
On the Number of Synchronous Rounds Required for
Byzantine Agreement

Matthias Fitzi1 and Jesper Buus Nielsen2

1 ETH Zürich
2 University pf Aarhus

Abstract. Byzantine agreement is typically considered with respect to either a fully syn-
chronous network or a fully asynchronous one. In the synchronous case, either t+1 deterministic
rounds are necessary in order to achieve Byzantine agreement or at least some expected large
constant number of rounds.
In this paper we examine the question of how many initial synchronous rounds are required for
Byzantine agreement if we allow to switch to asynchronous operation afterwards.
Let n = h + t be the number of parties where h are honest and t are corrupted. As the main
result we show that, in the model with a public-key infrastructure and signatures, d + O(1)
deterministic synchronous rounds are sufficient where d is the minimal integer such that n−d >
3(t− d). This improves over the t + 1 necessary deterministic rounds for almost all cases, and
over the exact expected number of rounds in the non-deterministic case for many cases.

Table of Contents

On the Number of Synchronous Rounds Required for Byzantine Agreement i
Matthias Fitzi, Jesper Buus Nielsen
1 Introduction . 1

1.1 Outline . 1
2 The Protocol . 1

2.1 Overview . 2
2.2 Correct-or-Detect Broadcast (CoD) . 3
2.3 Proofs of Participation (PoP), Minority Case . 4
2.4 Asynchronous Pre-Crash Consensus (PCC) . 4
2.5 The Coin . 7

Generic Construction. 7
Construction after [KK06]. 8

2.6 The Final Protocol: Putting Things Together . 9
2.7 Proofs of Participation (PoP), Majority Case . 10

3 Observations and Applications . 11
3.1 Multi-Valued Broadcast. 11
3.2 Broadcast Without a PKI. 12
3.3 Fully Synchronous Byzantine Agreement with a PKI. 12

1 Introduction

Two standard timing models are typically considered for the communication among parties
in distributed tasks such as Byzantine agreement or general multi-party computation. In the
synchronous model, the parties operate in synchronous clock cycles where messages being
sent at the beginning of a given clock cycle are guaranteed to have arrived by the end of the
same cycle. In the asynchronous model, messages being sent at a certain point in time are
only guaranteed to be delivered eventually.

For the case of Byzantine agreement in the synchronous model, it has been observed by
Dolev, Reischuk, and Strong [DRS90] that certain tasks can be achieved more efficiently when
fully synchronous termination of all parties is not required: simultaneous agreement requires
that all parties terminate during the same round (or clock cycle) whereas eventual agreement
only requires that all parties eventually reach the same decision. The latter problem can
typically be solved more efficiently.

Recently, Beerliova, Hirt, and Nielsen [BHN08] considered a different but related model
for general multi-party computation where the protocol is first run in a synchronous environ-
ment and then switched to asynchronous operation — the idea being to try to minimize the
synchronicity requirements for such protocols. Indeed, they were able to show that one single
initial synchronous round of broadcast (followed by asynchronous communication) is suffi-
cient to achieve multi-party computation secure against a faulty minority. In this paper, we
address a similar question to the Byzantine agreement problem itself: what is the worst-case
number of initial synchronous rounds required in order to achieve eventual Byzantine agree-
ment in an asynchronous environment? Combined with the solution in [BHN08] this would
in particular answer what is the worst-case number of initial synchronous rounds required in
order to achieve general multi-party computation, but we find the question intriguing in its
own right. Let n be the number of parties, t the number of corrupted parties, and h = n−t the
number of honest parties. We show that, for any n > t, one can do with t−h/2+O(1) initial
synchronous rounds in the worst-case. For many parameters this is an improvement over the
straight-forward approach of using a protocol where all rounds are synchronous — where t+1
is optimal for deterministic protocols [DRS90], and some large constant number of expected
rounds is necessary (but not even guaranteed) for probabilistic protocols [FM97,CR93,KK06].

Furthermore, our technique, when applied to the fully synchronous standard model, di-
rectly improves over the result by Garay et al. [GKKO07] by reducing the round complexity
for Byzantine agreement with a surplus of k dishonest parties from Ω(k2) to linear in k.

1.1 Outline

The main protocol is given Section 2. Our improvement over [GKKO07] and some other
observations are stated in Section 3.

2 The Protocol

Definition 1 (Broadcast). A protocol among n parties P = {p1, . . . , pn} where a sender
ps ∈ P inputs a value xs ∈ {0, 1} and each party pi computes an output yi ∈ {0, 1} achieves
broadcast if the following conditions are satisfied:

1. (Validity). If ps is honest then each honest party pi computes yi = xi.
2. (Consistency). All honest parties compute the same output value.

