
Additively Homomorphic Encryption
with d-Operand Multiplications

Carlos Aguilar Melchor1, Philippe Gaborit1, and Javier Herranz2

1 XLIM-DMI, Université de Limoges,
123, av. Albert Thomas

87060 Limoges Cedex, France
{carlos.aguilar,philippe.gaborit}@xlim.fr

2 Dept. Matemàtica Aplicada IV,
Universitat Politècnica de Catalunya,

C/ Jordi Girona, 1-3, 08034 Barcelona, Spain
jherranz@ma4.upc.edu

Abstract. The search for encryption schemes that allow to evaluate
functions (or circuits) over encrypted data has attracted a lot of attention
since the seminal work on this subject by Rivest, Adleman and Dertouzos
in 1978.
In this work we define a theoretical object, chained encryption schemes,
which allow an efficient evaluation of polynomials of degree d over en-
crypted data. Chained encryption schemes are generically constructed by
concatenating cryptosystems with the appropriate homomorphic prop-
erties; such schemes are common in lattice-based cryptography. As a
particular instantiation we propose a chained encryption scheme whose
IND-CPA security is based on a worst-case/average-case reduction from
uSVP.

Keywords: homomorphic encryption, secure function evaluation, lat-
tices.

1 Introduction

Secure function evaluation (SFE) is an essential ingredient to design protocols
where different users interact in order to obtain some information from the oth-
ers, at the same time that each user keeps private some of his information. In
(a simplified version of) SFE, a user Alice has a function f and a user Bob has
some data x. Depending on the setting, one of the two users, or both of them,
must obtain f(x) without learning each other’s input.

One solution for this problem uses the concept of garbled circuit, introduced
by Yao in [36]. Alice receives from Bob a garbled version of x, and sends back
a garbled version of f as well as some cryptographic material allowing Bob to
evaluate this function on x. After the end of the protocol, Bob learns f(x) and
nothing else about f , and Alice learns nothing about x. This solution is based
on the usage of encrypted truth tables for the garbled function and oblivious
transfer for the garbled data. The main drawback is that the size of the evaluated

ciphertext is at least linear in |f |. Alternative solutions were therefore proposed,
following a different paradigm (denoted as computing over encrypted data), to
get size sublinear in |f |. Here Bob sends to Alice some information related to x
(e.g. an encryption of x), Alice combines f and the data received from Bob, and
sends a reply to Bob. From this reply, Bob is able to learn f(x) and Alice learns
nothing about x (not even f(x)). If moreover, Bob does not learn anything about
f (besides f(x)) we say the protocol provides function privacy.

The garbled circuit approach provides generic protocols that work for virtu-
ally any function f , which may not be the case in the computing over encrypted
data setting. On the other hand, the computing over encrypted data setting (on
which this paper is focused) can lead to protocols with a much lower communica-
tion cost. Indeed, in the garbled circuit approach the communication includes an
encrypted description of f and an encrypted description of x. In the computing
over encrypted data setting only an encrypted description of x is sent and the
reply sent to Bob by Alice can be very compact, perhaps independent of the size
of f . More precisely, we will say that a secure evaluation is efficient for a family
of functions F if for f ∈ F the size of the information exchanged by Alice and
Bob is at most sublinear in the function size (and thus less than the size of the
information exchanged in the garbled circuit approach).

A family of functions that are specially interesting is the one of multivari-
ate polynomials with m monomials and degree d; that is P (X1, . . . , Xv) =∑m
`=1 P`(X1, . . . , Xv), where P`(X1, . . . , Xv) are monomials of degree at most d.

Many applications such as private information retrieval [21], or private searching
on streaming data [25] are based on the secure evaluation of low-degree multi-
variate polynomials with a large number of monomials (varying in real world
scenarios from thousands to billions and above). The only approach to obtain
efficient (and secure) evaluations of multivariate polynomials has been until now
the usage of homomorphic encryption schemes.

In order to provide such evaluations for degree d polynomials, these encryp-
tion schemes must allow to compute products of d plaintexts over encrypted data
(possibly with a large expansion factor), and to sum a very large number m of
these encrypted products with a small expansion factor (sublinear or logarithmic
in m). In this paper we propose a generic construction to obtain such properties
and we instantiate this construction with a well-known lattice-based cryptosys-
tem. The security of this particular instance is based on a worst-case/average-
case reduction from uSVP (see [24] for more details on hard problems related
to lattices), which has been proved as hard as other standard problems like
GapSVP or the Bounded Distance Decoding (BDD) problem in [22]. Other in-
stantiations can be found in [15] and [2], using respectively a cryptosystem with
security based in the worst-case hardness of LWE, and a cryptosytem with se-
curity based in the average-case hardness of particular instances of BDD [1].

Related Work. Since the introduction of the concept of homomorphic en-
cryption, by Rivest, Adleman and Dertouzos in [30], many schemes with homo-
morphic properties have been proposed. Most of them allow only to compute

over encrypted data one of the operations, either the product (RSA [31], El
Gamal [11]) or the sum of the plaintexts (Goldwasser-Micali [17] modulo 2 and
Paillier [26] modulo a hard-to-factor composite integer).

These schemes lead to an efficient evaluation of multivariate monomials of
any degree or multivariate polynomials of degree 1, but obtaining a scheme that
provides efficient evaluation of multivariate polynomials of arbitrary degree is
a much more complex problem. In order to evaluate a larger span of functions,
some protocols have tried to use the homomorphic encryption schemes that allow
to compute just one operation (sum or product) in a less direct way than just
using the provided plaintext-ciphertext map. In particular, Sander, Young and
Yung proposed a solution in [32], which allows to evaluate any constant fan-in
boolean circuit in NC1. The major drawback of their approach is that commu-
nication complexity is exponential in the depth of the circuit, which restricts
their protocol to circuits of logarithmic depth. Ishai and Paskin show in [19]
how to evaluate any branching program P through ciphertexts whose size de-
pends polynomially on the length of P . Such branching programs include, by a
result of Barrington [4], the circuits in NC1. Unfortunately, in order to evaluate
a multivariate polynomial with m monomials, we need an NC1 circuit of depth
in O(logm) or a branching program of length in O(m) (see [23]). Thus, neither
of these protocols are able to provide efficient evaluation of polynomials.

