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Abstract: Proxy signature schemes allow a proxy signer to generate proxy signatures on 

behalf of an original signer. Mambo et al. first introduced the notion of proxy signature and a 

lot of research work can be found on this topic nowadays. Recently, many identity based 

proxy signature schemes were proposed. However, some schemes are vulnerable to proxy key 

exposure attack. In this paper, we propose a security model for identity based proxy signature 

schemes. Then an efficient scheme from pairings is presented. The presented scheme is 

provably secure in the random oracle model. In particular, the new scheme is secure against 

proxy key exposure attack. 
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1. Introduction 

Digital signature is one of the most important security services under the electronic 

commercial environment. As a variation of ordinary digital signature schemes, the notion of 

proxy signature was first introduced by Mambo, Usuda and Okamoto [10] in 1996. In a proxy 

signature scheme, an original signer is allowed to delegate his signing capability to a 

designated proxy signer. Then the proxy signer can generate proxy signatures on behalf of the 

original signer. Proxy signatures have found numerous practical applications. Examples 

include distributed systems, Grid computing, and mobile communication. 

There are three types of delegation: full delegation, partial delegation and delegation by 

warrant. In a full delegation scheme, the original signer gives his secret signing key to the 

proxy signer as the proxy signing key. Hence, for a given message, signatures generated 

between the original signer and the proxy signer are indistinguishable. In a partial delegation 
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scheme, the proxy signing key is derived from the original signer�s secret key. In addition, it 

is computationally infeasible for the proxy signer to derive the original signer�s secret key. 

However, the messages that a proxy signer can sign are not limited. In a delegation by warrant 

scheme, the original signer creates and signs a warrant that is used to certify the legitimacy of 

the proxy signer.  

Since Mambo et al. introduced the concept of proxy signature, several kinds of proxy 

signature schemes have been proposed [8,9]. Furthermore, there are various extensions of the 

proxy signature primitive, such as threshold proxy signature [6], proxy multi-signature 

signature [7], etc. Informally, the basic security properties for proxy signature schemes can be 

described as follows [9]: 

Verifiability: From a proxy signature, a verifier can be convinced of the original signer�s 

agreement on the signed message. 

Unforgeability: Only the designated proxy signer can generate a valid proxy signature 

on behalf of the original signer.  

Strong identifiability: Anyone can determine the identity of the corresponding proxy 

signer from a proxy signature. 

Undeniability: The designated proxy signer cannot deny a valid proxy signature 

generated by him. 

Prevention of misuse: A proxy signing key cannot be used for purpose other than 

generating valid proxy signatures. 

The definition of secure digital signature schemes was given by Goldwasser, Micali and 

Rivest in [4]. However, the first work [1] on proxy signature in the provable security direction 

was done by Boldyreva, Palacio and Warinschi in 2003. They formalized the notion of 

security for proxy signature schemes in order to prove the security of proxy signature 

schemes under some well-established hard problems. However, Jacob C.N. Schdult et al. [12] 

pointed out that the scheme proposed in [1] is vulnerable to proxy key exposure attack. That 

is, upon exposure of a proxy signing key, an adversary can recover the private key of the 

corresponding proxy signer. 

In the conventional Public Key Infrastructure (PKI), the binding between a user�s public 

key and the user�s identity is obtained via certificates issued by some trusted CAs. However, 
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PKI is considered to be costly to deploy and maintain. In [11], Shamir introduced the notion 

of identity based public key cryptography (ID-PKC) in which the public key would be the 

user�s unique identity. The motivation of ID-PKC is to simplify certificate management. The 

advantage of ID-based schemes is that no certificate information and public key verification is 

needed. Since then, many identity based cryptosystems are proposed [2,5]. ID-based public 

key setting can be a good alternative for certificated-based public key setting, especially when 

efficient key management and moderate security are required. 

In 2003, Zhang et al. [16] proposed an ID-based proxy signature scheme from pairings. 

However, no formal analysis was presented for the security of their scheme. In 2005, Xu et al. 

[15] proposed an ID-based proxy signature scheme from pairings, but the security model 

defined in their paper did not consider the case of an adaptively chosen identity adversary A . 

In other words, the target identity 1ID  is given to A  before A  submits queries. Later, 

Shim [13] proposed an identity based proxy signature scheme secure against an adaptively 

chosen message and chosen identity adversary. Nevertheless, we demonstrate that the 

above-mentioned identity based proxy signature schemes proposed in [13, 15] are vulnerable 

to proxy key exposure attack.  

Wu et al. [14] also proposed an identity based proxy signature scheme secure against an 

adaptively chosen message and chosen identity adversary. As the adversary defined in [14] 

can be divided into three types, it is not easy to analyze the security of their scheme. 

Moreover, the model defined in [14] did not take proxy key exposure attack into account. 

