
 1

A new identity based proxy signature scheme
Bin Wang

Information Engineering College of Yangzhou University

Yangzhou City, Jiangsu Province, P.R.China

Tel: 086-0514-82220820

E-mail:xiaobinw@yahoo.com

Abstract: Proxy signature schemes allow a proxy signer to generate proxy signatures on

behalf of an original signer. Mambo et al. first introduced the notion of proxy signature and a

lot of research work can be found on this topic nowadays. Recently, many identity based

proxy signature schemes were proposed. However, some schemes are vulnerable to proxy key

exposure attack. In this paper, we propose a security model for identity based proxy signature

schemes. Then an efficient scheme from pairings is presented. The presented scheme is

provably secure in the random oracle model. In particular, the new scheme is secure against

proxy key exposure attack.

Keywords: Digital signature, Proxy signature, Identity based signature, Bilinear pairing,

Random oracle model;

1. Introduction

Digital signature is one of the most important security services under the electronic

commercial environment. As a variation of ordinary digital signature schemes, the notion of

proxy signature was first introduced by Mambo, Usuda and Okamoto [10] in 1996. In a proxy

signature scheme, an original signer is allowed to delegate his signing capability to a

designated proxy signer. Then the proxy signer can generate proxy signatures on behalf of the

original signer. Proxy signatures have found numerous practical applications. Examples

include distributed systems, Grid computing, and mobile communication.

There are three types of delegation: full delegation, partial delegation and delegation by

warrant. In a full delegation scheme, the original signer gives his secret signing key to the

proxy signer as the proxy signing key. Hence, for a given message, signatures generated

between the original signer and the proxy signer are indistinguishable. In a partial delegation

pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com

mailto:E-mail:xiaobinw@yahoo.com

 2

scheme, the proxy signing key is derived from the original signer�s secret key. In addition, it

is computationally infeasible for the proxy signer to derive the original signer�s secret key.

However, the messages that a proxy signer can sign are not limited. In a delegation by warrant

scheme, the original signer creates and signs a warrant that is used to certify the legitimacy of

the proxy signer.

Since Mambo et al. introduced the concept of proxy signature, several kinds of proxy

signature schemes have been proposed [8,9]. Furthermore, there are various extensions of the

proxy signature primitive, such as threshold proxy signature [6], proxy multi-signature

signature [7], etc. Informally, the basic security properties for proxy signature schemes can be

described as follows [9]:

Verifiability: From a proxy signature, a verifier can be convinced of the original signer�s

agreement on the signed message.

Unforgeability: Only the designated proxy signer can generate a valid proxy signature

on behalf of the original signer.

Strong identifiability: Anyone can determine the identity of the corresponding proxy

signer from a proxy signature.

Undeniability: The designated proxy signer cannot deny a valid proxy signature

generated by him.

Prevention of misuse: A proxy signing key cannot be used for purpose other than

generating valid proxy signatures.

The definition of secure digital signature schemes was given by Goldwasser, Micali and

Rivest in [4]. However, the first work [1] on proxy signature in the provable security direction

was done by Boldyreva, Palacio and Warinschi in 2003. They formalized the notion of

security for proxy signature schemes in order to prove the security of proxy signature

schemes under some well-established hard problems. However, Jacob C.N. Schdult et al. [12]

pointed out that the scheme proposed in [1] is vulnerable to proxy key exposure attack. That

is, upon exposure of a proxy signing key, an adversary can recover the private key of the

corresponding proxy signer.

In the conventional Public Key Infrastructure (PKI), the binding between a user�s public

key and the user�s identity is obtained via certificates issued by some trusted CAs. However,

 3

PKI is considered to be costly to deploy and maintain. In [11], Shamir introduced the notion

of identity based public key cryptography (ID-PKC) in which the public key would be the

user�s unique identity. The motivation of ID-PKC is to simplify certificate management. The

advantage of ID-based schemes is that no certificate information and public key verification is

needed. Since then, many identity based cryptosystems are proposed [2,5]. ID-based public

key setting can be a good alternative for certificated-based public key setting, especially when

efficient key management and moderate security are required.

In 2003, Zhang et al. [16] proposed an ID-based proxy signature scheme from pairings.

However, no formal analysis was presented for the security of their scheme. In 2005, Xu et al.

[15] proposed an ID-based proxy signature scheme from pairings, but the security model

defined in their paper did not consider the case of an adaptively chosen identity adversary A .

In other words, the target identity 1ID is given to A before A submits queries. Later,

Shim [13] proposed an identity based proxy signature scheme secure against an adaptively

chosen message and chosen identity adversary. Nevertheless, we demonstrate that the

above-mentioned identity based proxy signature schemes proposed in [13, 15] are vulnerable

to proxy key exposure attack.

Wu et al. [14] also proposed an identity based proxy signature scheme secure against an

adaptively chosen message and chosen identity adversary. As the adversary defined in [14]

can be divided into three types, it is not easy to analyze the security of their scheme.