Finding an encryption scheme allowing an efficient direct computation over
encrypted data of degree d multivariate polynomials for d > 1 has been an open
issue for a long term. The first attempts that tried to provide a fully homomor-
phic encryption scheme (i.e. a scheme allowing to compute over encrypted data
both sums and multiplications arbitrarily), failed to resist to the research commu-
nity attacks: Fellows and Koblitz proposed Polly Cracker [12] which was broken
in [34], Grigoriev and Ponomarenko proposed another public-key scheme [18]
which was broken in [7]. For the case of symmetric cryptography, Domingo-
Ferrer proposed two schemes [9, 10] which were broken in [6, 35]. Fortunately, as
we already noted, in order to have efficient evaluations of degree d multivari-
ate polynomials we just need the encryption scheme to compute products of d
plaintexts over encrypted data (possibly with a large expansion factor), and to
sum a very large number m of these encrypted products with a small expan-
sion factor (sublinear or logarithmic in m). We will say that such a scheme is
d-multiplicative fully homomorphic. If for any d a d-multiplicative fully homo-
morphic instance of the scheme can be produced (possibly with an exponential
cost in d), we will say that the scheme is constant-bounded fully homomorphic.
If moreover the computational costs of the different functions of the encryption
scheme are at most polynomial in d, we will say it is leveled fully homomorphic.

Finding a non-trivial (i.e. for d > 1) d-multiplicative fully homomorphic
encryption scheme has also been a long standing open problem. The first step
forward was given in 2005, by Boneh, Goh and Nissim, who proposed [5] the first
efficient 2-multiplicative fully homomorphic encryption scheme. Their scheme al-
lows the SFE of polynomials of degree d = 2, as long as the output P (a1, . . . , at)
is a small number (the computational cost of decryption is polynomial on this

number). The size of the ciphertexts is independent of the number m of mono-
mials in the polynomial, and the secure function evaluation protocol provides
function privacy. In 2008, the authors proposed, in a preliminary version of this
paper [2], a way to obtain efficient constant-bounded fully homomorphic encryp-
tion schemes (without function privacy).

In STOC 2009, Gentry proposed an elegant solution [13] for the (efficient)
leveled fully homomorphic encryption problem, in two steps. First, he proposed
an efficient constant-bounded fully homomorphic encryption scheme based on
the hardness of a new problem, the Ideal Coset Problem, which is close to a
decisional Closest Vector Problem (which is in turn an instance of the Bounded
Distance Decoding problem, see [24]). Second, he proposed an efficient leveled
fully homomorphic variant of this scheme, based on the Ideal Coset Problem and
a second new problem, the SplitKey Distinguishing Problem which seems to be
related to the Sparse Subset Sum Problem (in fact the scheme can be modified
to be fully homomorphic if circular security is assumed, see [13] for details). In
lattice-based encryption schemes the randomness distribution usually evolves as
homomorphic operations are done until the ciphertext becomes impossible to
decrypt, which places a limit on the number of operations that can be done. The
groundbreaking idea of Gentry is the proposal of a scheme that can “refresh”
this randomness to its initial state (more exactly close to the initial state), by
the homomorphic evaluation of its own decryption circuit, without revealing the
plaintext. In his PhD dissertation [14], Gentry recently presented a quantum re-
duction from the security of his leveled fully homomorphic scheme to the worst
case of the Shortest Independent Vector Problem (SIVP, see [24]) on ideal lat-
tices in a given ring R. Improvements and variations of Gentry’s schemes have
appeared very recently [33, 8].

Finally, in [15], Gentry, Halevi and Vaikuntanathan have proposed a new
efficient 2-multiplicative encryption scheme (GHV for short) which improves the
proposal of Boneh, Goh, and Nissim in various ways. First, it is based on a worst-
case/average-case classical reduction from LWE (again, see [24]). Moreover, it
does not have restrictions in the size of the output. And finally, it can also be used
with our construction to obtain a constant-bounded homomorphic encryption
scheme.

Our Contribution. This paper is a major write up of [2]. With respect to
the related work as a whole, our main contribution is to provide a generic con-
struction of efficient constant-bounded fully homomorphic encryption schemes.
This construction can be instantiated using different encryption schemes as a
base. In particular, the encryption schemes of the fruitful field of lattice-based
cryptography seem specially well adapted, but other fields such as code-based
cryptography are promising too. The recent instantiation with GHV (proposed
in [15]), highlights the generic aspect of our contribution.

With respect to the proposal of Gentry [13], the main contribution comes
from the fact that the construction relies on the same security assumptions as
encryption schemes with simple-to-achieve homomorphic properties. Thus, we

benefit from the strong reductions available in simple lattice-based encryption
schemes, instead of the assumptions needed to get (somewhat) fully homomor-
phic encryption schemes. In particular, this leads to assumptions on the classical
(by opposition to quantum) worst-case hardness of standard problems, which
moreover are done over pretty general lattices, namely integer lattices, instead
of ideal lattices over a given ring.

Finally, with respect to the generic proposals of Yao [36] and Sander et al. [32],
considering the secure evaluation of polynomials, the main advantage comes
from the bandwidth efficiency for low-degree polynomials with a large number
of monomials. Indeed, our construction can be used for the secure evaluation of a
polynomial with v variables, M monomials and degree d. In Table 1, we compare
the bandwidth required by these generic proposals with different instantiations
of our construction. The number of monomials is supposed to be bounded by a
polynomial in the security parameter κr/2 for a given r, and poly(κ) generically
denotes a polynomial function of the security parameter κ.

