
Improved efficiency of Kiltz07-KEM

Xianhui Lu1, Xuejia Lai2, Dake He1

Email:luxianhui@gmail.com

1:School of Information Science & Technology, SWJTU, Chengdu, China
2:Dept. of Computer Science and Engineering, SJTU, Shanghai, China

Abstract. Kiltz proposed a practical key encapsulation mechanism(Kiltz07-KEM) which is secure
against adaptive chosen ciphertext attacks(IND-CCA2) under the gap hashed Diffie-Hellman(GHDH)
assumption[8]. We show a variant of Kiltz07-KEM which is more efficient than Kiltz07-KEM in en-
cryption. The new scheme can be proved to be IND-CCA2 secure under the same assumption, GHDH.
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1 Introduction

Security against adaptive chosen ciphertext attacks (IND-CCA2 security) [1–3] is now commonly
accepted as the standard security notion for public key encryption schemes. Currently, most of
the practical IND-CCA2 secure public key encryption schemes in standard model are variants of
ElGamal[4] scheme. Cramer and Shoup[5, 6] proposed the first provably IND-CCA2 secure prac-
tical public key encryption scheme based on the decisional Diffie-Hellman(DDH) assumption in
the standard model. This was further improved by Kurosawa and Desmedt and yield a more effi-
cient scheme(KD04)[7]. Kiltz proposed a IND-CCA2 secure KEM(key encapsulation mechanism)
under the Gap Hashed Diffie-Hellman(GHDH) assumption[8]. Combined with a redundancy-free
DEM(data encapsulation mechanism) it will yield a IND-CCA2 secure hybrid encryption scheme
more efficient than KD04.

1.1 Our Contributions

We show a variant of Kiltz07-KEM which can be proved to be IND-CCA2 secure under the same
assumption, GHDH. The new scheme is similar to Kiltz07-KEM, while the only difference is that the
second item of the ciphertext urtvr is replaced with urvrt. Thus, the encryption of the new scheme
only need three exponentiations. Compared with Kiltz07-KEM, the efficiency of the encryption is
improved by 14.3%.

2 Definitions

In this section we describe the definitions of KEM, GHDH assumption and target collision resistant
hash function. In describing probabilistic processes, we write x

R← X to denote the action of
assigning to the variable x a value sampled according to the distribution X. If S is a finite set, we
simply write s R← S to denote assignment to s of an element sampled from uniform distribution on
S. If A is a probabilistic algorithm and x an input, then A(x) denotes the output distribution of A
on input x. Thus, we write y R← A(x) to denote of running algorithm A on input x and assigning
the output to the variable y.



2.1 Key Encapsulation Mechanism

A key encapsulation mechanism consists the following algorithms:

– KEM.KeyGen(1k): A probabilistic polynomial-time key generation algorithm takes as input a
security parameter (1k) and outputs a public key PK and secret key SK. We write (PK,SK)←
KEM.KeyGen(1k)

– KEM.Encrypt(PK): A probabilistic polynomial-time encryption algorithm takes as input the
public key PK, and outputs a pair (K,ψ), where K ∈ KD(KD is the key space) is a key and ψ
is a ciphertext. We write (K,ψ)← KEM.Encrypt(PK)

– KEM.Decrypt(SK, ψ): A decryption algorithm takes as input a ciphertext ψ and the secret key
SK. It returns a key K. We write K ← KEM.Decrypt(SK, ψ).

We require that for all (PK,SK) output by KEM.KeyGen(1k), all (K,ψ) ∈ [KEM.Encrypt(PK)],
we have KEM.Decrypt(SK, ψ)=K.

A KEM scheme is secure against adaptive chosen ciphertext attacks if the advantage of any
adversary in the following game is negligible in the security parameter k:

1. The adversary queries a key generation oracle. The key generation oracle computes (PK,SK)←
KEM.KeyGen(1k) and responds with PK.

2. The adversary makes a sequence of calls to the decryption oracle. For each decryption or-
acle query the adversary submits a ciphertext ψ, and the decryption oracle responds with
KEM.Decrypt(SK, ψ).

3. The adversary queries an encryption oracle. The encryption oracle computes:

b
R← {0, 1}; (K0, ψ

∗)← PKE.Encrypt(PK);K1
R← KD;

and responds with (Kb, ψ
∗).

4. The adversary continues to make calls to the decryption oracle except that it may not request
the decryption of ψ∗.

5. Finally, the adversary outputs a guess b′.

The adversary’s advantage in the above game is AdvCCAKEM,A(k) = |Pr[b = b′] − 1/2|. If a
KEM is secure against adpative chosen ciphertext attack defined in the above game we say it is
IND-CCA secure.

2.2 Gap Hashed Diffie-Hellman Assumption

Now we review the definition of gap hashed Diffie-Hellman assumption[8]. Let G be a group of large
prime order q, H : G → {0, 1}l be a cryptographic hash function and consider the following two
experiment:

experiments Expghdh
G,H,A(l):

x, y
R← Z∗

q ;W1 ← {0, 1}l;W0 ← H(gxy); b R← {0, 1}

b′ ← AOddh()(gx, gy,Wb); If b = b′ return 1 else return 0;
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Here the oracle Oddh(g, ga, gb, gc) returns 1 if ab = c otherwise return 0; We define the advantage
of the A in violating the gap hashed Diffie-Hellman assumption as

Advghdh
G,H,A(l) = |Pr[Expghdh

G,H,A(l) = 1]− 1/2|

We say that the GHDH assumption holds if Advghdh
G,H,A(l) is negligible for all polynomial-time

adversaries A.