Moreover, the model defined in [14] did not take proxy key exposure attack into account.

Nevertheless, their scheme is secure against proxy key exposure attack.

The rest of this paper is organized as follows. At first, we develop a simplified security

model for identity based proxy signature schemes. Then we propose an efficient identity

based proxy signature scheme from pairings. In the following, we show that our scheme is

existential unforgeable against chosen message and chosen identity attacks. In particular, the

new scheme is secure against proxy key exposure attack. Finally, we compared the efficiency

of our scheme with the schemes proposed in [13, 14, 15].

2. Preliminaries

 4

2.1 Bilinear pairing

Let 1,G   be a cyclic additive group generated by P , whose order is a large prime

q , 2 ,G  be a cyclic multiplicative group of the same order, and let 1 1 2:e G G G  be

a bilinear pairing with the following properties:

1. Bilinear: For any Q , R , T 1G , (,) (,) (,)e Q R T e Q T e R T   and

(,) (,) (,)e Q R T e Q R e Q T  

2. Non-degenerate: There exists R ,T 1G , such that (,) 1e R T 

3. Computable: There exists an efficient algorithm to compute (,)e R T for any

R ,T 1G .

2.2 Computational Diffie-Hellman Assumption

Computational Diffie-Hellman (CDH) problem: Let 1G be a cyclic additive group

generated by P , whose order is a prime q . Given , ,P a P b P    , , qa b Z , compute

()ab P .

The success probability of an algorithm A in solving the CDH problem on 1G is

1, () Pr[(, ,) : ,]CDH
P G qSucc A A P a P b P ab P a b Z      

A (,)t  -CDH solver A is a probabilistic polynomial-time algorithm running in time

at most t such that the success probability
1, ()CDH

P GSucc A  . We say that 1G satisfies the

CDH assumption if there is no polynomial time (,)t  -CDH solver A with advantage 

non-negligible.

3. Weakness of some existing schemes

In this section, we demonstrate that the identity based proxy signature schemes proposed

in [13,15] are vulnerable to proxy key exposure attack. That is, upon exposure of a proxy key,

an adversary can recover the private key of the corresponding proxy.

 5

3.1 Xu et al.�s scheme

The proxy key in Xu et al.�s scheme [15] is defined as follows:

skp = 4 (, , ,)i j jH ID ID m U d V   , where m is a warrant, (,)U V  is the

signature on m produced by the original signer iID , and jd is the secret key of the

proxy signer jID . Since proxy signatures are often proposed for use in a potentially hostile

environment, we should not assume that there is a secure channel between the original signer

and the proxy. That is, (,)U V  can be obtained by the adversary. Upon exposure of the

proxy key skp , the adversary can recover jd as follows:

jd = 1
4 (, , ,)i jH ID ID m U 

 ()skp V

3.2 Shim�s scheme

We briefly review Shim�s scheme [13] at this point.

Setup:

(1) Generates two groups 1 2,G G , two different generators 1,P Q G and an

admissible pairing 1 1 2:e G G G 

(2) Picks a random number s *
qZ and sets the master public/secret key pair

,sP s  . Let pubP sP .

(3) Chooses three secure hash functions 1 2 3, ,H H H , which are defined as follows:

*
1 1:{0,1}H G , *:{0,1}i qH Z , 2,3i  .

Extract: Given an identity ID , computes 1()IDQ H ID and set the secret key

IDS = IDsQ .

Then the original signer A produces a signature for a warrant  as follows:

(1) A chooses *
A qr Z , and computes

AU = 1Ar P G , Ah = 2 (,)A qH U Z  , AV = 1A A Ah S r Q G 

After verifying the correctness of (, ,)A AU V , the proxy signer B computes

 6

Bh = 3 (,)AH U and the proxy key is P A B BV h S   , where
BB IDS sQ is the secret key

of B . It is easy to see that BS can be recovered as 1() ()B B P AS h V 

4. Identity based proxy signature

4.1 Syntax of identity based proxy signature schemes

An identity based proxy signature scheme(IBPS) consists of the following

polynomial-time algorithms:

1. MasterKeyGen(Master Key Generation): On input a security parameter k , it

generates a master public/secret key pair (,)mpk msk and a list of system parameters params.

The algorithm is assumed to be run by a Key Generation Center (KGC).

2. UserKeyGen(User Key Generation): On input msk , a user identity *{0,1}ID , it

generates a user secret key IDSk UserKeyGen (,)ID msk . The algorithm is run by KGC

for each user and the generated secret key is assumed to be distributed securely to the

corresponding user.

3. Sign(Signature Generation): On input a user identity ID , a user secret key IDSk and a

message m , it generates a standard signature  Sign (, ,)IDID Sk m .

4. Verf(Signature Verification): On input a user identity ID , mpk , the signed message

m and the standard signature  , Verf (, , ,)mpk ID m  returns 1 if the standard signature

is accepted, and 0 otherwise.