Approach Required Bandwidth

Yao’s garbled circuits [36] M · d · poly(κ)

Sander-Young-Yung [32] (M · d)2 · poly(κ)

Õ(κ1.5+r)-uSVP instantiation Õ(M4d/r) · poly(κ)d

Õ(κ3.5+3r)-LWE instantiation [15] poly(logM)d · poly(κ)d

Optimal bound (for our construction) logM · poly(κ)d

Table 1. Comparison of the bandwidth requirements of different solutions.

Note that in the uSVP instantiation r can be chosen arbitrarily large to
reduce the bandwidth usage, but at the cost of a stronger security assumption.
In the LWE instantiation, this is pointless as bandwidth usage does not depend
on r and it is enough to set r such that κr/2 = O(M).

Last row of Table 1 would be ideally achieved by combining our construction
with an additively homomorphic encryption scheme, supporting M additions,
where the expansion factor between plaintexts and ciphertexts does not depend
on M . The scheme by Gentry [13] could be a candidate for such an encryption
scheme but, to the best of the authors knowledge, there is no such scheme with
a classical reduction (nor based on integer lattices).

For a given degree d and a growing number of monomials our construction
beats asymptotically the other approaches. For variable d, the comparison de-
pends on whether the polynomials are sparse or not, and on the number v of
variables. If the polynomials are very sparse, our solution will not be efficient.
On the other hand if the polynomials are dense (i.e. we have M ' vd), our con-
struction will beat the other approaches if and only if the number of variables is

larger than the number of bits in a ciphertext of the encryption scheme used to
instantiate our construction. Classical applications of secure polynomial evalua-
tion, such as private information retrieval [21] or private searching on streaming
data [25], result in dense polynomials with a large number of variables and should
thus benefit from this construction.

As opposed to the other solutions in this table, the construction that we
introduce in this work does not provide function privacy. An alternative con-
struction providing such a property is possible, but due to space restrictions
it is left to the long version of this paper. Some details about this alternative
construction are provided in Section 5.2.

2 Basic Idea

Let PKC = (KeyGen,Enc,Dec) be an encryption scheme such that the addition
of ciphertexts over the integers maps to an addition on the plaintext space and
such that 0 decrypts to 0. Let a, b ∈ {0, 1} and α ∈ Enc(pk, a), β ∈ Enc(pk, b),
with (α(1), . . . , α(t)) the bit-representation of α. We define the reconstruction
function R((α(1), . . . , α(t))) =

∑
i 2i−1α(i) = α.

The basic idea is to build the compound ciphertext α⊗β def= (α(1)β, . . . , α(t)β)
which encrypts redundantly a and b. Consider the following decryption algo-
rithm: first, decrypt each coordinate with Dec; then reconstruct the inner ci-
phertext with R, and decrypt it again with Dec.

What is interesting is that each coordinate of the compound ciphertext is
either 0 (which decrypts to 0) or β. If b = 0, all the coordinates will decrypt to 0
and the resulting null-vector will also decrypt to ab = 0 (as b = 0) whatever the
value of a is. On the other hand, if b = 1 all the coordinates in which we have
β will decrypt to 1, and we will thus get back (α(1), . . . , α(t)) which decrypts to
ab = a (as b = 1).

Toy Example

α = 110 β = 101 γ = α⊗ β = (101, 101, 000)
If β ∈ Enc(pk, 0)

γ
1st decryption−→ (0, 0, 0) reconstruction−→ 000

2nd decryption−→ 0

If β ∈ Enc(pk, 1)

γ
1st decryption−→ (1, 1, 0) reconstruction−→ 110

2nd decryption−→ a

Thus, these compound ciphertexts encrypt a product, but not very efficiently
(the data is redundant). However, as PKC provides an homomorphic operation,
we can add many of these compound ciphertexts, and the result will decrypt to

the sum of the products. This allows us to evaluate degree 2 polynomials over
encrypted data using a single vector of t coordinates, which will save bandwidth
if the number of added monomials is over t.

Finally, we can note that this construction can be easily generalized if α is a
vector of integers (we split each integer in bits and reconstruct them separately
on the decryption phase), which allows us to iterate the construction and evaluate
polynomials of degree d, at the price of an expansion factor for the length of the
ciphertexts which is exponential in d.

3 Chaining Encryption Schemes

3.1 (n, t)-Chainable Schemes

In this subsection we provide a definition of chainable encryption schemes. This
definition allows us to present the properties needed to chain schemes (or to
compute with them) as well as to have a short naming convention that highlights
a given scheme’s performance parameters. For integer values a < b, we denote
as [a, b] the set {a, a+ 1, . . . , b− 1, b}.

Definition 1. A scheme PKC = (KeyGen,Enc,Dec) is said (n, t)-chainable if the
key generation algorithm KeyGen takes as input a security parameter κ and a
positive integer m, and for any value of these parameters, there are two positive
integers n, t (which may be functions of κ and m), such that for any keypair
(pk, sk) ∈ KeyGen(1κ,m) the following holds:

– The plaintext space P is a subset of Z, and includes [0,m];
– The ciphertext space C is a subset of Zn and includes 0n, moreover 0n is in

the support of the output of Enc(pk, 0);
– Bounded size: for any plaintext x ∈ P and any ciphertext c ∈ Enc(pk, x), all

the entries of c are smaller than 2t (i.e., Enc(pk, x) ⊂ [0, 2t − 1]n);
– m-limited homomorphism via integer addition: for any ` ≤ m, a1, . . . , a` ∈
{0, 1} and any c1, . . . , c` with ci ∈ Enc(pk, ai), the integer vector c =

∑
i ci

is decrypted via Dec to the integer a =
∑
i ai (which is in [0,m]).