1

Definition 2 (Consensus). A protocol among n parties P = {p1, . . . , pn} where each party
pi inputs a value xi ∈ {0, 1} and each party pi computes an output yi ∈ {0, 1} achieves
broadcast if the following conditions are satisfied:

1. (Validity). If every honest party pi holds the same input value xi = b then each honest
party pi computes yi = xi.

2. (Consistency). All honest parties compute the same output value.

2.1 Overview

With n parties P = {p1, . . . , pn} of which t < n/2 are corrupted, one can achieve broadcast
in dt/2e+ 4 synchronous rounds followed by a fully asynchronous protocol. In general, d+ 4
synchronous rounds are sufficient for d such that 3(t − d) < n − d. When t ≥ n/2 we need
d+ 5 rounds.

The synchronous part is an n-party protocol that either detectably achieves agreement
or wherein, alternatively, all honest parties detect a common set of some d parties that are
corrupted — similar to a single phase in the protocols by Bar-Noy et al. [BDDS92]. We
call this protocol Correct-Or-Detect Broadcast, d-CoD . We will choose d such that
n − d > 3(t − d), i.e., that out of the N = n − d remaining non-detected parties at most
T = t− d < N/3 are corrupted.

The d-CoD protocol is followed by a protocol constructing proofs of participation, called
the PoP protocol. There exists a verification algorithm ver which takes as input a bit string
pop and party id pj and outputs ver(pop, pj) ∈ {0, 1}. Below we write popj to mean that pop
is a bit string for which ver(pop, pj) = 1 and we call such a popj a proof of participation
for pj . After the execution of PoP all honest parties will hold some popj for all other honest
pj . Furthermore, no popj will ever be constructed for a commonly detected pj . For pj which
is not honest nor commonly detected some honest parties might hold a popj and some might
not. In addition the proofs popj are transferable. I.e., they can be sent along with messages
in the asynchronous phase and will be accepted by the recipient. The PoP protocol adds one
extra synchronous rounds when t ≥ n/2.

After the PoP protocol follows the asynchronous part, which is a consensus protocol where
the parties only consider messages from parties for which they saw a proof of participation.
This will have the effect that the commonly detected parties will be no more powerful than
being fail-stop corrupted, i.e., having crashed. Thus, if d-CoD achieves common detection of
d parties then the asynchronous part basically is a consensus protocol among N = n − d
parties with T = t − d < N/3 active corruptions or, alternatively, among n parties with T
active corruptions and where d parties are fail-stop corrupted (crashed) from the beginning,
and where n > 3T + d. Note, however, the complicating twist that the parties will not agree
on the set of participating parties.

Additionally, the asynchronous part will also guarantee termination even when t parties
are actively corrupted but all honest parties hold the same input. So, if the initial d-CoD
does not achieve common detection of d parties, then it will achieve agreement, which will
still ensure that the asynchronous part terminates.

We now proceed as follows. We give a protocol for synchronous d-CoD in Section 2.2. In
Section 2.3 we describe the construction of proofs of participation and describe how to use
them to implement the pre-crash model with T active corruptions and where d parties are fail-
stop corrupted from the beginning of the protocol. In Section 2.4 we then give an asynchronous
consensus protocol for the pre-crash model: we call this protocol pre-crash consensus, PCC.

2

This protocol uses a coin-flip protocol described in Section 2.5. In Section 2.6, we finally show
how to combine d-CoD with PCC.

2.2 Correct-or-Detect Broadcast (CoD)

Definition 3 (d-CoD). A protocol among n parties P = {p1, . . . , pn} where a sender ps ∈ P
inputs a value xs ∈ D and each party pi outputs a triplet (yi,Fi, deti) ∈ {0, 1} × 2P × {C,D}
achieves Correct-or-Detect Broadcast with d (d-CoD) if the following conditions
are satisfied:

1. (F-soundness) An honest party’s set Fi only contains corrupted parties.
2. (C-correctness) If any honest party computes deti = C then the protocol achieves

standard broadcast with respect to input xs and outputs yi. If standard broadcast is achieved
we say that the protocol is correct. Furthermore, if ps is honest then deti = C for
every honest party pi.

3. (D-soundness) If any honest party computes deti = D then
∣∣∣⋂pj∈H Fj

∣∣∣ ≥ d, where H is
the set of honest pj. In the case of such common detection of d parties we say that the
protocol has detection.