5. ProxyKeyGen(Proxy Key Generation): There is a pair of interactive algorithms (,)D V

(D and V represent the original signer iID and the proxy signer jID respectively

executing the proxy-designation protocol). The input to D , V includes the identities iID ,

jID . D also takes as input the secret key
iIDSk of the original signer, a warrant wm

consisting of the identities iID , jID , the delegation duration, the type of message delegated,

etc. V also takes as input the secret key
jIDSk of the proxy signer. As a result of the

 7

interaction, the expected local output of V is a proxy signing key []i jpsk  that can be

used by jID to produce valid proxy signatures on behalf of iID .

6. Proxy_Sign(Proxy Signature Generation): On input a proxy signer�s identity jID , a

proxy signing key []i jpsk  , the secret key
jIDSk of the proxy signer, a warrant wm and a

message m , it generates a proxy signature as follows:

 p Proxy_Sign [](, , , ,)
jj i j ID wID psk Sk m m .

7. Proxy_Verf(Proxy Signature Verification): On input mpk , the warrant wm , the signed

message m and the proxy signature p , Proxy_Verf (, , ,)wmpk m m p returns 1 if

the proxy signature is accepted, and 0 otherwise.

8. IDP(Proxy Identification): On input a warrant wm , and a proxy signature p , the

proxy identification algorithm returns the identity of the designated proxy signer after

verifying the correctness of the proxy signature.

Note that  MasterKeyGen , UserKeyGen, Sign, Verf  can be regarded as a

standard identity based signature scheme.

Correctness: We require that for all wm , *{0,1}m , *{0,1}ID , k , (,)mpk msk =

MasterKeyGen (1)k , IDSk =UserKeyGen (,)ID msk , if

(1) []i jpsk  is generated by [(, , ,) (, ,)]
i ji j ID w i j IDD ID ID Sk m V ID ID Sk , and

(2) p =Proxy_Sign [](, , , ,)
jj i j ID wID psk Sk m m , and

(3) the message m does not violate the warrant wm .

then Proxy_Verf (, , ,)wmpk m m p returns 1, IDP (,)wm p = jID .

4.2 Security model

In this section, we define the security model for identity based proxy signature schemes

as follows.

Let IBPS be an identity based proxy signature scheme, and kN be a security

 8

parameter. Define a game ()A
IBPSExp k in which an adversary A interacts with a game

challenger S . We use  to denote an empty set.

Phase 1: S runs MasterKeyGen (1)k to get (,)mpk msk and a list of system parameters

params. Then Corr is initialized with  which is used to keep track of the corrupted

users� identities . S gives mpk , params to A while keeping msk secret.

Phase 2: A issues the following queries:

1. CreateUser: On input an identity ID , if ID has already been created, S returns a

message to indicate the fact. Otherwise, the challenger executes IDSk  UserKeyGen

(,)ID msk and an empty array IDPkey is created which is used to store the proxy keys to

be generated by ID . At this point, ID is said to be created.

2. RevealSecretKey: On input an identity ID , the challenger returns the corresponding

user�s secret key IDsk if ID has been created. Then { }Corr Corr ID  . Otherwise a

symbol  is returned.

3. Sign_Msg: On input an identity ID and a message m adaptively chosen by A , the

challenger first queries RevealSecretKey ()ID to get IDSk and returns a standard signature

 Sign (, ,)IDID Sk m . Note that if IDSk = , a symbol  is returned.

4. DesignateProxy: A adaptively chooses identities iID (the original signer), jID (the

proxy signer) and a warrant wm . A requests 1S to run the proxy-designation protocol on

input (iID , jID ,)wm . Then A sees the transcript of the interaction. After a successful run,

the private output []i jpsk  is stored in [][]iPkey j t , where t denotes the last unoccupied

position of []iPkey j . Note that A is allowed to see the computational and memory history

of the corrupted identities in Corr .

5. Proxy_Sign_Msg: A adaptively chooses identities iID (the original signer), jID (the

proxy signer), a warrant wm , a message m , t and requests 1S to produce a proxy

 9

signature. If the proxy signing key [][]iPkey j t and
jIDSk are defined, 1S returns

p Proxy_Sign (, [][], , ,)
jj i ID wID Pkey j t Sk m m . Otherwise a symbol  is returned.

6. Reveal_Proxy_Key: A adaptively chooses identities iID (the original signer),

jID (the proxy signer), t . If the proxy signing key [][]iPkey j t is defined, 1S returns

[][]iPkey j t . Otherwise a symbol  is returned.

Phase 3: A wins if one of the following events happens:

(1) A outputs * * *(, ,)ID m  , such that Verf * * *(, , ,) 1mpk ID m   . We require that A

never made a Sign_Msg query on * *(,)ID m , nor *ID Corr (forgery of a standard

signature).

(2) A outputs * * *(, , , ,)i j wID ID m m p after making a DesignateProxy request on

*(, ,)i j wID ID m , such that Proxy_Verf * * *(, , ,)wmpk m m p =1, IDP * *(,)wm p = jID .