Nevertheless, their scheme is secure against proxy key exposure attack. 

The rest of this paper is organized as follows. At first, we develop a simplified security 

model for identity based proxy signature schemes. Then we propose an efficient identity 

based proxy signature scheme from pairings. In the following, we show that our scheme is 

existential unforgeable against chosen message and chosen identity attacks. In particular, the 

new scheme is secure against proxy key exposure attack. Finally, we compared the efficiency 

of our scheme with the schemes proposed in [13, 14, 15]. 

 

2. Preliminaries 



 4 

2.1 Bilinear pairing 

Let 1,G    be a cyclic additive group generated by P , whose order is a large prime 

q , 2 ,G   be a cyclic multiplicative group of the same order, and let 1 1 2:e G G G   be 

a bilinear pairing with the following properties: 

1. Bilinear: For any Q , R , T 1G , ( , ) ( , ) ( , )e Q R T e Q T e R T    and 

( , ) ( , ) ( , )e Q R T e Q R e Q T    

2. Non-degenerate: There exists R ,T 1G , such that ( , ) 1e R T   

3. Computable: There exists an efficient algorithm to compute ( , )e R T  for any 

R ,T 1G . 

 

2.2 Computational Diffie-Hellman Assumption 

Computational Diffie-Hellman (CDH) problem: Let 1G  be a cyclic additive group 

generated by P , whose order is a prime q . Given , ,P a P b P    , , qa b Z , compute 

( )ab P .  

The success probability of an algorithm A  in solving the CDH problem on 1G  is  

1, ( ) Pr[ ( , , ) : , ]CDH
P G qSucc A A P a P b P ab P a b Z        

A ( , )t  -CDH solver A  is a probabilistic polynomial-time algorithm running in time 

at most t  such that the success probability 
1, ( )CDH

P GSucc A  . We say that 1G  satisfies the 

CDH assumption if there is no polynomial time ( , )t  -CDH solver A  with advantage   

non-negligible.  

 

3. Weakness of some existing schemes 

In this section, we demonstrate that the identity based proxy signature schemes proposed 

in [13,15] are vulnerable to proxy key exposure attack. That is, upon exposure of a proxy key, 

an adversary can recover the private key of the corresponding proxy. 



 5 

3.1 Xu et al.�s scheme 

The proxy key in Xu et al.�s scheme [15] is defined as follows: 

skp = 4 ( , , , )i j jH ID ID m U d V   , where m  is a warrant, ( , )U V   is the 

signature on m  produced by the original signer iID , and jd  is the secret key of the 

proxy signer jID . Since proxy signatures are often proposed for use in a potentially hostile 

environment, we should not assume that there is a secure channel between the original signer 

and the proxy. That is, ( , )U V   can be obtained by the adversary. Upon exposure of the 

proxy key skp , the adversary can recover jd  as follows: 

jd = 1
4 ( , , , )i jH ID ID m U 

 ( )skp V  

3.2 Shim�s scheme 

We briefly review Shim�s scheme [13] at this point. 

Setup:  

(1) Generates two groups 1 2,G G , two different generators 1,P Q G  and an 

admissible pairing 1 1 2:e G G G   

(2) Picks a random number s *
qZ  and sets the master public/secret key pair 

,sP s  . Let pubP sP . 

(3) Chooses three secure hash functions 1 2 3, ,H H H , which are defined as follows: 

*
1 1:{0,1}H G , *:{0,1}i qH Z , 2,3i  . 

Extract: Given an identity ID , computes 1( )IDQ H ID  and set the secret key 

IDS = IDsQ .  

Then the original signer A  produces a signature for a warrant   as follows: 

(1) A  chooses *
A qr Z , and computes 

AU = 1Ar P G , Ah = 2 ( , )A qH U Z  , AV = 1A A Ah S r Q G   

After verifying the correctness of ( , , )A AU V , the proxy signer B  computes 
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Bh = 3 ( , )AH U  and the proxy key is P A B BV h S   , where 
BB IDS sQ  is the secret key 

of B . It is easy to see that BS  can be recovered as 1( ) ( )B B P AS h V   

 

4. Identity based proxy signature  

4.1 Syntax of identity based proxy signature schemes 

An identity based proxy signature scheme(IBPS) consists of the following 

polynomial-time algorithms: 

1. MasterKeyGen(Master Key Generation): On input a security parameter k , it 

generates a master public/secret key pair ( , )mpk msk  and a list of system parameters params. 

The algorithm is assumed to be run by a Key Generation Center (KGC). 

2. UserKeyGen(User Key Generation): On input msk , a user identity *{0,1}ID , it 

generates a user secret key IDSk UserKeyGen ( , )ID msk . The algorithm is run by KGC 

for each user and the generated secret key is assumed to be distributed securely to the 

corresponding user.  