Let the given instance of the final broadcast protocol to be achieved be defined by ID
number id. The protocol below is a (d+4)-round construction for d-CoD. The protocol basi-
cally proceeds like the first d+4 rounds of the protocol in [DS82] for synchronous broadcast.
In the first round, if the input is xs = 1, the sender creates a signature on id and sends it to
all parties. The first time when a party, during some round r − 1, receives a chain of r − 1
different signatures then he accepts the respective input value, appends its own signature,
and sends the new chain to all parties in round r. Let ri be the first round where party pi

receives such a set of signatures where ri = d+4 may also stand for “there is no such round.”
Depending on ri party pi decides in the following way.

ri ≤ d+ 1 d+ 2 d+ 3 d+ 4
(yi,deti) (1,C) (1,D) (0,D) (0,C)

It is easy to see that |ri − rj | ≤ 1 for all honest pi, pj . It will also be easy to see that the
parties can commonly detect d corrupted parties if some honest pi has ri ∈ {d + 2, d + 3}.
Furthermore, as can be seen in the table above, if the honest parties disagree on yi, then (by
|ri−rj | ≤ 1) all honest pl have rl ∈ {d+2, d+3}. In Protocol 1, we use the following notions:

– A party pi’s signature on a value z is denoted by σpi(z).
– An 1-chain is a triplet (id, s, σs) where σs is a valid signature by ps on id. An `-chain is a

tuple (id, pi1 , σi1 , . . . , pi`−1
, σi`−1

, pi` , σi`) where C`−1 = (id, pi1 , σi1 , . . . , pi`−1
, σi`−1

) is an
(`− 1)-chain and σi` is a valid signature by pi` on C`−1, and where the parties pi1 , . . . , pi`

are distinct.
– An `-chain with respect to pi is an `-chain where pi acts as the last signer in the

chain.

Protocol 1: d-CoD

• Round 1:
◦ ps: if the input is xs = 1 then ps sends 1-chain C1 = (id, ps, σs) to all parties and

outputs (ys = 1,Fs = ∅, dets = C). Otherwise, ps sends nothing and outputs (ys =
0,Fs = ∅, dets = C).

3

◦ pi (i 6= s): ri = d+ 4 (sentinel).
• Rounds 2 ≤ r ≤ d+ 4:
◦ pi (i 6= s): If an (r − 1)-chain Cr−1 = (id, pj1 , σj1 , . . . , pjr′ , σjr′ , . . . , pjr−1 , σjr−1) was

received during (previous) round r − 1 then:
∗ If ri = d+4 then ri := r− 1 (mark first round where a sufficiently large chain was

received)
∗ For one such chain Cr−1, send r-chain Cr = (Cr−1, pi, σpi(Cr−1)) to all parties.

• Epilogue:
◦ pi (i 6= s):
∗ If ri ≤ d+ 2 then yi := 1. If d+ 2 ≤ ri ≤ d+ 3 then deti := D else deti = C.
∗ For each received `-chain (id, pj1 , σj1 . . . , pj`

, σj`
) add pj1 , . . . , pjri−1 to Fi. �

Lemma 1. The given protocol efficiently achieves d-CoD in d+ 4 rounds.

Proof. If deti = C for some honest party pi then either ri ≤ d+2 or ri = d+4. In the former
case, every honest pj have rj ≤ d + 2 and thus yi = yj = 1. In the latter case, every honest
pj have rj ≥ d + 3 and thus yi = yj = 0. Finally, if the sender ps is honest then yi = xs

and deti = C since the adversary cannot forge signatures. This gives the C-correctness. By
construction, no honest pj signs a chain in round rj or earlier. Since pi knows that rj ≥ ri−1
for all honest pj , party pi knows that no honest pj signed a chain in round ri−1 or earlier. So,
if pi sees a chain signed by parties pj1 , . . . , pj`

, then pi knows that the parties pj1 , . . . , pjri−1

are corrupted. This implies F-soundness. Let F0
i = Fi and define a set F1

i , where pi for
the (ri + 1)-chain it sent in round ri + 1, adds pj1 , . . . , pjri−2 to F1

i . From rj ≥ ri − 1, the
party pi knows that when an honest pj saw this chain, then pj at least added the parties
pj1 , . . . , pjri−2 to F0

j . So, pi knows that F1
i ⊆ F0

j for all honest pj . Since pi only sets deti = D
if ri ∈ {d+ 2, d+ 3}, it follows that |F1

i | ≥ ri − 2 ≥ d, which implies D-soundness. ut

2.3 Proofs of Participation (PoP), Minority Case

After running CoD, the parties construct proofs of participation. This construction depends
on whether t < n/2 or t ≥ n/2. We give the simple construction for t < n/2. To not interrupt
the flow of presentation of the overall protocol, we defer the description of the construction
for t ≥ n/2 to Section 2.7.

When t < n/2 a proof of participation popl for pl is a collection of n − t signatures on
(id, part, pl) from distinct parties. These proofs are clearly transferable. They are constructed
asynchronously as follows. Let P0

i = {p1, . . . , pn} − F0
i and P1

i = {p1, . . . , pn} − F1
i . Each pi

will for each pl ∈ P1
i , send a signature on (id, part, pl) to pj . Since P0

j ⊆ P1
i , pj knows that

all n− t honest pi will send a signature on (id, part, pl) for all pl ∈ P0
j . Therefore pj can wait

for n − t such signatures for all pl ∈ P0
j and thus get a popl for all pl ∈ P0

j , which includes
the honest parties. No honest party signs (id, part, pl) for any commonly detected pl so, since
t < n− t, no popl is constructed for a commonly detected pl.