Lattice-based schemes with homomorphic properties are usually suitable
(sometimes with a small transformation) for this definition. Note, however, that
we do not set any constraint on the ciphertext size n× t or its relation to m and
thus, that not all the schemes that fit into this definition will be able to provide
efficient (sub-linear in m) evaluations of polynomials. These issues will be dealt
with in Sections 4 and 5.

3.2 Chaining Schemes

In this subsection we present an algorithm that chains two encryption schemes
PKC1,PKC2 that are respectively (n1, t1)-chainable and (n2, t2)-chainable, into
a scheme PKC = chain(PKC1,PKC2), that is (n2n1t1, t2)-chainable. This scheme

has a worse ciphertext/plaintext expansion ratio than the two chained schemes,
but is interesting because given α ∈ Enc1(pk1, a1) and β ∈ Enc2(pk2, a2) we are
able to generate an element of Enc(pk, a1a2) (see Section 4).

Chaining Algorithm: PKC = chain(PKC1,PKC2)

Input :
- An (n1, t1)-chainable scheme PKC1 = (KeyGen1,Enc1,Dec1)
- An (n2, t2)-chainable scheme PKC2 = (KeyGen2,Enc2,Dec2)

Output :
- An (n1t1n2, t2)-chainable scheme PKC = (KeyGen,Enc,Dec)

Consider the intermediate encryption scheme PKC′1:

KeyGen′1(1κ,m):
1 Return (pk1, sk1)← KeyGen1(1κ,m)
Enc′1(pk1, a) :
1 Sample α = (α(1), . . . , α(n1)) from Enc1(pk1, a)
2 Return α′ = (α′(1), . . . , α′(t1)︸ ︷︷ ︸

bits of α(1)

, . . . , α′((n1−1)t1+1), . . . , α′(n1t1)︸ ︷︷ ︸
bits of α(n1)

)

Dec′1(sk1, α
′):

1 Compute α = R1(α′) def= (
∑t1
j=1 2j−1α′(j), . . . ,

∑t1
j=1 2j−1α′((n1−1)t1+j))

2 Return a← Dec1(sk1, α)

Return a description of the final encryption scheme PKC:

KeyGen(1κ,m):
1 Set (pk1, sk1)← KeyGen1(1κ,m), (pk2, sk2)← KeyGen2(1κ,m)
2 Return ((pk1, pk2), (sk1, sk2))
Enc((pk1, pk2), a) :
1 Set α′ = (α′(1), . . . , α′(n1t1))← Enc′1(pk1, a)
2 For each j ∈ [1, n1t1] set βj ← Enc2(pk2, α

′(j))
3 Return γ = (β1, . . . , βn1t1)
Dec((sk1, sk2), γ):
1 For each j ∈ [1, n1t1], set α′(j) ← Dec2(sk2, γ

(j))
2 Return a← Dec′1(sk1, (α′(1), . . . , α′(n1t1)))

Proposition 1. PKC is (n1t1n2, t2)-chainable. Moreover, if the instance of PKC1

associated to (pk1, sk1) and the instance of PKC2 associated to (pk2, sk2) are m-
limited homomorphisms, the instance of PKC associated to ((pk1, pk2), (sk1, sk2))
is also an m-limited homomorphism.

Proof. Clearly, R1 is linear and therefore the instance of PKC′1 associated to
(pk1, sk1) is an m-limited homomorphism via integer addition, as the instance
of PKC1 associated to the same keypair. For i ∈ [1,m], let ai ∈ {0, 1} and
γi ← Enc((pk1, pk2), ai). We have

m∑
i=1

γi =

(
m∑
i=1

βi,1, . . . ,

m∑
i=1

βi,n1t1

)

with βi,j ← Enc2(pk2, α
′(j)
i) and α′i ← Enc′1(pk1, ai). Since the used instance of

PKC2 is an m-limited homomorphism via integer addition and each α
′(j)
i is in

{0, 1}, applying Dec2 to each coordinate, with secret key sk2, we obtain(
m∑
i=1

α
′(1)
i , . . . ,

m∑
i=1

α
′(n1t1)
i

)
=

m∑
i=1

α′i

As the instance of PKC′1 associated to (pk1, sk1) is also an m-limited homo-
morphism via integer addition, decrypting this vector with Dec′1 and the se-
cret key sk1 we obtain

∑m
i=1 ai, and thus the instance of PKC associated to

((pk1, pk2), (sk1, sk2)) is an m-limited homomorphism via integer addition.
Finally, as (0, . . . , 0) ∈ Enc((pk1, pk2), 0), and the ciphertexts are clearly vec-

tors of n1 ·t1 ·n2 scalars of t2 bits each, we therefore have that PKC is (n1t1n2, t2)-
chainable. ut

Let us prove now that the chained scheme PKC resulting from PKC1 and
PKC2 is IND-CPA secure if either of PKC1, PKC2 is IND-CPA secure. We recall
first the standard notion of indistinguishability under chosen-plaintext attacks
(IND-CPA security), for an encryption scheme PKC = (KeyGen,Enc,Dec). We
use the following game that an attacker A plays against a challenger:

(pk, sk)← KeyGen(1κ)
(St, a0, a1)← A(find, pk)
b← {0, 1} at random
c∗ ← Enc(pk, ab)
b′ ← A(guess, c∗, St).

The advantage of such an adversary A is defined as

Adv(A) =
∣∣∣∣Pr[b′ = b]− 1

2

∣∣∣∣ .
A public key encryption scheme enjoys IND-CPA security if Adv(A) is a

negligible function of the security parameter κ, for any attacker A running in
polynomial time (in κ).

Proposition 2 (IND-CPA Security). PKC = chain(PKC1,PKC2) is IND-
CPA secure if either of PKC1, PKC2 is IND-CPA secure.