3. Sign(Signature Generation): On input a user identity ID , a user secret key IDSk  and a 

message m , it generates a standard signature  Sign ( , , )IDID Sk m . 

4. Verf(Signature Verification): On input a user identity ID , mpk  , the signed message 

m  and the standard signature  , Verf ( , , , )mpk ID m   returns 1 if the standard signature 

is accepted, and 0 otherwise. 

5. ProxyKeyGen(Proxy Key Generation): There is a pair of interactive algorithms ( , )D V  

( D  and V  represent the original signer iID  and the proxy signer jID  respectively 

executing the proxy-designation protocol). The input to D , V  includes the identities iID , 

jID . D  also takes as input the secret key 
iIDSk  of the original signer, a warrant wm  

consisting of the identities iID , jID , the delegation duration, the type of message delegated, 

etc. V  also takes as input the secret key 
jIDSk  of the proxy signer. As a result of the 
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interaction, the expected local output of V  is a proxy signing key [ ]i jpsk   that can be 

used by jID  to produce valid proxy signatures on behalf of iID . 

6. Proxy_Sign(Proxy Signature Generation): On input a proxy signer�s identity jID , a 

proxy signing key [ ]i jpsk   , the secret key 
jIDSk  of the proxy signer, a warrant wm  and a 

message m , it generates a proxy signature as follows: 

               p Proxy_Sign [ ]( , , , , )
jj i j ID wID psk Sk m m . 

7. Proxy_Verf(Proxy Signature Verification): On input mpk , the warrant wm , the signed 

message m  and the proxy signature p ,  Proxy_Verf ( , , , )wmpk m m p  returns 1 if 

the proxy signature is accepted, and 0 otherwise. 

8. IDP(Proxy Identification): On input a warrant wm , and a proxy signature p ,  the 

proxy identification algorithm returns the identity of the designated proxy signer after 

verifying the correctness of the proxy signature. 

Note that  MasterKeyGen , UserKeyGen, Sign, Verf   can be regarded as a 

standard identity based signature scheme.  

Correctness: We require that for all wm , *{0,1}m , *{0,1}ID , k , ( , )mpk msk = 

MasterKeyGen (1 )k , IDSk =UserKeyGen ( , )ID msk , if  

(1) [ ]i jpsk   is generated by [ ( , , , ) ( , , )]
i ji j ID w i j IDD ID ID Sk m V ID ID Sk , and 

(2)  p =Proxy_Sign [ ]( , , , , )
jj i j ID wID psk Sk m m , and 

(3)  the message m  does not violate the warrant wm . 

then Proxy_Verf ( , , , )wmpk m m p  returns 1, IDP ( , )wm p = jID . 

 

4.2 Security model 

In this section, we define the security model for identity based proxy signature schemes 

as follows.  

Let IBPS be an identity based proxy signature scheme, and kN be a security 
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parameter. Define a game ( )A
IBPSExp k  in which an adversary A  interacts with a game 

challenger S . We use   to denote an empty set. 

Phase 1: S  runs MasterKeyGen (1 )k  to get ( , )mpk msk  and a list of system parameters 

params. Then Corr  is initialized with   which is used to keep track of the corrupted 

users� identities . S  gives mpk , params to A  while keeping msk  secret.  

Phase 2: A  issues the following queries: 

1. CreateUser: On input an identity ID , if ID  has already been created, S  returns a 

message to indicate the fact. Otherwise, the challenger executes IDSk  UserKeyGen 

( , )ID msk  and an empty array IDPkey  is created which is used to store the proxy keys to 

be generated by ID . At this point, ID  is said to be created.  

2. RevealSecretKey: On input an identity ID , the challenger returns the corresponding 

user�s secret key IDsk  if ID  has been created. Then { }Corr Corr ID  . Otherwise a 

symbol   is returned. 

3. Sign_Msg: On input an identity ID  and a message m  adaptively chosen by A , the 

challenger first queries RevealSecretKey ( )ID  to get IDSk  and returns a standard signature 

 Sign ( , , )IDID Sk m . Note that if IDSk = , a symbol   is returned.  

4. DesignateProxy: A  adaptively chooses identities iID  (the original signer), jID (the 

proxy signer) and a warrant wm . A  requests 1S  to run the proxy-designation protocol on 

input ( iID , jID , )wm . Then A  sees the transcript of the interaction. After a successful run, 

the private output [ ]i jpsk   is stored in [ ][ ]iPkey j t , where t  denotes the last unoccupied 

position of [ ]iPkey j . Note that A  is allowed to see the computational and memory history 

of the corrupted identities in Corr . 