We require that A never made a Proxy_Sign_Msg query on * *(, , , ,)i j wID ID t m m ,

for some t , nor jID Corr . However, A is allowed make a RevealSecretKey

query on iID (forgery of a proxy signature by jID on behalf of iID ; jID has

been designated by iID). This case simulates attacks when the adversary is able to

compromise the secret key of the original signer.

(3) A outputs * * *(, , , ,)i j wID ID m m p without making a DesignateProxy request on

*(, ,)i j wID ID m , such that Proxy_Verf * * *(, , ,)wmpk m m p =1, IDP * *(,)wm p = jID .

We require that | { , } | 1i jID ID Corr  (forgery of a proxy signature by jID on

behalf of iID ; jID is not designated by iID). This case simulates attacks when the

adversary tries to produce a proxy signature without running the proxy-designation

protocol.

Finally, 1S returns 1 to indicate the adversary�s success. We define the success

 10

probability of the adversary as ()IBPSSucc A = Pr[() 1]A
IBPSExp k  .

An identity based proxy signature scheme is existential unforgeable against chosen

message and chosen identity attacks if for any probabilistic polynomial time (PPT) adversary

A , the success probability ()IBPSSucc A is negligible.

The adversary defined in [14] can be divided into three types:

Type  : This type of adversary only has the identities of the original signer and the

proxy signer.

Type  : This type of adversary has the identities of the original signer and the proxy

signer, and also can have the secret key of the proxy signer.

Type  : This type of adversary has the identities of the original signer and the proxy

signer, and also can have the secret key of the original signer.

It is obvious that the adversary defined in our model can simulate all the attacks captured

by the model defined in [14]. For example, Type  attackers who know only some target

identities can be modeled by our attacker who does not issue any RevealSecretKey query. In

addition, the model defined in [14] did not take proxy key exposure attack into account.

Finally, our simplified model may lead to simpler proofs of security.

5. Our scheme

In this section, we propose an efficient identity based proxy signature scheme from

bilinear pairing. The proposed scheme consists of the following algorithms:

MasterKeyGen: Assume k is the security parameter of our system. Let 1,G   be

a cyclic additive group generated by P , whose order is a large prime q , 2 ,G  be a

cyclic multiplicative group of the same order, and let 1 1 2:e G G G  be a bilinear map.

Then KGC performs the following operations:

(1) Picks a random number s *
qZ and sets the master public/secret key pair

,mpk msk = ,s P s   .

(2) Chooses three secure one-way functions 1 2 3, ,H H H , which are defined as follows:

 11

*
1 1:{0,1}H G , *

2 1 1:{0,1}H G G  , *
3 1 1:{0,1}H G G  .

(3) Sets the system parameters params as 1 2 1 2 3(,), (,), , , , , , ,G G e q P mpk H H H   .

UserKeyGen: On input an identity iID , KGC computes 1()i iQ H ID ,

iSk = imsk Q . Then KGC distributes iSk to the corresponding user identified by iID as

his secret key over a secure channel. The user can verify the correctness by checking

(,) (,)i ie Sk P e Q mpk .

Sign: In order to sign a message m , the user identified by iID should perform the

following steps:

(1) Picks a random number ik *
qZ and computes iK = ik P .

(2) Computes iV = 2 (, ,)i iH ID m K , iU = i i ik V Sk  .

(3) The signature is  = ,i iU K  .

Verf: Given the master public key mpk , an identity iID , the signed message m , the

correctness of the standard signature  can be verified as follows:

(1) Computes iV = 2 (, ,)i iH ID m K .

(2) Returns 1 if and only if (,)ie U P = (,)i ie V K  (,)ie Q mpk , where 1()i iQ H ID .

It is trivial to check the correctness of the verification equation.

ProxyKeyGen: In order to delegate the signing capability to a proxy signer jID , the

original signer iID should generate a warrant wm consisting of the identities of the original

signer and the proxy signer, the delegation duration, the type of message delegated, etc. The

proxy-designation protocol can be described as follows:

(1) The original signer iID outputs / =Sign (, ,)i i wID Sk m , where / = / /,i iU K  .

Then / , wm  is sent to the proxy signer jID .

(2) If Verf /(, , ,)i wmpk ID m  =1, jID proceeds to the next step. Otherwise jID

requests iID to provide a valid signature for the warrant wm .

 12

(3) The proxy signing key of jID is []i jpsk  = / /,i iU K  .

Proxy_Sign: Given the proxy signing key []i jpsk  = / /,i iU K  , in order to generate a

proxy signature for a message m on behalf of iID , jID should perform the following

steps:

(1) Picks a random number jk *
qZ and computes jK = jk P .

(2) Computes jV = /
3(, , , , ())i j w j iH ID ID m m K K .

(3) Computes jU = /
i j j jU Sk k V  

The proxy signature is p = /, ,j j iU K K  .