Proof (Sketch.). Let us assume that there exists a CPA attacker A against PKC
and let us prove, then, that neither of PKC1, PKC2 can be IND-CPA. Specifically,
we can construct CPA attackers A1,A2 against the schemes PKC1 and PKC2.

For PKC1, the attacker A1 is trivial as a random keypair of PKC1 can be
transformed in a random keypair of PKC by adding a random keypair of PKC2.
Moreover, the choice of the two plaintexts by A is maintained by A1, and the
challenges from Enc1 can be transformed into challenges following the distri-
bution of Enc by splitting them into bits and encrypting them through Enc2.
Finally, as the plaintexts are the same, Attacker A1 will output the same guess
as A will, and the success probability of both attackers will be exactly the same.

For PKC2, the idea is similar, but we proceed in two steps. First, we de-
fine an attacker A′2 able to distinguish between the distributions associated to
n1t1 plaintexts. Namely, if A chooses two plaintexts a0, a1, A′2 chooses two sets
of plaintexts (α(1)

0 , . . . , α
(n1t1)
0), (α(1)

1 , . . . , α
(n1t1)
1), for α0 ← Enc1(pk1, a0) and

α1 ← Enc1(pk1, a1) which ensures that A, and therefore A′2, is able to distin-
guish the challenges with an non-negligible advantage. Then, we use a standard
hybrid argument to derive from A′2 an attacker A2 against PKC2.

ut

The output of the chaining algorithm being itself chainable we can iteratively
construct a chain of d encryption schemes PKC1, . . . ,PKCd, if for any i ∈ [1, d]
PKCi is (ni, ti)-chainable, and obtain an (nd

∏d−1
j=1 njtj , td)-chainable encryption

scheme PKC, with (pk1, . . . , pkd) and (sk1, . . . , skd) as public and secret keys.
Note that PKC1, . . . ,PKCd need not to be different schemes and that we can
chain d times an (n, t)-chainable scheme PKC to itself. In this case we get an
(n(nt)d−1, t)-chainable scheme, which has the same public/secret keypair (pk, sk)
as PKC.

4 Computing with Chained Schemes

4.1 Product and Polynomial Evaluation

Chained schemes being themselves chainable they provide a limited homomor-
phism via integer addition (by Definition 1). Thus, in order to compute sums
of plaintexts over encrypted data with them we just need to add up the cor-
responding ciphertexts. Computing products of plaintexts over encrypted data
is not as straightforward and requires to use ciphertexts of the multiplication
operands under the encryption schemes that form the chain. The following al-
gorithm shows how to proceed.

Product Computation Algorithm: γ = product(α, β)

Input :
- α ∈ Enc1(pk1, a1) for a1 ∈ {0, 1} and PKC1 (n1, t1)-chainable
- β ∈ Enc2(pk2, a2) for a2 ∈ {0, 1} and PKC2 (n2, t2)-chainable

Output :
- γ ∈ Enc((pk1, pk2), a1a2) for PKC = (KeyGen,Enc,Dec) = chain(PKC1,PKC2)

1 Split α into the bit vector α′ = (α′(1), . . . , α′(n1t1)) ∈ Enc′1(pk1, a1)
2 Multiply each one-bit scalar of this vector by β and output the result.

Proposition 3. The output of the above-described protocol product belongs to
Enc((pk1, pk2), a1a2).

Proof. We have product(α, β) = (α′(1)β, . . . , α′(n1t1)β). We want to prove that
there is γ ∈ Enc((pk1, pk2), a1a2) such that for all j ∈ [1, n1t1] we have α′(j)β =
γ(j). By the construction of a chained scheme, this is equivalent to: there is
α′1,2 ∈ Enc′1(pk1, a1a2) such that α′(j)β ∈ Enc2(pk2, α

′(j)
1,2), for all j ∈ [1, n1t1].

If a2 = 1 set α′1,2 = α′ ∈ Enc′1(pk1, a1) = Enc′1(pk1, a1a2). For each j ∈ [1, n1t1]

- if α′(j) = 1,

α′(j)β = β ∈ Enc2(pk2, a2) = Enc2(pk2, α
′(j))⇒ α′(j)β ∈ Enc2(pk2, α

′(j)
1,2)

- if α′(j) = 0,

α′(j)β = (0, . . . , 0) ∈ Enc2(pk2, 0) = Enc2(pk2, α
′(j))⇒ α′(j)β ∈ Enc2(pk2, α

′(j)
1,2)

⇒ if a2 = 1 the output of the algorithm is in Enc((pk1, pk2), a1a2).

If a2 = 0, set α′1,2 = (0, . . . , 0) ∈ Enc′1(pk1, a1a2). For each j ∈ [1, n1t1]

- if α′(j) = 1,

α′(j)β = β ∈ Enc2(pk2, a2) = Enc2(pk2, 0)⇒ α′(j)β ∈ Enc2(pk2, α
′(j)
1,2)

- if α′(j) = 0,

α′(j)β = (0, . . . , 0) ∈ Enc2(pk2, 0)⇒ α′(j)β ∈ Enc2(pk2, α
′(j)
1,2)

⇒ if a2 = 0 the output of the algorithm is also in Enc((pk1, pk2), a1a2).
ut

This algorithm can be used iteratively to obtain encrypted products of d
plaintexts. As these products are ciphertexts of a chained (and thus chainable)
encryption scheme, we can add them and the result will decrypt to the evaluation
of a degree d binary polynomial (if the homomorphic parameter m of the scheme
is larger than the number of monomials M). The following algorithms provide a
complete protocol for degree d polynomial evaluation over encrypted data. We
want to stress that the algorithms can be easily modified (to get more efficient
and simple), in case the input polynomial P has a more compact representation,
e.g. P = (X1 + 1)d.