5. Proxy_Sign_Msg: A  adaptively chooses identities iID  (the original signer), jID (the 

proxy signer), a warrant wm , a message m , t  and requests 1S  to produce a proxy 
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signature. If the proxy signing key [ ][ ]iPkey j t  and 
jIDSk  are defined, 1S  returns 

p Proxy_Sign ( , [ ][ ], , , )
jj i ID wID Pkey j t Sk m m . Otherwise a symbol   is returned. 

6. Reveal_Proxy_Key: A  adaptively chooses identities iID  (the original signer), 

jID (the proxy signer), t . If the proxy signing key [ ][ ]iPkey j t  is defined, 1S  returns 

[ ][ ]iPkey j t . Otherwise a symbol   is returned. 

Phase 3: A  wins if one of the following events happens: 

(1) A  outputs * * *( , , )ID m   , such that Verf * * *( , , , ) 1mpk ID m   . We require that A  

never made a Sign_Msg query on * *( , )ID m , nor *ID Corr  ( forgery of a standard 

signature ). 

(2) A  outputs * * *( , , , , )i j wID ID m m p  after making a DesignateProxy request on 

*( , , )i j wID ID m , such that Proxy_Verf * * *( , , , )wmpk m m p =1, IDP * *( , )wm p = jID . 

We require that A  never made a Proxy_Sign_Msg  query on * *( , , , , )i j wID ID t m m , 

for some t , nor jID Corr . However, A  is allowed make a RevealSecretKey 

query on iID  ( forgery of a proxy signature by jID  on behalf of iID  ; jID  has 

been designated by iID ). This case simulates attacks when the adversary is able to 

compromise the secret key of the original signer.  

(3) A  outputs * * *( , , , , )i j wID ID m m p  without making a DesignateProxy request on 

*( , , )i j wID ID m , such that Proxy_Verf * * *( , , , )wmpk m m p =1, IDP * *( , )wm p = jID . 

We require that | { , } | 1i jID ID Corr   ( forgery of a proxy signature by jID  on 

behalf of iID  ; jID  is not designated by iID ). This case simulates attacks when the 

adversary tries to produce a proxy signature without running the proxy-designation 

protocol. 

Finally, 1S  returns 1 to indicate the adversary�s success. We define the success 
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probability of the adversary as ( )IBPSSucc A = Pr[ ( ) 1]A
IBPSExp k  .  

An identity based proxy signature scheme is existential unforgeable against chosen 

message and chosen identity attacks if for any probabilistic polynomial time (PPT) adversary 

A , the success probability ( )IBPSSucc A  is negligible.  

The adversary defined in [14] can be divided into three types: 

Type  : This type of adversary only has the identities of the original signer and the 

proxy signer. 

Type  : This type of adversary has the identities of the original signer and the proxy 

signer, and also can have the secret key of the proxy signer. 

Type  : This type of adversary has the identities of the original signer and the proxy 

signer, and also can have the secret key of the original signer. 

It is obvious that the adversary defined in our model can simulate all the attacks captured 

by the model defined in [14]. For example, Type   attackers who know only some target 

identities can be modeled by our attacker who does not issue any RevealSecretKey query. In 

addition, the model defined in [14] did not take proxy key exposure attack into account. 

Finally, our simplified model may lead to simpler proofs of security. 

 

5. Our scheme 

In this section, we propose an efficient identity based proxy signature scheme from 

bilinear pairing. The proposed scheme consists of the following algorithms: 

MasterKeyGen: Assume k  is the security parameter of our system. Let 1,G    be 

a cyclic additive group generated by P , whose order is a large prime q , 2 ,G   be a 

cyclic multiplicative group of the same order, and let 1 1 2:e G G G   be a bilinear map. 

Then KGC performs the following operations: 

(1) Picks a random number s *
qZ  and sets the master public/secret key pair 

,mpk msk = ,s P s   .   

(2) Chooses three secure one-way functions 1 2 3, ,H H H , which are defined as follows: 
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*
1 1:{0,1}H G , *

2 1 1:{0,1}H G G  , *
3 1 1:{0,1}H G G  . 

(3) Sets the system parameters params as 1 2 1 2 3( , ), ( , ), , , , , , ,G G e q P mpk H H H   . 

UserKeyGen: On input an identity iID , KGC computes 1( )i iQ H ID , 

iSk = imsk Q . Then KGC distributes iSk  to the corresponding user identified by iID  as 

his secret key over a secure channel. The user can verify the correctness by checking 

( , ) ( , )i ie Sk P e Q mpk . 

Sign: In order to sign a message m , the user identified by iID  should perform the 

following steps: 

(1) Picks a random number ik *
qZ  and computes iK = ik P . 

(2) Computes iV = 2 ( , , )i iH ID m K , iU = i i ik V Sk  .  

(3) The signature is  = ,i iU K  . 

Verf: Given the master public key mpk , an identity iID , the signed message m , the 

correctness of the standard signature   can be verified as follows: 

(1) Computes iV = 2 ( , , )i iH ID m K .  

