrid
encryption scheme above, TCR is a target collision resistant hash function and show how to use
this adversary to construct an adversary B to break the GHDH problem.

Given (g, u,g", W), B runs the following key generation algorithm:

y & Zit — TCR(g )0« gPu™ /!

The public key that A sees is (g,u,v, TCR,H), H : G — {0,1}! is the hash function used in
the GHDH assumption, [ is the length of the key, TCR is a target collision resistant hash function.
B knows y.

First we describe the simulation of the encryption oracle. In step 3, B sends (¢; = ¢",co =
Ak =W) to A. Since ¢y = & = gt = u" (g¥u~'/*)" = u"v"™, we have that the simulation of the

encryption oracle is perfect.
We now describe the simulation of the decryption oracle. Given (cy;, c2;), B works as follow:

ti — TCR(uy;); if Ogdh(g, uv' 1, eai) = 1 k — H((cgi/ (V%)) E1); else return L
Let c1; = g™, if Ogdh(g,uvti, c1;, c2;) = 1 we have that co; = u"io"i%. Consider k:

B = H((eai/ (¢410)Y/ 4700 = (ot /(700 0=0)

_ H((uri(gyu—l/t)riti/(griyti))t/(t—ti)) _ H((uri((t—ti)/t))t/(t—ti)) _ H(un)
It is clear that the simulation of the decryption oracle is perfect. Finally, when A return ¥, B
also output b'. Let uw = ¢, if ¥ = 0 it means that k = W = H(g*"). So, if A breaks the scheme

successfully, then B breaks the GHDH problem successfully. That’s complete the proof of theorem
1.

4 Efficiency Analysis

The efficiency of the new scheme and Kiltz07-KEM is listed in table 1.

Table 1. Efficiency comparison

schemes Encryption(exp) | Decryption(exp) |Cipher-text overhead(bit)|Assumption
Kiltz07-KEM |3.5(2exp+1mexp)|1.5(0exp+1mexp) 2|q| GHDH
NEW 3 (3exp+0mexp) |1.5(0exp+1mexp) 2|q| GHDH

When tabulating computational efficiency hash function is ignored, multi-exponentiation (mexp)
is counted as 1.5 exponentiations (exp). Ciphertext overhead represents the difference between the
ciphertext length and the message length, and |g| is the length of a group element. It is clear that
the encryption of the new scheme is about 14.3% faster than that of Kiltz07-KEM.



5 Conclusion

We showed a variant of Kiltz07-KEM. The new scheme is similar to Kiltz07-KEM, while the only

difference is that the second item of the ciphertext u

"ty" is replaced with u"v"t. Thus, the efficiency

of the encryption is improved by 14.3%.
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