Polynomial Evaluation Algorithms: P =
∑M
`=1X`1 . . . X`d ∈ Z2[X1, . . . , Xv]3

Setup KeyGenP (1κ,M):
Input :
- A security parameter 1κ

- A maximum number of monomials M
Output : A keypair (pk, sk) ∈ KeyGen(1κ,M) for PKC = (KeyGen,Enc,Dec) an
(n, t)-chainable scheme PKC

Encryption EncP (pk, (a1, . . . , av)):
Input :
- A public key pk of the afore-mentioned (n, t)-chainable scheme PKC
- A point (a1, . . . , av) in {0, 1}v in which the polynomial should be evaluated
Output : A set of ciphertexts αi ∈ Enc(pk, ai) for i ∈ [1, v]
1 Set αi ← Enc(pk, ai) for i ∈ [1, v]
2 Return α1, . . . , αv

Evaluation EvalP ((α1, . . . , αv), P):
Input :
- An encryption (α1, . . . , αv) of a point in {0, 1}v, through PKC

- The description of a polynomial P =
∑M
`=1X`1 . . . X`d ∈ Z2[X1, . . . , Xv]

Output : A sum of ciphertexts, α, that decrypts to P (a1, . . . , av)
1 For ` = 1, . . . ,M
2 α`,1

def= α`1
3 For j = 2, . . . , d
4 α`,j = product(α`,j−1, α`j)
5 Return α =

∑M
`=1 α`,d

Decryption DecP (sk, α)
Input :
- A secret key sk of the afore-mentioned (n, t)-chainable scheme PKC
- The output, α, of the evaluation algorithm
Output : P (a1, . . . , av)
1 PKC1,2 = chain(PKC,PKC)
2 For j = 3, . . . , d: PKC1,j = chain(PKC1,j−1,PKC)
4 Return (amod 2) for a← Dec1,d(sk, α)

Note that if the polynomial has a monomial of degree d′ < d it is enough
to add the following computation: For j ∈ [d′, d− 1]: α`,j+1 = product(α`,j , α0),
where α0 ∈ Enc(pk, 1). This step ensures that the protocol processes the poly-
nomial correctly.
3 Note that we do not use a standard indexing such as

PM
`=1Xi1,` . . . Xid,` and rather

implicitly associate to each ` ∈ [1,M] a tuple (`1, . . . , `d) ∈ [1, v]d to reduce index
notations.

Proposition 4. The Polynomial Evaluation Algorithm is correct, produces an
output of (nt)d logm bits and if PKC is IND-CPA, the choice of the evaluation
point is private.

Proof (Sketch.). The correctness of the Product Algorithm guarantees that α`,j ∈
Enc1,j(pk, a`1 · · · a`j) for any j ∈ [1, d] and any ` ∈ [1,M] (denoting PKC1,1 =
PKC). Indeed, by induction, for j = 1 we have α`,1 ∈ Enc1,1(pk, a`1). Suppose
that we have α`,j ∈ Enc1,j(pk, a`1 · · · a`j). By the product algorithm correct-
ness we know that α`,j+1 = product(α`,j , α`j+1) is an encryption of a`1 · · · a`j+1

using the encryption scheme chain(PKC1,j ,PKC) def= PKC1,j+1. In other words,
α`,j+1 ∈ Enc1,j+1(pk, a`1 · · · a`j+1), which completes the induction proof.

As each monomial computed in the main loop of the evaluation algorithm
is a ciphertext of PKC1,d, and PKC1,d is (n(nt)d−1, t)-chainable, the result of
the final step has (nt)d logm bits. Moreover, as the instance of PKC1,d associ-
ated to (pk, sk) is an M -limited homomorphism the result decrypts (mod 2) to
P (a1, . . . , av).

If PKC is IND-CPA, the indistinguishability of the evaluation points is straight-
forward using a standard hybrid argument. ut

In order to have an efficient evaluation of a polynomial through chained
schemes, (nt)d logm must be sub-linear in m. As nt is the ciphertext size of
PKC, we must use an encryption scheme such that ciphertext size grows as
o((m/ logm)1/d). Such instantiations are presented in the next section.

4.2 Higher Moduli

The definitions, algorithms, and propositions, in this and the previous section
need only to be slightly changed in order to produce chained schemes that allow
to compute sums, products, and more generally evaluate polynomials, over Zr
for r > 2. Namely,

– In Definition 1, the homomorphic property must hold ∀a1, . . . , am ∈ [0, r−1]
– In the product algorithm the output is a sum of up to r ciphertexts;
– In the algorithm EvalP for the evaluation of a polynomial, we need an extra

final step in each monomial computation in which the associated ciphertext
is added to itself a given number of times (the coefficient in front of the
monomial).

In order to remain correct, the product algorithm and the polynomial EvalP
algorithm, require respectively m > r and m > Mrd (M being the number
of monomials of the polynomial). The rest of the definitions, algorithms and
propositions remain unchanged, but the proofs get harder to read, and we have
thus preferred to provide them only in the long version of this paper.

5 Specific Realizations

In this section we describe some encryption schemes that satisfy the conditions
given in Definition 1. These schemes are all based on lattices, and can be used
at any point of a chain.4 On the other hand, it is obvious that the last encryp-
tion scheme in a chain does not need to have a ciphertext space which is an
additive group. Therefore, we can use for the last scheme PKCd other homo-
morphic encryption schemes, not necessarily based on lattices, as long as their
plaintext spaces are additive groups. This includes schemes like Paillier’s [26]
or Boneh-Goh-Nissim’s [5] (BGN for short). The advantage of using the BGN
scheme is that it provides an additional level of multiplications for free. That is,
if we have a d-chained encryption scheme where PKCd is the BGN cryptosys-
tem, then we could use the global scheme to evaluate multivariate polynomials
of degree up to d+ 1 (as long as the result of the evaluation is relatively small,
which is the drawback of BGN). Such a hybrid lattice-based and number-theory
encryption scheme allowing an efficient evaluation of degree d > 2 polynomials
over encrypted data is a surprising consequence of our approach.