(2) Returns 1 if and only if ( , )ie U P = ( , )i ie V K  ( , )ie Q mpk , where 1( )i iQ H ID . 

It is trivial to check the correctness of the verification equation.  

ProxyKeyGen: In order to delegate the signing capability to a proxy signer jID , the 

original signer iID  should generate a warrant wm  consisting of the identities of the original 

signer and the proxy signer, the delegation duration, the type of message delegated, etc. The 

proxy-designation protocol can be described as follows: 

(1) The original signer iID  outputs / =Sign ( , , )i i wID Sk m , where / = / /,i iU K  . 

Then / , wm   is sent to the proxy signer jID .  

(2) If Verf /( , , , )i wmpk ID m  =1, jID  proceeds to the next step. Otherwise jID  

requests iID  to provide a valid signature for the warrant wm . 
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(3) The proxy signing key of jID  is [ ]i jpsk  = / /,i iU K  .  

Proxy_Sign: Given the proxy signing key [ ]i jpsk  = / /,i iU K  , in order to generate a 

proxy signature for a message m  on behalf of iID , jID  should perform the following 

steps: 

(1) Picks a random number jk *
qZ  and computes jK = jk P . 

(2) Computes jV = /
3( , , , , ( ))i j w j iH ID ID m m K K .  

(3) Computes jU = /
i j j jU Sk k V    

The proxy signature is p = /, ,j j iU K K  . 

Proxy_Verf: After receiving the signed message m ,  the warrant wm  and the proxy 

signature p = /, ,j j iU K K  , a verifier should perform the following steps: 

(1) If the warrant wm  is invalid, (for instance, the time period for delegation expired), 

p  is rejected. Otherwise the verifier extracts iID , jID  from wm  and proceeds 

to the next step. 

(2) Computes jV = /
3( , , , , ( ))i j w j iH ID ID m m K K , /

iV = /
2 ( , , )i w iH ID m K . 

(3) Returns 1 if and only if  

( , )je U P = / /( , )i ie V K  ( , )j je V K  ( , )i je Q Q mpk  

The correctness of the verification equation can be verified as follows: 

( , )je U P = /( , )ie U P  ( , )je Sk P  ( , )j je k V P  

       = / /( , )i ie V K  ( , )j je V K  ( , )ie Q mpk  ( , )je Q mpk  

       = / /( , )i ie V K  ( , )j je V K  ( , )i je Q Q mpk  

IDP: On input a warrant wm , and a proxy signature p ,  the proxy identification 

algorithm returns the identity of the designated proxy signer contained in wm  after verifying 

the correctness of the proxy signature p . 
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6.Security analysis 

6.1 Security Proof 

Suppose a polynomial-time adversary A  can break our IBPS scheme with 

non-negligible success probability   in time at most t . We show how to construct a PPT 

algorithm B  that uses A  to solve the CDH problem on 1G  with non-negligible 

probability by using techniques from [3].  

Let 1 1( , )X a P Y b P G G      , , qa b Z , be an instance of the CDH problem 

taken as input by B . Then B  works by interacting with the adversary A  ( B  simulates 

the game challenger). 

The system parameters params are 1 2 1 2 3( , ), ( , ), , , , , , ,G G e q P mpk H H H   , where 

mpk  is initialized with X  and 1 2 3, ,H H H  are random oracles controlled by B .  

During the simulation, B  can answer A �s queries as follows: 

1H  Queries: B  maintains a list 1
listH ={ , , , }IDID Q l coin  , where {0,1}coin . 

If the queried identity ID  appears on the 1
listH  in a tuple { , , , }IDID Q l coin  , B  

responds to A  with 1( )H ID = IDQ . Otherwise B  picks a random l *
qZ  , sets 

( IDQ = l P , 0)coin   with probability  , or ( IDQ = l Y  , 1)coin   with probability 

1  . Then B  adds , , ,IDID Q l coin   to the 1
listH  and responds to A  with 

1( )H ID = IDQ . 

CreateUser: B  maintains a list L ={ , }IDID Sk  . Suppose the query is made on an 

identity ID . B  performs as follows: 

(1) If the list L  contains a tuple , IDID Sk  , B  returns a message to indicate the 

fact. 

(2) Otherwise, B  queries 1( )H ID . Then B  looks up the 1
listH  to extract a tuple 

, , ,IDID Q l coin  . If coin =1, B  adds ,ID   to the list L . If coin =0, B  

computes IDSk = l mpk , adds , IDID Sk   to the list L , and creates an empty 
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array IDPkey  which is used to store the proxy keys to be generated by ID . 

RevealSecretKey: Suppose the query is made on an identity ID . At first, B  looks up 

the list L . If L  contains a tuple , IDID Sk   and IDSk  , B  returns IDSk . 