2.4 Asynchronous Pre-Crash Consensus (PCC)

Among the n parties, we assume T to be actively corrupted and d to have crashed already
before the execution of the protocol, and n > 3T + d. We call the N = n − d parties that
have not crashed before the execution the participating parties in PCC . In particular,
we have N > 3T among the participating parties. In this section, we make the following
assumptions:

4

• All honest parties detect each other as participating.
• Once an honest pi detects pl as participating, all other honest parties detect pl as partic-

ipating before they receive their next message from pi.

As usual we assume the adversary to fully control the actively corrupted parties. From the
crashed parties the adversary is allowed to learn their internal states but the crashed parties
send no messages during the PCC-protocol. The honest parties do not know the identities of
the crashed or the actively corrupted parties.

This model is implemented by relaying all newly received proofs of participation popl

with the next outgoing message to each of the other parties and ignoring all messages from
parties pl for which no popl was yet received.

Our PCC protocol is inspired by the protocol in [CKS00]. Some changes have been made
to deal with the fact that we cannot use threshold signature schemes in our setting (the
excluded parties can still create signature shares, lending the corrupted parties an unfair
advantage). Other changes have been made to simplify the protocol. The well-known stan-
dard structure stays the same: repeating rounds over a weak form of agreement (committed
crusader consensus) followed by a weak coin-flip protocol.

Definition 4 (Committed Crusader Consensus (CCC)). A protocol among n parties
P = {p1, . . . , pn} where every party pi inputs a value xi ∈ D and outputs a value yi ∈ {0,⊥, 1}
is called committed crusader consensus (CCC) if the following conditions are satisfied:

1. (validity) If all honest parties have the same input x then every honest party pi outputs
yi = x.

2. (consistency) If some honest party pi outputs yi = 0 then no honest party pj outputs
yj = 1.

3. (commitment) As soon as some honest party pi terminates the protocol, a value y ∈
{0, 1} is fixed such that no honest party pj can terminate the protocol with output yj = y.

4. (termination) All honest parties terminate the protocol.

Note that the commitment property defends against the adversary adapting the crusader-
consensus outcome to its following coin-flip outcome. This might be possible since the protocol
is asynchronous.

Protocol 2: Committed Crusader Consensus — CCC (local code of pi)

1. Send a signature on (id, vote, xi) to all parties.
2. Wait for signatures from N − T participating parties and pick ui ∈ {0, 1} to be the value

for which N − 2T signatures on (id, vote, ui) was received. Then send ui to all parties
along with the N − 2T signatures.

3. Wait for N − T participating parties pj to send uj along with N − 2T signatures on
(id, vote, uj) from participating parties.
◦ If all uj are identical then let vi be the common value and send ok! to all parties.
◦ Otherwise, let vi = ⊥, pick N − 2T of the signatures on (id, vote, 0) and N − 2T

of the signatures on (id, vote, 1) and combine them to a proof of disagreement,
and send this proof to all parties.3

4. Wait to receive ok! or a proof of disagreement from N −T participating parties. If all sent
ok!, then let yi = vi. Otherwise, let yi = ⊥. Then send done! to all parties.

3 A proof of disagreement shows that at least one honest party had input 0 and that at least one honest
party had input 1.

5

5. Wait for N − T participating parties to send done!, and then terminate with output yi.�

Lemma 2. The above protocol achieves CCC.

Proof. 1. (validity). Straight forward.
2. (consistency). Assume that pi is honest and that yi = b ∈ {0, 1}. Then pi received
N − T votes uj on b. At least N − 2T of these votes were sent by honest parties, so any
other honest pk sees at least one vote uj on b and thus outputs b or ⊥.

3. (commitment). As for commitment, assume that some honest party terminated. This
means that it saw N − T parties send done!. Therefore at least N − 2T honest parties
sent done!. We consider these N − 2T parties and distinguish two cases:
– Assume that one of the considered parties had vi = b ∈ {0, 1}. In this case it is easy

to see that vj = 1 − b is impossible for all other honest parties pj . Since yj = 1 − b
implies vj = 1− b, it follows that vj = 1− b is impossible for each honest party pj .

– Assume that vi = ⊥ for the at least N − 2T considered honest parties. Then these
N − 2T parties sent a proof of disagreement to all parties. Therefore every honest
party pj receives at least one proof of disagreement and thus outputs yj = ⊥, making
both yk ∈ {0, 1} impossible for every honest party pk.