Proxy_Verf: After receiving the signed message m , the warrant wm and the proxy

signature p = /, ,j j iU K K  , a verifier should perform the following steps:

(1) If the warrant wm is invalid, (for instance, the time period for delegation expired),

p is rejected. Otherwise the verifier extracts iID , jID from wm and proceeds

to the next step.

(2) Computes jV = /
3(, , , , ())i j w j iH ID ID m m K K , /

iV = /
2 (, ,)i w iH ID m K .

(3) Returns 1 if and only if

(,)je U P = / /(,)i ie V K  (,)j je V K  (,)i je Q Q mpk

The correctness of the verification equation can be verified as follows:

(,)je U P = /(,)ie U P  (,)je Sk P  (,)j je k V P

 = / /(,)i ie V K  (,)j je V K  (,)ie Q mpk  (,)je Q mpk

 = / /(,)i ie V K  (,)j je V K  (,)i je Q Q mpk

IDP: On input a warrant wm , and a proxy signature p , the proxy identification

algorithm returns the identity of the designated proxy signer contained in wm after verifying

the correctness of the proxy signature p .

 13

6.Security analysis

6.1 Security Proof

Suppose a polynomial-time adversary A can break our IBPS scheme with

non-negligible success probability  in time at most t . We show how to construct a PPT

algorithm B that uses A to solve the CDH problem on 1G with non-negligible

probability by using techniques from [3].

Let 1 1(,)X a P Y b P G G      , , qa b Z , be an instance of the CDH problem

taken as input by B . Then B works by interacting with the adversary A (B simulates

the game challenger).

The system parameters params are 1 2 1 2 3(,), (,), , , , , , ,G G e q P mpk H H H   , where

mpk is initialized with X and 1 2 3, ,H H H are random oracles controlled by B .

During the simulation, B can answer A �s queries as follows:

1H Queries: B maintains a list 1
listH ={ , , , }IDID Q l coin  , where {0,1}coin .

If the queried identity ID appears on the 1
listH in a tuple { , , , }IDID Q l coin  , B

responds to A with 1()H ID = IDQ . Otherwise B picks a random l *
qZ , sets

(IDQ = l P , 0)coin  with probability  , or (IDQ = l Y , 1)coin  with probability

1  . Then B adds , , ,IDID Q l coin  to the 1
listH and responds to A with

1()H ID = IDQ .

CreateUser: B maintains a list L ={ , }IDID Sk  . Suppose the query is made on an

identity ID . B performs as follows:

(1) If the list L contains a tuple , IDID Sk  , B returns a message to indicate the

fact.

(2) Otherwise, B queries 1()H ID . Then B looks up the 1
listH to extract a tuple

, , ,IDID Q l coin  . If coin =1, B adds ,ID  to the list L . If coin =0, B

computes IDSk = l mpk , adds , IDID Sk  to the list L , and creates an empty

 14

array IDPkey which is used to store the proxy keys to be generated by ID .

RevealSecretKey: Suppose the query is made on an identity ID . At first, B looks up

the list L . If L contains a tuple , IDID Sk  and IDSk  , B returns IDSk .

Otherwise, B returns  and aborts.

2H Queries: B maintains a list 2
listH . Suppose the query is made on , ,ID m K  .

If a tuple (2), , , IDID m K h  is already in the 2
listH , B returns (2)

IDh P . Otherwise B

picks a random (2)
IDh *

qZ , and responds to A with 2 (, ,)H ID m K = (2)
IDh P . Then

(2), , , IDID m K h  is added to the 2
listH .

Sign_Msg: On input ,ID m  . B should perform as follows:

(1) Executes IDSk RevealSecretKey ()ID . If IDSk  , B returns  and aborts.

(2) Otherwise B picks a random number k *
qZ and computes K = k P .

(3) Executes V  2 (, ,)H ID m K and computes U = IDk V Sk  .

(4) B returns  = ,U K  .

DesignateProxy: Suppose A makes a query on iID (the original signer), jID (the

proxy signer), and wm . If
iIDSk  , B returns  and aborts. Otherwise, B queries the

oracle Sign_Msg with (,)i wID m . If a valid signature / = / /,i iU K  is generated, B

forwards / to A . Finally, B sets [][]iPkey j t  / , where t denotes the last

unoccupied position of []iPkey j . Obviously, as the proxy signing key is just the signature

on the warrant, it is useless to provide the adversary with a Reveal_Proxy_Key oracle in this

case.

3H Queries: B maintains a list 3
listH . Suppose the query is made on

,, , , ,i j w i jID ID m m K  . If a tuple (3)
, ,, , , , ,i j w i j i jID ID m m K h  is already in the 3

listH ,

B returns (3)
,i jh P . Otherwise, B picks a random (3)

,i jh *
qZ , and responds to A with

 15

3 ,(, , , ,)i j w i jH ID ID m m K = (3)
,i jh P . Then (3)

, ,, , , , ,i j w i j i jID ID m m K h  is added to the

3
listH .