Otherwise, B  returns   and aborts. 

2H  Queries: B  maintains a list 2
listH . Suppose the query is made on , ,ID m K  . 

If a tuple (2), , , IDID m K h   is already in the 2
listH , B  returns (2)

IDh P . Otherwise B  

picks a random (2)
IDh *

qZ  , and responds to A  with 2 ( , , )H ID m K = (2)
IDh P . Then  

(2), , , IDID m K h   is added to the 2
listH . 

Sign_Msg: On input ,ID m  . B  should perform as follows: 

(1) Executes IDSk RevealSecretKey ( )ID . If IDSk  , B  returns   and aborts. 

(2) Otherwise B  picks a random number k *
qZ  and computes K = k P . 

(3) Executes V  2 ( , , )H ID m K  and computes U = IDk V Sk  . 

(4) B  returns  = ,U K  . 

DesignateProxy: Suppose A  makes a query on iID ( the original signer), jID (the 

proxy signer), and wm . If 
iIDSk  , B  returns   and aborts. Otherwise, B  queries the 

oracle Sign_Msg with ( , )i wID m . If a valid signature / = / /,i iU K   is generated, B  

forwards /  to A . Finally, B  sets [ ][ ]iPkey j t  / , where t  denotes the last 

unoccupied position of [ ]iPkey j . Obviously, as the proxy signing key is just the signature 

on the warrant, it is useless to provide the adversary with a Reveal_Proxy_Key oracle in this 

case.  

3H  Queries: B  maintains a list 3
listH . Suppose the query is made on 

,, , , ,i j w i jID ID m m K  . If a tuple (3)
, ,, , , , ,i j w i j i jID ID m m K h   is already in the 3

listH , 

B  returns (3)
,i jh P . Otherwise, B  picks a random (3)

,i jh *
qZ  , and responds to A  with 
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3 ,( , , , , )i j w i jH ID ID m m K = (3)
,i jh P . Then (3)

, ,, , , , ,i j w i j i jID ID m m K h   is added to the 

3
listH . 

Proxy_Sign_Msg: Without loss of generality, we assume that A  always makes a query 

on , , , ,i j wID ID t m m   after making a successful DesignateProxy query on 

, ,i j wID ID m  . Then B  performs as follows: 

(1) If [ ][ ]iPkey j t = / ( / = / /,i iU K  ) is not defined, B  returns  . Otherwise B  

proceeds to the next step. 

(2) B  executes 
jIDSk  RevealSecretKey ( )jID .  If 

jIDSk  , B  returns   

and aborts.  

(3) Picks a random number jk *
qZ  and computes jK = jk P . 

(4) Executes jV  /
3( , , , , ( ))i j w j iH ID ID m m K K .  

(5) Computes jU = /

ji ID j jU Sk k V    

(6) B  returns p = /, ,j j iU K K  . 

Eventually, A  halts and outputs a successful forgery (In order to be successful, the 

restrictions on A  defined in our model must be satisfied). We should consider the following 

cases: 

(1) Suppose A  outputs a forgery of the form * = * *,U K   on a message *m   for 

a created identity *ID . Then B  looks up the 1
listH  to extract a tuple 

*

* , , ,
ID

ID Q l coin  . 

If coin =0, B  reports failure and terminates. If coin =1, B  looks up the 2
listH  to 

find out a tuple *

* * * (2), , ,
ID

ID m K h  . Since the forgery is successful, the probability of the 

event that A  does not make a 2H  query  on * * *, ,ID m K   is at most 1 q , which is 

negligible. Hence we know that * * *
2 ( , , )H ID m K = *

(2)

ID
h P  with probability at least 

1 1 q . So we have 
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*( , )e U P = * *( , )e V K  *( , )
ID

e Q mpk , where *V = *

(2)

ID
h P  

       = *

(2) *( , )
ID

e h P K  ( , )e l Y X  

Hence ( , )le Y X = *

* 2 *( , )
ID

e U h K P  .  

Then B  outputs *

1 * 2 *( )
ID

l U h K     as the solution to the given instance of the CDH 

problem on 1G . 

(2) Suppose A  outputs a forgery /, , , , ,i j w j j iID ID m U K K   on a message *m  

after making a DesignateProxy query on ( ,i jID ID , )wm . Then B  looks up the 1
listH  to 

extract , , ,
ii ID i iID Q l coin  , , , ,

jj ID j jID Q l coin  .  