4. (termination). Straight forward. ut

We can now combine committed crusader consensus with an unpredictable coin-flip proto-
col. We assume a coin-flip protocol where the parties input (id, flip, r) to flip coin number r
and where they receive an outcome (Cr ∈ {0, 1}, g ∈ {0, 1}). We assume that if N −T honest
parties input (id, flip, r), then they eventually all receive an outcome (v, g). The outcome
should guarantee that if some honest party has outcome (v, 1), then all honest parties have
outcome (v, 1) or (v, 0). Furthermore, a fraction p of the coins should have the property that
all parties output (Cr, 1) and that Cr cannot be predicted with probability negligibly better
than 1

2 until the first honest party gets input (id, flip, r). We call such a coin good. See
Section 2.5 for the implementation of such a coin.

Protocol 3: Pre-Crash Consensus — PCC (local code of pi)

1. Let r = 1 and let xi be the input.
2. Run CCC on input xi to get an output zi.
3. Input (id, flip, r) to the coin-flip protocol and wait for an output (Cr ∈ {0, 1}, g).
4. If zi = Cr and g = 1, then yi := zi but do not terminate.
5. If zi = ⊥ then xi = Cr else xi = zi.
6. Let r := r + 1 and go to Step 2. �

Lemma 3. The above protocol achieves pre-crash consensus (except for termination) in ex-
pected 2/p “rounds”.

Proof. The protocol has the following properties and thus fulfills the claims:

• (persistency: If the honest parties agree on the xi at the beginning of
round r, then they will all have yi = xi and will end up with the same xi

in round r + 1). This follows by validity of CCC.
• (validity). Follows from persistency.

6

• (matching coin: If no honest party receives output zi = z ∈ {0, 1} from the
CCC protocol and coin Cr is good, then with probability negligibly close
to 1

2 , the coin produces Cr = 1 − z and g = 1 for all parties). When the first
honest party pi inputs (id, flip, r) to the coin-flip protocol, at least pi terminated the
CCC protocol. Therefore there exists z ∈ {0, 1} such that no honest party can end up
with zi = z. Since Cr is unpredictable until the first honest party inputs (id, flip, r) there
is probability negligibly close to 1

2 that Cr = 1− z.
• (consistency). By the matching-coin condition, all honest players eventually end up

with the same value yi.
• (consistency detection: When an honest party pi sees that zi = Cr and
g = 1 then pi knows that all honest parties pj will finally compute output
yj = zi). If this happens then, after Step 5 of the same iteration, all honest parties will
agree on xj = zi which will persist by the persistency condition.
• (number of “rounds”). Follows from the properties of the coin.

As of now, the protocol runs forever. Allowing all honest parties to terminate in a constant
number of rounds can be achieved by adding the following rules to the above protocol.

• After computing yi in Step 4, send a signature on (id, result, yi) to all parties.
• On receiving a valid signature on (id, result, y) by any party, send it to all parties.
• If for some y ∈ {0, 1} and h = N − T distinct participating parties pj a valid signature

on (id, result, y) by pj has been (received and) resent to all parties, terminate.

Theorem 1. The above protocol together with the given termination augmentation achieves
pre-crash consensus among n parties with d pre-crashes and T actively corrupted players when
n > 3T + d. The protocol terminates in 2/p expected rounds where p is the unpredictability of
the coin.

Proof. Follows from Lemma 3 and the above discussion. ut

2.5 The Coin

We first describe a generic construction that can be based on any existing coin protocol in
order to get a coin for the pre-crash model that can be set up during the last synchronous
round and opened during the asynchronous part of the protocol. The coin itself is pre-shared
by some designated party pi and is reliable when pi is honest. The iterations of pre-crash
consensus can then be done with respect to different designated parties. The advantage of
this approach is that 1 synchronous round is sufficient and that it can be described generically.
The disadvantage is that expected O(t) asynchronous “rounds” will be required in order to
hit a reliable matching coin.

Second, we sketch how to produce a coin along the lines of Katz and Koo [KK06] solely
based on digital signatures (and a PKI). The advantage of this construction is that only an
expected constant number of asynchronous “rounds” will be required to hit a reliable matching
coin. The disadvantage is that more than 1 synchronous round is required to set it up (but
still only O(1)).

Generic Construction. We let each party Pi prepare a coin Ci in the last synchronous
round, by picking Ci ∈ {0, 1} uniformly at random and secret sharing Ci. In asynchronous
round i, the parties then try to reconstruct Ci. To get ` coins, each pi prepares `/n coins and

7

the coins of pi are used in rounds i+ nq. We pick ` large enough that the PCC protocol will
have terminated after ` phases except with negligible probability when there is detection (and
thus N > 3T). If the parties run out of coins, they conclude that there was not detection,
but agreement already in CoD. In the following, we let Pi = {1, . . . , n} − Fi.