Proxy_Sign_Msg: Without loss of generality, we assume that A always makes a query

on , , , ,i j wID ID t m m  after making a successful DesignateProxy query on

, ,i j wID ID m  . Then B performs as follows:

(1) If [][]iPkey j t = / (/ = / /,i iU K ) is not defined, B returns  . Otherwise B

proceeds to the next step.

(2) B executes
jIDSk  RevealSecretKey ()jID . If

jIDSk  , B returns 

and aborts.

(3) Picks a random number jk *
qZ and computes jK = jk P .

(4) Executes jV  /
3(, , , , ())i j w j iH ID ID m m K K .

(5) Computes jU = /

ji ID j jU Sk k V  

(6) B returns p = /, ,j j iU K K  .

Eventually, A halts and outputs a successful forgery (In order to be successful, the

restrictions on A defined in our model must be satisfied). We should consider the following

cases:

(1) Suppose A outputs a forgery of the form * = * *,U K  on a message *m for

a created identity *ID . Then B looks up the 1
listH to extract a tuple

*

* , , ,
ID

ID Q l coin  .

If coin =0, B reports failure and terminates. If coin =1, B looks up the 2
listH to

find out a tuple *

* * * (2), , ,
ID

ID m K h  . Since the forgery is successful, the probability of the

event that A does not make a 2H query on * * *, ,ID m K  is at most 1 q , which is

negligible. Hence we know that * * *
2 (, ,)H ID m K = *

(2)

ID
h P with probability at least

1 1 q . So we have

 16

*(,)e U P = * *(,)e V K  *(,)
ID

e Q mpk , where *V = *

(2)

ID
h P

 = *

(2) *(,)
ID

e h P K  (,)e l Y X

Hence (,)le Y X = *

* 2 *(,)
ID

e U h K P  .

Then B outputs *

1 * 2 *()
ID

l U h K    as the solution to the given instance of the CDH

problem on 1G .

(2) Suppose A outputs a forgery /, , , , ,i j w j j iID ID m U K K  on a message *m

after making a DesignateProxy query on (,i jID ID ,)wm . Then B looks up the 1
listH to

extract , , ,
ii ID i iID Q l coin  , , , ,

jj ID j jID Q l coin  .

If icoin =0 jcoin =0, B reports failure and terminates. Otherwise, B looks up the

2
listH , 3

listH to extract / (2), , ,
ii w i IDID m K h  , / (3)

,, , , , ,i j w i j i jID ID m m K K h  

respectively. Since the forgery is successful, the probability of the event that A does not

query 2H or 3H is at most 2 q . Hence we know that these tuples are already in the

2
listH and 3

listH with probability at least 1 2 q . So we have

(,)je U P = / /(,)i ie V K  (,)j je V K  (,)
iIDe Q mpk  (,)

jIDe Q mpk

where jV  /
3(, , , , ())i j w j iH ID ID m m K K , /

iV  /
2 (, ,)i w iH ID m K

Then consider the following sub-cases:

(2.1) icoin =1 jcoin =0.

 (,)je U P = (2) /(,)
iID ie h P K  (3)

,(,)i j je h P K  (,)ie l Y X  (,)je l P X

Hence (,) ile Y X = (2) / (3)
,(,)

ij ID i i j j je U h K h K l X P      .

Then B outputs 1 (2) / (3)
,() ()

ii j ID i i j j jl U h K h K l X        as the solution to the given

instance of the CDH problem on 1G .

(2.2) icoin =0 jcoin =1.

 (,)je U P = (2) /(,)
iID ie h P K  (3)

,(,)i j je h P K  (,)ie l P X  (,)je l Y X

 17

Hence (,) jl
e Y X = (2) / (3)

,(,)
ij ID i i j j ie U h K h K l X P      .

Then B outputs 1 (2) / (3)
,() ()

ij j ID i i j j il U h K h K l X        as the solution to the given

instance of the CDH problem on 1G .

(2.3) icoin =1 jcoin =1.

 (,)je U P = (2) /(,)
iID ie h P K  (3)

,(,)i j je h P K  (,)ie l Y X  (,)je l Y X

Hence (,) i jl l
e Y X


= (2) / (3)

,(,)
ij ID i i j je U h K h K P    .

Then B outputs 1 (2) / (3)
,() ()

ii j j ID i i j jl l U h K h K      as the solution to the given

instance of the CDH problem on 1G .

(3) Suppose A outputs a forgery /, , , , ,i j w j j iID ID m U K K  on a message *m

without making a DesignateProxy request on (, ,)i j wID ID m . The analysis of this case is

similar to that of case (2).

Claim 1: If the algorithm B does not abort during the simulation, then the view of the

adversary A in the simulated game is indistinguishable from that in the real game.

Proof: At first, the responses to 1H , 2H , 3H queries are as in the real game since each

response is uniformly distributed over 1G . If the algorithm B does not abort, the responses

to RevealSecretKey, Sign_Msg, DesignateProxy, Proxy_Sign_Msg queries are valid.