If icoin =0 jcoin =0, B  reports failure and terminates. Otherwise, B  looks up the 

2
listH , 3

listH  to extract / (2), , ,
ii w i IDID m K h   , / (3)

,, , , , ,i j w i j i jID ID m m K K h    

respectively. Since the forgery is successful, the probability of the event that A  does not 

query 2H  or 3H  is at most 2 q . Hence we know that these tuples are already in the 

2
listH  and 3

listH  with probability at least 1 2 q . So we have 

( , )je U P = / /( , )i ie V K  ( , )j je V K  ( , )
iIDe Q mpk  ( , )

jIDe Q mpk  

where jV  /
3( , , , , ( ))i j w j iH ID ID m m K K , /

iV  /
2 ( , , )i w iH ID m K  

Then consider the following sub-cases: 

(2.1) icoin =1 jcoin =0. 

    ( , )je U P = (2) /( , )
iID ie h P K  (3)

,( , )i j je h P K  ( , )ie l Y X  ( , )je l P X  

Hence ( , ) ile Y X = (2) / (3)
,( , )

ij ID i i j j je U h K h K l X P      .  

Then B  outputs 1 (2) / (3)
,( ) ( )

ii j ID i i j j jl U h K h K l X         as the solution to the given 

instance of the CDH problem on 1G . 

(2.2) icoin =0 jcoin =1. 

    ( , )je U P = (2) /( , )
iID ie h P K  (3)

,( , )i j je h P K  ( , )ie l P X  ( , )je l Y X  
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Hence ( , ) jl
e Y X = (2) / (3)

,( , )
ij ID i i j j ie U h K h K l X P      .  

Then B  outputs 1 (2) / (3)
,( ) ( )

ij j ID i i j j il U h K h K l X         as the solution to the given 

instance of the CDH problem on 1G . 

(2.3) icoin =1 jcoin =1. 

    ( , )je U P = (2) /( , )
iID ie h P K  (3)

,( , )i j je h P K  ( , )ie l Y X  ( , )je l Y X  

Hence ( , ) i jl l
e Y X


= (2) / (3)

,( , )
ij ID i i j je U h K h K P    .  

Then B  outputs 1 (2) / (3)
,( ) ( )

ii j j ID i i j jl l U h K h K       as the solution to the given 

instance of the CDH problem on 1G . 

(3) Suppose A  outputs a forgery /, , , , ,i j w j j iID ID m U K K   on a message *m  

without making a DesignateProxy request on ( , , )i j wID ID m . The analysis of this case is 

similar to that of case (2).  

 

Claim 1: If the algorithm B  does not abort during the simulation, then the view of the 

adversary A  in the simulated game is indistinguishable from that in the real game. 

Proof: At first, the responses to 1H , 2H , 3H  queries are as in the real game since each 

response is uniformly distributed over 1G . If the algorithm B  does not abort, the responses 

to RevealSecretKey, Sign_Msg, DesignateProxy, Proxy_Sign_Msg queries are valid. 

Hence the view of the adversary A  in the simulated game in this case is indistinguishable 

from that in the real game. 

 

Lemma 1: Assume 1G  satisfies the CDH assumption. Suppose there is a polynomial-time 

adversary A  can existentially forge a standard signature of our IBPS scheme with success 

probability   in time at most t . Suppose A  makes at most cq  CreateUser queries , 

iHq  queries to random oracles iH  for i =1,2, sigq  Sign_Msg queries  and revq  

RevealSecretKey queries . Then there is an algorithm B  that solves the CDH problem on 
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1G  with probability 

/  11
(1 )

1
sig cq q

sig c sig cq q q q

  
  

 

Proof: The probability that B  does not abort in this case (i.e., B  can answer all standard 

signature queries and RevealSecretKey queries ) is at least sig revq q 
. The reason is that if 

B  is able to obtain the secret key of a user, he can answer signature queries with regard to 

that user perfectly. When B  answers CreateUser queries, it is easy to show that with 

probability   he can generate the secret key of a user correctly. Hence, B  can answer one 

signature query or RevealSecretKey query correctly with probability  . 

Then B  outputs the solution to the instance of the CDH problem with probability 

(1 )(1 1 )q  . Hence B  is able to solve the CDH problem with success probability at 

least  (1 )(1 1 )q  sig revq q    (1 ) sig revq q 
.  

Let  = (1 ) sig revq q 
, a = sig revq q . By an analysis similar to Coron�s techniques 

[3], the success probability   is maximized at opt =
1

a

a 
. Hence the success probability 

/  of B  11
(1 )

1
a

a a

 


, and for large a , / 
exp(1) a




. 

The running time of B  can be calculated as  

1 2
( ) (1)c H H sig m rev ct q q q q t q q O      

where mt  is the time to compute a scalar multiplication in 1G .  