Protocol 4: Coin Flip

• A coin of pi is prepared as follows:
◦ Last synchronous round: pi picks Ci uniformly at random and creates a Shamir sharing

of Ci among n parties with degree T . Let Cij denote the share of pj . For pj ∈ Fi it
deletes Cij . For pj ∈ Pi it signs (id, flip, i, j, Cij) and sends it securely to pj .

• The flipping of the coin proceeds as follows:
◦ pj : On input (id, flip, r = i + nq), send the signed (id, flip, r, j, Cij) to all pk, if it

was received, and otherwise sign and send (id, flip, r, j,⊥).
◦ pk: Wait for N − T participating parties pj from Pk to send (id, flip, r, j, Cij) signed

by pi or (id, flip, r, j,⊥) signed by pj . If N − 2T participating parties sent a signed
(id, flip, r, j,⊥), collect the signatures to a proof that pi is corrupt,4 and send
the proof to all parties. Otherwise, if N − 2T participating parties sent a signed
(id, flip, i, j, Cij), then interpolate a degree T polynomial f(X) with f(j) = Cij for
all N − 2T values, let Ci = f(0) and collect the N − 2T signed values to a proof
that Ci = f(0) is justified, and send the proof to all parties along with a signature
on (id, flip, r, f(0)).
◦ pj : Wait for N−T participating parties pk to send a message as required above. If one

of them sent a proof that pi is corrupt, store this proof. Otherwise, if one of them sent
a proof that Ci = 0 is justified and one of them sent a proof that Ci = 1 is justified,
pool these proofs to a proof that pi is corrupt. Otherwise, the N − T parties all
sent a proof that Ci = v is justified for the same v. Collect the corresponding
N−T signatures on (id, flip, r, v) to a proof that Ci = v is uniquely justified.5

In both cases, send the obtained type of proof to all parties.
◦ pk: Wait for N − T participating parties pj to send a proof that pi is corrupt or that

some v is uniquely justified. If all N−T parties sent a proof that v is uniquely justified,
then output (v, 1). If at least one party sent a proof that v is uniquely justified, then
output (v, 0). Otherwise, output (0, 0)

It is straight-forward to see that at most one value v will have a proof that it is uniquely
justified. Furthermore, all pairs of parties receive a message from at least one common honest
party in the last step. So, as pj having output (v, g = 1) implies that it received a proof
that v is uniquely justified from all parties, it knows that all other honest parties received
at least one such value, and therefore has output (v, ·). Therefore output (v, 1) implies that
all parties agree on the coin. Finally, if pi is honest, no proof that pi is corrupt will be
constructed. Therefore all parties will have output (Ci, 1). So, all coins prepared by honest
parties are good, and they make up a fraction p = (n− t)/n of all coins.

Construction after [KK06]. We adapt the construction in [KK06] in the following way:

– Party pi marks all parties in Fi as untrusted.
4 At least one honest party is claiming that it did not get a signed share from pi.
5 At least N − 2T honest parties signed for v and no honest party signs for both 0 and 1. Therefore at most
one value v will have such a proof.

8

– The moderated VSS protocol is run with respect to threshold t.
– In the moderated VSS protocol the dealer pD openly distributes the shares for the parties

it detected in FD.
– In the moderated VSS protocol party pi marks the dealer as untrusted (and moves it to
Fi) if the set SD of parties whose shares are openly distributed by pD satisfies SD∩Fi < d.

The resulting moderated VSS protocol will now be valid and secret when pD is honest
but a dishonest dealer pD is still committed, i.e., the dishonest dealer may refuse to have the
secret reconstructed but cannot change the secret anymore. The leader is now elected in the
same way as in [KK06] — the moderator of the minimal outcome among the moderators
that are still trusted. Among those there is an honest majority because of common detection
during d-CoD. The coin can now for instance be implemented by opening a value that the
leader shared out during the synchronous phase of the protocol, as in the generic construction.

2.6 The Final Protocol: Putting Things Together

We now demonstrate how to combine synchronous d-CoD with asynchronous pre-crash con-
sensus (PCC).

Let h = n − t be the number of honest parties. Pick T < h/2, let d = t − T and let
N = n − d. We first run Protocol d-CoD with respect to n and t. Protocol d-CoD is either
correct or has detection. The difficulty now is that the parties do not necessarily agree on
their values det ∈ {C,D} that stand for knowing that correctness or detection was achieved.
Therefore we always unconditionally append Protocol Pre-Crash Consensus (PCC) which
is run among all n parties and with respect to d crashes and T < N/3 active corruptions.
However, only the parties pi with deti = D will adopt the output of PCC, whereas the parties
with deti = C already accept their outputs from d-CoD. In more detail:

Protocol 5: Broadcast (local code of pi)

1. Run the d-CoD on input xi and let (vi,Fi, deti) be its output.
<From now on everything is asynchronous>

2. If deti = C then output yi = vi but do not terminate.
3. Run PoP to create proofs of participation and use these to simulate a pre-crash model,

where all parties without a proof of participation are considered crashed.
4. Run PCC on input vi in the simulated pre-crash model; if deti = D then let yi by the

output of PCC. �

The final protocol has the following properties:

1. If deti = C for all honest pi then all honest parties eventually output some yi and the
outputs yi are correct.
Proof: When deti = C for all honest pi then all honest pi have yi = vi where vi is the
output of d-CoD, which is correct since deti = C for just one honest Pi.