Hence the view of the adversary A in the simulated game in this case is indistinguishable

from that in the real game.

Lemma 1: Assume 1G satisfies the CDH assumption. Suppose there is a polynomial-time

adversary A can existentially forge a standard signature of our IBPS scheme with success

probability  in time at most t . Suppose A makes at most cq CreateUser queries ,

iHq queries to random oracles iH for i =1,2, sigq Sign_Msg queries and revq

RevealSecretKey queries . Then there is an algorithm B that solves the CDH problem on

 18

1G with probability

/  11
(1)

1
sig cq q

sig c sig cq q q q

  
  

Proof: The probability that B does not abort in this case (i.e., B can answer all standard

signature queries and RevealSecretKey queries) is at least sig revq q 
. The reason is that if

B is able to obtain the secret key of a user, he can answer signature queries with regard to

that user perfectly. When B answers CreateUser queries, it is easy to show that with

probability  he can generate the secret key of a user correctly. Hence, B can answer one

signature query or RevealSecretKey query correctly with probability  .

Then B outputs the solution to the instance of the CDH problem with probability

(1)(1 1)q  . Hence B is able to solve the CDH problem with success probability at

least  (1)(1 1)q  sig revq q    (1) sig revq q 
.

Let  = (1) sig revq q 
, a = sig revq q . By an analysis similar to Coron�s techniques

[3], the success probability  is maximized at opt =
1

a

a 
. Hence the success probability

/ of B  11
(1)

1
a

a a

 


, and for large a , / 
exp(1) a




.

The running time of B can be calculated as

1 2
() (1)c H H sig m rev ct q q q q t q q O    

where mt is the time to compute a scalar multiplication in 1G .

Lemma 2: Assume 1G satisfies the CDH assumption. Suppose there is a polynomial-time

adversary A can existentially forge a proxy signature of our IBPS scheme with success

probability  in time at most t (Here we only consider case (2) of our security model for

the sake of simplicity). Suppose A makes at most cq CreateUser queries ,
iHq queries

to random oracles iH for i =1,2,3, sigq Sign_Msg queries, psigq Proxy_Sign_Msg

queries, desgq DesignateProxy queries and revq RevealSecretKey queries . Then there is

 19

an algorithm B that the CDH problem on 1G with probability

/  11
(1)

1
b

b b

 


, where b = de g()

2
sig s psig revq q q q  

Proof: The probability that B does not abort in this case (i.e., B can answer all standard

signature queries, proxy-designation queries, proxy signature queries and RevealSecretKey

queries is at least de gsig s psig revq q q q   
. The reason is that if B obtains the secret key of the

proxy signer, B can respond to a proxy signature query successfully as we assume A

always makes a proxy signature query after making a successful proxy-designation query.

Hence, B can answer one proxy signature query successfully with probability  .

Then B outputs the solution to the CDH problem with probability

2(1)(1 2)q  (except for the sub-case icoin =0 jcoin =0). Hence B is able to solve

the CDH problem with the following probability:

 2(1)(1 2)q  de gsig s psig revq q q q      2(1) de gsig s psig revq q q q   
.

Let  =  2(1) de gsig s psig revq q q q   
, b = de g()

2
sig s psig revq q q q  

. The success

probability  is maximized at opt =
1

b

b
. Hence the success probability / of B

 11
(1)

1
b

b b

 


, and for large b , / 
exp(1) b




The running time of B can be calculated as

1 2 3
()c H H H sig psig desg mt q q q q q q q t        (1)rev cq q O

where mt is the time to compute a scalar multiplication in 1G .

Case (3) of our security model can be analyzed similarly.

6.2 Discussion

Verifiability: It can be derived from the correctness of the proxy signature verification

equation discussed in section 4.

Unforgeability: It is established from the conclusion of Lemma 2.

Strong identifiability: The identity of the proxy signer can be extracted from the

 20

warrant after verifying the correctness of the proxy signature.

Undeniability: It can be derived from unforgeability and strong identifiability.

Prevention of misuse: The proxy signer can only produce proxy signatures without

violating the warrant wm signed by the original signer. Moreover, the proxy signing key is

just the standard signature on the warrant wm . According to Lemma 1, the standard signature

scheme defined in our scheme is unforgeable. Hence the proxy signer cannot sign messages

that have not been authorized by the original signer.

Proxy key exposure: As the proxy signing key is just the signature on the warrant, it is

harmless to provide the proxy signing key with the adversary in this case. Hence our scheme

is secure against proxy key exposure attack.