5.1 A Scheme Based on uSVP

In [20], Kawachi, Tanaka and Xagawa propose a set of lattice-based encryption
schemes, derived from [16, 28, 29, 3], that present some homomorphic properties.
In particular, we are interested in the variant of [28], whose IND-CPA security is
based on a worst-case/average-case reduction from Õ(κ1.5+r)− uSV P for given
security parameters κ, r (related to the underlying lattice). In this scheme, the
plaintext space is (Zp,+), for an arbitrary parameter p, and the ciphertext space
is (ZN ,+), with N = 28κ2

. As it is proved in [20], the scheme is an m-limited
additive homomorphism via addition modulo N , when m ·p < κr. As ZN is a Z-
module, adding up the ciphertext as integers, and applying the modN operation
just before the decryption gives the same result, and thus we have an m-limited
additive homomorphism via integer addition. Moreover, for any keypair 0 is an
encryption of 0 and thus, as long as m < p, the scheme is (1, t)-chainable, with
t = logN = 8κ2.

The output of the secure evaluation of a degree d polynomial with this scheme
has a size td logm = 8dκ2d logm. Using m < p and m · p < κr we get that the
output of the evaluation has roughly a size of 8dm4d/r logm bits, and therefore we
must have r > 4d in order to have an efficient evaluation. In terms of security, this
implies that this instantiation relies on the worst case hardness of Õ(κ1.5+4d)−
uSV P .

5.2 Other schemes

As noted in the related work section, GHV [15] is another lattice-based en-
cryption scheme which can be used with our construction. The security of their
4 Code-based schemes seem also an interesting alternative to be explored.

scheme is based on the worst-case hardness of LWE (for a given approximation
factor), which is equivalent to the worst-case hardness of several standard lattice
problems (see [27]).

Gentry et al. note that their scheme has the same “multiplication-for-free”
property (described at the beginning of this section) as the cryptosystem of
Boneh et al. [5], allowing thus the evaluation of degree d + 1 polynomials with
a chain of just d schemes. In fact, it is possible to do much better, as even after
the multiplication for free GHV’s ciphertexts can undergo m additive operations,
and thus it is possible to alternate. First, we do a multiplication for free with
their scheme and then a multiplication with our construction. As the result
of our multiplication is a set of GHV’s ciphertexts, they can again undergo a
multiplication for free, and so on. With this improvement it is possible to evaluate
polynomials of degree 2d with just a chain of d schemes.

A second advantage of GHV is that ciphertext size grows only logarithmically
in m (whereas with the uSVP instantiation we present, it grows polynomially).
In order to use the full potential of this fact we must change our construction
and split the ciphertexts in groups of bits, instead of bits, just as it is presented
in [2] for the instantiation of our construction with the lattice-based scheme
of [1]. With such a construction it is possible to get a very small expansion
factor at each iteration of the chain, asymptotically close to 1, tweaking slightly
GHV. This is a major step forward, as it allows us to obtain an expansion
factor linear, instead of exponential, in d. Indeed, by chaining instances with
shrinking expansion factors, (2, 3/2, ..., (d − 1)/(d − 2), d/(d − 1)), the product
of the expansion factors of d chained schemes with the alternative construction
is d. Moreover, using the scheme’s blinding properties the instantiation also
ensures formula privacy. The full details of this alternative construction and its
instantiation with GHV are left to the long version of this paper.

Acknowledgments

We want to warmly thank Shai Halevi for his support and very valuable com-
ments on different versions of this work. We also want to thank Daniele Miccian-
cio for his encouraging and useful recommendations, as well as the reviewers of
Crypto’10 for their detailed comments.
The work of Javier Herranz is supported by Spanish MICINN Ministry, under
project MTM2009-07694; and also by a Ramón y Cajal grant, partially funded
by the European Social Fund (ESF) of the Spanish MICINN Ministry.

References

1. Aguilar Melchor, C., Castagnos, G., Gaborit, P.: Lattice-based homomorphic en-
cryption of vector spaces. In: The 2008 IEEE International Symposium on In-
formation Theory (ISIT’08), Toronto, Ontario, Canada, IEEE Computer Society
Press (2008) 1858–1862

2. Aguilar Melchor, C., Gaborit, P., Herranz, J.: Additively homomorphic encryp-
tion with d-operand multiplications. Cryptology ePrint Archive, Report 2008/378
(2008) http://eprint.iacr.org/.

3. Ajtai, M.: Representing hard lattices with O(n log n) bits. In Gabow, H.N.,
Fagin, R., eds.: Proceedings of the 37th Annual ACM Symposium on Theory of
Computing, Baltimore, MD, USA, May 22-24, 2005, ACM (2005) 94–103

4. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recog-
nize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1) (1989) 150–164

5. Boneh, D., Goh, E.J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts.
In Kilian, J., ed.: Theory of Cryptography, Second Theory of Cryptography Con-
ference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings.
Volume 3378 of Lecture Notes in Computer Science., Springer (2005) 325–341

6. Cheon, J.H., Kim, W.H., Nam, H.S.: Known-plaintext cryptanalysis of the
Domingo-Ferrer algebraic privacy homomorphism scheme. Inf. Process. Lett 97(3)
(2006) 118–123

7. Choi, S.J., Blackburn, S.R., Wild, P.R.: Cryptanalysis of a homomorphic public-
key cryptosystem over a finite group. J. Math. Cryptography 1 (2007) 351–358

8. van Dijk, M., Gentry, C., Halevi, S., Vaikuntanathan, V.: Fully homomorphic
encryption over the integers. In: 29th Annual Eurocrypt Conference (EURO-
CRYPT’10), French Riviera. Lecture Notes in Computer Science, Springer (2010)
–