2. If deti = D for some honest pi, then the asynchronous BA eventually terminates with
some common output y which is equal to some vi held by an honest party pi.
Proof: Even a party with deti = C will run the asynchronous PCC protocol. Therefore
the asynchronous PCC is run by all honest parties, but as if all parties without a proof of
participation were crashed before the protocol began. The only malicious thing a party
without a proof of participation can do is therefore to leak its secrets to the corrupted
parties which do have proof of participation. Therefore the PCC protocol is essentially run

9

in a pre-crash model with N being the number of parties with a proof of participation and
T being the number of corrupted parties with a proof of participation. When deti = D for
some honest pi, then N > 3T as no commonly detected party gets a proof of participation
and all honest parties get a proof of participation. Since N > 3T , it follows from the
properties of PCC that it eventually terminates with some common output y which is
equal to some vi held by an honest party pi.

3. If deti = D for all honest pi, then all parties eventually output some y and the output y
is correct.
Proof: When deti = D for all honest pi, then all honest pi take the output yi of PCC
to be the output of the final protocol. If ps is honest, then no honest pi has deti = D,
so when deti = D for all honest pi, ps is corrupted and any common output yi = y is
correct. It is therefore sufficient that PCC has termination and consistency. This follows
from Property 2.

4. If deti = C for some honest pi and detj = D for some honest pj then all honest parties
eventually output some y and the output y is correct.
Proof: From detj = D for some honest pj it follows from Property 2 that PCC eventually
terminates with some common output y, which is equal to some vi held by an honest
party. By deti = C for some honest pi it follows that the vi held by the honest parties
are the same, meaning that each honest pi gets output yi = vi from PCC where vi is
its output from d-CoD. Therefore every honest pi will output vi which is correct since ps

must be corrupted. ut

Theorem 2. The above protocol achieves broadcast for n parties secure against t < n/2
actively corrupted parties in

– d2t−h
2 e + 4 ≤ dt/2e + 4 deterministic synchronous rounds followed by an expected-O(t)-

“round” asynchronous protocol when using the generic coin.
– t − h/2 + O(1) deterministic synchronous rounds followed by an expected-O(1)-“round”

asynchronous protocol when using the specific coin.

Proof. From Property 1, Property 3 and Property 4 it follows that the protocol achieves
broadcast. The rest can be verified by inspection. ut

2.7 Proofs of Participation (PoP), Majority Case

We now describe the construction of proof of participation for the case t ≥ n/2. The first
modification is that we run CoD for one more round and let the parties decide as follows.

ri ≤ d+ 2 d+ 3 d+ 4 d+ 5
(yi,deti) (1,C) (1,D) (0,D) (0,C)

I.e., just run (d+ 1)-CoD. For the (ri + 1)-chain sent in round (ri + 1), pi adds pi1 , . . . , piri−3

to a set F2
i . In all rounds, for all incoming chains, it adds pi1 , . . . , piri−2 to a set F1

i and adds
pi1 , . . . , piri−1 to a set F0

i . Except in the last round, it then relays the chain, which will make
other parties pj see the chain and do the same, possible using rj = ri− 1. It can be seen that
this results in sets with F2

i ⊆ F1
j ⊆ F0

k for all honest pi, pj , pk. The output of this modified
d-CoD is taken to be Fi = F2

i . We call Pb
i = {1, . . . , n} − Fb

i the b-participating parties
(seen by pi) and we have that P0

i ⊆ P1
j ⊆ P2

k for all honest pi, pj , pk. We need that N > 3T
for all sets P l

j when an honest pi has deti = D. This follows from ri ≥ d+ 3.

10

Now, for b = 2, 1, 0 we define a b-proof of participation for pl (from the viewpoint
of pi) to be 2T + 1 signatures on (id, part, pl) from parties in Pb

i .
Invariant. We will maintain the invariant that if there exists any b-proof of participation

for pl, then at least one honest party did not exclude pl initially (we say pi excluded pl if
pl 6∈ P2

i). In particular, there will exist no b-proof of participation for a commonly detected
party pl. Furthermore, all honest parties will initially hold a 0-proof of participation for all
other honest parties, and 0-proofs of participation will be transferable. Therefore 0-proofs of
participation can be used to simulate the pre-crash model, as desired.