2.3 Target collision resistant hash function

A (t, ε) target collision resistant hash function (TCR) family is a collection F of functions fK :
{0, 1}n → {0, 1}m indexed by a key K ∈ K (where K denotes the key space), and such that any
attack algorithm A running in time t has success probability at most ε in the following game:

– Key Sampling: A uniformly random key K ∈ K is chosen (but not yet revealed to A).
– A Commits: A runs (with no input) and outputs a hash function input s1 ∈ {0, 1}n.
– Key Revealed: The key K is given to A.
– A Collides: A continues running and outputs a second hash function input s2 ∈ {0, 1}n.

We say that A succeeds in the above game if it finds a valid collision for fK , i.e. if s1 6= s2 but
fK(s1) = fK(s2). We define the advantage ofA asAdvTCR = |Pr[fK(s1) = fK(s2) : s1 6= s2]−1/2|.
We say H is target collision resistant hash function if AdvTCR is negligible.

3 Variant of Kiltz07-KEM

In this section we describe the new scheme as follow:

– KeyGen: Assume that G is group of order q where q is a large prime number.

g
R← G;x, y R← Z∗

q ;u← gx; v ← gy;PK = (g, u, v,H, TCR);SK = (x, y)

Where H : G → {0, 1}l is the hash function used in the GHDH assumption, l is the length of
the key, TCR is a target collision resistant hash function.

– Encrypt: Given PK, the encryption algorithm runs as follow:

r
R← Z∗

q ; c1 ← gr; t← TCR(c1); c2 ← urvrt; k ← H(ur);ψ ← (c1, c2)

– Decrypt: Given a ciphertext ψ = (c1, c2) and SK, the decryption algorithm runs as follow:

t← TCR(c1); if (c2 = cx+yt
1 ) k ← H(cx1); else return ⊥

Now we prove that the KEM above is secure against adaptive chosen ciphertext attacks:

Theorem 1. The key encapsulation above is secure against adaptive chosen ciphertext attack as-
suming that: (1)GHDH problem is hard in the group G, (2)TCR is a target collision resistant hash
function.
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To prove the theorem, we will assume that there is an adversary A that can break the hybrid
encryption scheme above, TCR is a target collision resistant hash function and show how to use
this adversary to construct an adversary B to break the GHDH problem.

Given (g, u, gr,W ), B runs the following key generation algorithm:

y
R← Z∗

q ; t← TCR(gr); v ← gyu−1/t

The public key that A sees is (g, u, v, TCR,H), H : G → {0, 1}l is the hash function used in
the GHDH assumption, l is the length of the key, TCR is a target collision resistant hash function.
B knows y.

First we describe the simulation of the encryption oracle. In step 3, B sends (c1 = gr, c2 =
cyt
1 , k = W ) to A. Since c2 = cyt

1 = gyrt = ur(gyu−1/t)rt = urvrt, we have that the simulation of the
encryption oracle is perfect.

We now describe the simulation of the decryption oracle. Given (c1i, c2i), B works as follow:

ti ← TCR(u1i); if Oddh(g, uvti , c1i, c2i) = 1 k ← H((c2i/(c
yti
1i ))t/(t−ti)); else return ⊥

Let c1i = gri , if Oddh(g, uvti , c1i, c2i) = 1 we have that c2i = urivriti . Consider k:

k = H((c2i/(c
yti
1i ))t/(t−ti)) = H((urivriti/(griyti))t/(t−ti))

= H((uri(gyu−1/t)riti/(griyti))t/(t−ti)) = H((uri((t−ti)/t))t/(t−ti)) = H(uri)

It is clear that the simulation of the decryption oracle is perfect. Finally, when A return b′, B
also output b′. Let u = gx, if b′ = 0 it means that k = W = H(gxr). So, if A breaks the scheme
successfully, then B breaks the GHDH problem successfully. That’s complete the proof of theorem
1.

4 Efficiency Analysis

The efficiency of the new scheme and Kiltz07-KEM is listed in table 1.

Table 1. Efficiency comparison

schemes Encryption(exp) Decryption(exp) Cipher-text overhead(bit) Assumption

Kiltz07-KEM 3.5(2exp+1mexp) 1.5(0exp+1mexp) 2|q| GHDH

NEW 3 (3exp+0mexp) 1.5(0exp+1mexp) 2|q| GHDH

When tabulating computational efficiency hash function is ignored, multi-exponentiation (mexp)
is counted as 1.5 exponentiations (exp). Ciphertext overhead represents the difference between the
ciphertext length and the message length, and |q| is the length of a group element. It is clear that
the encryption of the new scheme is about 14.3% faster than that of Kiltz07-KEM.
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5 Conclusion

We showed a variant of Kiltz07-KEM. The new scheme is similar to Kiltz07-KEM, while the only
difference is that the second item of the ciphertext urtvr is replaced with urvrt. Thus, the efficiency
of the encryption is improved by 14.3%.
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