9. Domingo-Ferrer, J.: A new privacy homomorphism and applications. Information
Processing Letters 60(5) (1996) 277–282

10. Domingo-Ferrer, J.: A provably secure additive and multiplicative privacy homo-
morphism. In Chan, A.H., Gligor, V.D., eds.: Information Security, 5th Interna-
tional Conference, ISC 2002 Sao Paulo, Brazil, September 30 - October 2, 2002,
Proceedings. Volume 2433 of Lecture Notes in Computer Science., Springer (2002)
471–483

11. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Transactions on Information Theory 31(4) (1985) 469–472

12. Fellows, M., Koblitz, N.: Combinatorial cryptosystems galore! In: Finite fields: the-
ory, applications, and algorithms (Las Vegas, NV, 1993). Volume 168 of Contemp.
Math., Amer. Math. Soc. (1994) 51–61

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of
STOC’09, ACM Press (2009) 169–178

14. Gentry, C.: A fully homomorphic encryption scheme. PhD thesis, Stanford Uni-
versity (2009) crypto.stanford.edu/craig.

15. Gentry, C., Halevi, S., Vaikuntanathan, V.: A simple BGN-type cryptosystem from
LWE. In: 29th Annual Eurocrypt Conference (EUROCRYPT’10), French Riviera.
Lecture Notes in Computer Science, Springer (2010) –

16. Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating decryption errors in the
Ajtai-Dwork cryptosystem. In Kaliski, Jr., B.S., ed.: Advances in Cryptology
– CRYPTO ’ 97. Volume 1294 of Lecture Notes in Computer Science., Inter-
national Association for Cryptologic Research, Springer-Verlag, Berlin Germany
(1997) 105–111

17. S. Goldwasser and S. Micali: Probabilistic encryption. Journal of Computer and
System Sciences 28(2) (1984) 270–299

18. Grigoriev, D., Ponomarenko, I.: Homomorphic public-key cryptosystems and en-
crypting boolean circuits. Applicable Algebra in Engineering, Communication and
Computing 17(3), 239-255. (2006) 17 (2006) 239–255

19. Ishai, Y., Paskin, A.: Evaluating branching programs on encrypted data. In: Second
Theory of Cryptography Conference, TCC 2007, Amsterdam, The Netherlands,
February 21-24, 2007, Proceedings. Volume 4392 of Lecture Notes in Computer
Science., Springer (2007) 575–594

20. Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit cryptosystems based on lattice
problems. In Okamoto, T., Wang, X., eds.: Public Key Cryptography - PKC 2007,
10th International Conference on Practice and Theory in Public-Key Cryptogra-
phy, Beijing, China, April 16-20, 2007, Proceedings. Volume 4450 of Lecture Notes
in Computer Science., Springer (2007) 315–329

21. Kushilevitz, E., Ostrovsky, R.: Replication is not needed: Single database,
computationally-private information retrieval (extended abstract). In: FOCS:
IEEE Symposium on Foundations of Computer Science (FOCS). (1997) 364–373

22. Lyubashevsky, V., Micciancio, D.: On bounded distance decoding, unique short-
est vectors, and the minimum distance problem. In: Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Bar-
bara, CA, USA, August 16-20, 2009. Proceedings. Volume 5677 of Lecture Notes
in Computer Science., Springer (2009) 577–594

23. Mahajan, M.: Polynomial size log depth circuits: between NC1 and AC1.
BEATCS: Bulletin of the European Association for Theoretical Computer Science
91 (2007)

24. Micciancio, D., Regev, O.: Lattice-Based Cryptography. In: Post Quantum Cryp-
tography. Springer (2009) 147–191

25. Ostrovsky, R., E. Skeith III, W.: Private searching on streaming data. J. Cryptol-
ogy 20(4) (2007) 397–430

26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: 18th Annual Eurocrypt Conference (EUROCRYPT’99), Prague, Czech
Republic. Volume 1592 of Lecture Notes in Computer Science., Springer (1999)
223–238

27. Peikert, C.: Public-key cryptosystems from the worst-case shortest vector problem.
In: Proceedings of STOC’09, ACM Press (2009) 333–342

28. Regev, O.: New lattice based cryptographic constructions. Journal of the ACM
51(6) (2004) 899–942

29. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM 56(6) (2009) 34

30. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomor-
phisms. In: Foundations of Secure Computation. Academic Press (1978) 169–180

31. Rivest, R., Shamir, A., Adleman, L.: A method for obtaining digital signatures
and public key cryptosystems. Communications of the ACM 21(2) (1978) 120–126

32. Sander, T., Young, A., Yung, M.: Non-interactive CryptoComputing for NC1. In:
Proceedings of the 40th Symposium on Foundations of Computer Science (FOCS),
New York, NY, USA, IEEE Computer Society Press (1999) 554–567

33. Smart, N., Vercauteren, F.: Fully homomorphic encryption with relatively small
key and ciphertext sizes. In: Public Key Cryptography - PKC 2010, 13th Inter-
national Conference on Practice and Theory in Public-Key Cryptography, Paris,
France, May 26-28, 2010, Proceedings. Volume 6056 of Lecture Notes in Computer
Science., Springer (2010) 420–443

34. Steinwandt, R., Geiselmann, W.: Cryptanalysis of Polly Cracker. IEEE Transac-
tions on Information Theory 48(11) (2002) 2990–2991

35. Wagner, D.: Cryptanalysis of an algebraic privacy homomorphism. In: Information
Security, 6th International Conference, ISC 2003, Bristol, UK, October 1-3, 2003,

Proceedings. Volume 2851 of Lecture Notes in Computer Science., Springer (2003)
234–239

36. Yao, A.C.: How to generate and exchange secrets (extended abstract). In: 27th An-
nual Symposium on Foundations of Computer Science, Toronto, Ontario, Canada,
IEEE (1986) 162–167