Establishing the invariant. Every pi sends a signature on (id, part, pl) for all pl ∈ P0
i

to all pj . Below we call a signature on (id, part, pl) a signature of participation for pl.
Since all honest parties are in all P0

i , and there are at least N−T honest parties, all honest pj

can wait to collect a 0-proof of participation for all pl ∈ P1
j , which includes all honest parties.

Furthermore, if all honest parties excluded pl, then less than N−T signatures of participation
are constructed for pl, so no b-proof of participation is constructed for a commonly detected
party.

Upgrading. To build transferability, we first observe that if pj holds a 1-proof of par-
ticipation for pl, it can upgrade it to a 0-proof of participation: It sends the 1-proof of
participation to all pk. Any pk receiving it will see the N − T signatures from P1

j . Since
P1

j ⊂ P2
k , this will be a 2-proof of participation for pl to pk. Therefore pk knows, by the

invariant, that at least one honest party did not exclude pl initially. Therefore pk can safely
sign (id, part, pl) and send the signature to pj . All honest pk will eventually do this. Since
all honest parties are in P0

j , pj will eventually receive N − T signatures on (id, part, pl) from
parties in P0

j . These signatures pj collects to a 0-proof of participation for pl.
Transfer. Assume now that pi holds a 0-proof of participation for pl. It can send this to

all pj , who will see it at least as a 1-proof of participation, as P0
i ⊆ P1

j . Therefore pj can
upgrade it to a 0-proof of participation for pl. This gives transferability.

Theorem 3. The above protocol achieves broadcast for n parties secure against t < n actively
corrupted parties where d is the minimal integer for which n− d > 3(t− d)

– in d + 5 deterministic synchronous rounds followed by an expected-O(t)-“round” asyn-
chronous protocol when using the generic coin.

– in d+O(1) deterministic synchronous rounds followed by an expected-O(1)-“round” asyn-
chronous protocol when using the specific coin.

Proof. The theorem follows along the lines of the proof of Theorem 2 and the above discussion.
ut

3 Observations and Applications

3.1 Multi-Valued Broadcast.

Above, our protocols were stated with respect to a binary value domain. We note that, for
arbitrary value domains D, the protocol can be adapted such that the number of synchronous
rounds stays the same whereas the number of asynchronous rounds remains of same order
(one additional round per coin flip). For instance, this can be achieved by modifying Protocol
PCC such that every player gradecasts his value zi ahead of the coin flip, and having multiple
coins to elect a leader to dictate a default value.

11

3.2 Broadcast Without a PKI.

We note that it is easy to see that, when not given a PKI in our model, broadcast is achievable
if and only if n > 3t.

3.3 Fully Synchronous Byzantine Agreement with a PKI.

We observe that our approach can also be used to improve over the result in [GKKO07].
There it was shown how to achieve Byzantine agreement in the fully synchronous model
among n = 2h + k parties with a minority of h honest parties in expected Ω(k2) rounds.
Applying our approach together with the specific coin from [KK06] directly to the fully
synchronous case yields a protocol that requires only expected k+O(1) rounds. Note that, in
this case, the coin does not have to be pre-shared as described in Section 2.5 but the leader
can simply dictate it on the spot. The resulting protocol only relies on signatures and a PKI
and works for any value domain.

12

References

[BDDS92] Amotz Bar-Noy, Danny Dolev, Cynthia Dwork, and H. Raymond Strong. Shifting gears: Changing
algorithms on the fly to expedite byzantine agreement. Inf. Comput., 97(2):205–233, 1992.

[BHN08] Zuzana Beerliova, Martin Hirt, and Jesper Buus Nielsen. Almost-asynchronous multi-party com-
putation with faulty minority. Manuscript, 2008.

[CKS00] Christian Cachin, Klaus Kursawe, and Victor Shoup. Random oracles in constantipole: practical
asynchronous byzantine agreement using cryptography (extended abstract). In PODC, pages
123–132. ACM, 2000.

[CR93] Ran Canetti and Tal Rabin. Fast asynchronous Byzantine agreement with optimal resilience
(extended abstract). In STOC, pages 42–51, 1993.

[DRS90] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. Early stopping in byzantine agreement.
J. ACM, 37(4):720–741, 1990.

[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agreement.
In STOC, pages 401–407. ACM, 1982.

[FM97] Pesech Feldman and Silvio Micali. An optimal probabilistic protocol for synchronous Byzantine
agreement. SIAM Journal on Computing, 26(4):873–933, 1997.

[GKKO07] Juan A. Garay, Jonathan Katz, Chiu-Yuen Koo, and Rafail Ostrovsky. Round complexity of
authenticated broadcast with a dishonest majority. In FOCS, pages 658–668. IEEE Computer
Society, 2007.

[KK06] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine agree-
ment. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in Computer Science,
pages 445–462. Springer, 2006.

13