7. Performance Analysis

In this section, we evaluate the performance of the proposed scheme and other related

schemes proposed in [13, 14, 15] in terms of the signature length and computational cost. Let

1| |G be the bit length of an element in 1G . Mu and Ad denote scalar multiplication and

addition in 1G respectively. H denotes a hash operation . Exp and P denote an

exponentiation operation in 2G and a pairing operation respectively, which are the most

time-consuming operation. The result is stated in Table 1. It is easy to check the correctness of

the numbers listed in Table 1. Obviously, the schemes proposed in [13, 15] is vulnerable to

proxy key exposure attack. In contrast to Wu et al.�s scheme [14], our scheme is more

efficient in terms of the computational cost. Moreover, the model defined in [14] did not take

proxy key exposure attack into account. Finally, our simplified model may lead to simpler

proofs of security.

8.Conclusion

In this paper, we focus on realizing an identity based proxy signature scheme in order to

combine the advantages of these concepts. At first, a simplified security model for identity

based proxy signature scheme is established. Then an efficient identity based proxy signature

 21

scheme from bilinear pairing is proposed. In the following, we provide a reductionist proof to

show that security of our scheme relies on the CDH problem. Finally, the performance

analysis shows that in contrast to Wu et al.�s scheme [16], our scheme is more efficient in

terms of the computational cost. In particular, the new scheme is secure against proxy key

exposure attack.

References

[1] A.Boldyreva, A. Palacio, B. Warinschi, �Secure proxy signature schemes for delegation of

signing rights�, http://eprint.iacr.org/2003/096

[2] D.Boneh, M. Franklin, �Identity based encryption from the Weil pairing �, in Advances in

Cryptology- Crypto�2001, LNCS 2139, Springer-Verlag, pp.213-229,2001

[3] J.-S., Coron, �On the exact security of full domain hash�, in Advance in Cryptology-

Crypto�2000, LNCS 1880, Springer-Verlag, pp.229-235, 2000

[4] S. Goldwasser, S. Micali, R. Rivest, , �A digital signature scheme secure against

existential adaptive chosen-message attacks�, SIAM Journal on Computing, 17(2),

pp.281-308, 1988

[5] F. Hess, �Efficient identity based signature schemes based on pairings�, in Selected Areas

in Cryptography-SAC�2002, LNCS 2595, Springer-Verlag, pp.310-324, 2002

[6] C.L. Hsu, T.S. Wu, T.C. Wu, �New nonrepudiable threshold proxy signature scheme with

known signers�, The Journal of System and Software, 58, pp.119-124, 2001

[7] S.J. Hwang, C.C. Chen, �A new proxy multi-signature scheme�, in Proceedings of

International Workshop on Cryptology and Network Security, pp.134-138, 2000

[8] S. Kim, S. Park, D. Won, �Proxy signature, revisited�, in Proceedings of SCIS�2001,

International Conference on Information and Communication Security, pp.223-232, 1997

[9] B. Lee, H. Kim, K. Kim, �Strong proxy signature and its applications�, in Proceedings of

ICICS�97, International Conference on Information and Communication Security, pp.603-608,

2001

[10] M. Mambo, K. Usuda, E. Okamoto, �Proxy signatures for delegating signing operation�,

in Proceedings of 3rd ACM Conference on Computer and Communications Security , ACM

Press, pp.48-57, 1996

http://eprint.iacr.org/2003/096

 22

[11] A. Shamir, �Identity based cryptosystems and signature schemes�, in Advances in

Cryptology-Crypto�84, LNCS 196, Springer-Verlag, pp.47-53,1984

[12] Jacob C.N. Schuldt, K. Matsuura, and Kennth G. Paterson, � Proxy Signatures secure

against proxy key exposure�, PKC 2008, LNCS 4939, pp.141-161, 2008

[13] K.-A. Shim, "An Identity-Based Proxy Signature Scheme from Pairings", ICICS 2006,

LNCS 4307, pp. 60-71, 2006.

[14] W. Wu, Y. Mu, W. Susilo, J. Seberry, X.Y. Huang, "Identity-based Proxy Signature from

Pairing", ATC 2007, LNCS 4610, Berlen, Heidelberg: Springer-Verlag, 2007. pp. 22-31.

[15] J. Xu, Z.F. Zhang, D.G. Feng, "ID-based Proxy Signature using Bilinear Pairing", ISPA

2005 Workshops, LNCS 3759, Berlen, Heidelberg: Springer-Verlag, 2005. pp. 359-367.

[16] Z.F. Zhang, K. Kim, �Efficient ID-Based Blind Signature and Proxy Signature from

Bilinear Pairings", ACISP 2003, LNCS 2727, pp. 312-323, 2003.

Table 1.Performance comparison with other related schemes

Scheme Proxy signature

length

Proxy signing cost Proxy signature

verification cost

Secure against

Proxy key

exposure

Xu et al.�s

scheme [15]

13 | |G 2 1 1Mu Ad H  5P Exp No

Shim�s

scheme [13]

13 | |G 3 1 1Mu Ad H  3P No

Wu et al.�s

scheme [14]

13 | |G 4 3 2Mu Ad H  5P Yes

Our scheme
13 | |G 2 3 1Mu Ad H  4P Yes