 

Lemma 2: Assume 1G  satisfies the CDH assumption. Suppose there is a polynomial-time 

adversary A  can existentially forge a proxy signature of our IBPS scheme with success 

probability   in time at most t (Here we only consider case (2) of our security model for 

the sake of simplicity). Suppose A  makes at most cq  CreateUser queries , 
iHq  queries 

to random oracles iH  for i =1,2,3, sigq  Sign_Msg queries, psigq  Proxy_Sign_Msg 

queries, desgq  DesignateProxy queries and revq  RevealSecretKey queries . Then there is 
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an algorithm B  that the CDH problem on 1G  with probability 

/  11
(1 )

1
b

b b

 


, where b = de g( )

2
sig s psig revq q q q  

 

Proof: The probability that B  does not abort in this case (i.e., B  can answer all standard 

signature queries, proxy-designation queries, proxy signature queries and RevealSecretKey 

queries is at least de gsig s psig revq q q q   
. The reason is that if B  obtains the secret key of the 

proxy signer, B  can respond to a proxy signature query successfully as we assume A  

always makes a proxy signature query after making a successful proxy-designation query. 

Hence, B  can answer one proxy signature query successfully with probability  . 

Then B  outputs the solution to the CDH problem with probability 

2(1 )(1 2 )q  (except for the sub-case icoin =0 jcoin =0). Hence B  is able to solve 

the CDH problem with the following probability: 

 2(1 )(1 2 )q  de gsig s psig revq q q q      2(1 ) de gsig s psig revq q q q   
.  

Let  =  2(1 ) de gsig s psig revq q q q   
, b = de g( )

2
sig s psig revq q q q  

. The success 

probability   is maximized at opt =
1

b

b
. Hence the success probability /  of B  

 11
(1 )

1
b

b b

 


, and for large b , / 
exp(1) b




 

The running time of B  can be calculated as  

1 2 3
( )c H H H sig psig desg mt q q q q q q q t        (1)rev cq q O  

where mt  is the time to compute a scalar multiplication in 1G . 

Case (3) of our security model can be analyzed similarly. 

6.2 Discussion 

Verifiability: It can be derived from the correctness of the proxy signature verification 

equation discussed in section 4. 

Unforgeability: It is established from the conclusion of Lemma 2.   

Strong identifiability: The identity of the proxy signer can be extracted from the 
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warrant after verifying the correctness of the proxy signature.  

Undeniability: It can be derived from unforgeability and strong identifiability. 

Prevention of misuse: The proxy signer can only produce proxy signatures without 

violating the warrant wm  signed by the original signer. Moreover, the proxy signing key is 

just the standard signature on the warrant wm . According to Lemma 1, the standard signature 

scheme defined in our scheme is unforgeable. Hence the proxy signer cannot sign messages 

that have not been authorized by the original signer. 

Proxy key exposure: As the proxy signing key is just the signature on the warrant, it is 

harmless to provide the proxy signing key with the adversary in this case. Hence our scheme 

is secure against proxy key exposure attack.  

 

7. Performance Analysis 

In this section, we evaluate the performance of the proposed scheme and other related 

schemes proposed in [13, 14, 15] in terms of the signature length and computational cost. Let 

1| |G  be the bit length of an element in 1G . Mu  and Ad  denote scalar multiplication and 

addition in 1G  respectively. H  denotes a hash operation . Exp  and P  denote an 

exponentiation operation in 2G  and a pairing operation respectively, which are the most 

time-consuming operation. The result is stated in Table 1. It is easy to check the correctness of 

the numbers listed in Table 1. Obviously, the schemes proposed in [13, 15] is vulnerable to 

proxy key exposure attack. In contrast to Wu et al.�s scheme [14], our scheme is more 

efficient in terms of the computational cost. Moreover, the model defined in [14] did not take 

proxy key exposure attack into account. Finally, our simplified model may lead to simpler 

proofs of security.  

 

8.Conclusion 

In this paper, we focus on realizing an identity based proxy signature scheme in order to 

combine the advantages of these concepts. At first, a simplified security model for identity 

based proxy signature scheme is established. Then an efficient identity based proxy signature 
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scheme from bilinear pairing is proposed. In the following, we provide a reductionist proof to 

show that security of our scheme relies on the CDH problem. Finally, the performance 

analysis shows that in contrast to Wu et al.�s scheme [16], our scheme is more efficient in 

terms of the computational cost. In particular, the new scheme is secure against proxy key 

exposure attack. 
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Table 1.Performance comparison with other related schemes 

Scheme Proxy signature 

length 

Proxy signing cost Proxy signature 

verification cost 

Secure against 

Proxy key 

exposure 

Xu et al.�s 

scheme [15] 

13 | |G  2 1 1Mu Ad H   5P Exp  No 

Shim�s 

scheme [13] 

13 | |G  3 1 1Mu Ad H   3P  No 

Wu et al.�s 

scheme [14] 

13 | |G  4 3 2Mu Ad H   5P  Yes 

Our scheme 
13 | |G  2 3 1Mu Ad H   4P  Yes 

 


