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Abstract

A searchable public key encryption (PEKS) scheme allows to generate, for any given message
W , a trapdoor TW , such that TW allows to check whether a given ciphertext is an encryption of W or
not. Of course, TW should not reveal any additional information about the plaintext. PEKS schemes
have interesting applications: for instance, consider an email gateway that wants to prioritize or filter
encrypted emails based on keywords contained in the message text. The email recipient can then
enable the gateway to do so by releasing the trapdoors for the corresponding keywords. This way, the
gateway can check emails for these keywords, but it learns nothing more about the email contents.

PEKS schemes have first been formalized and constructed by Boneh et al.. But with one ex-
ception, no known construction of a PEKS scheme supports the decryption of ciphertexts. That
is, known constructions allow to test for a certain message, but they do not allow to retrieve the
message, even when having the full secret key. Besides being somewhat unnatural for an encryp-
tion scheme, this “no-decryption”-property also limits the applicability of a PEKS scheme. The one
exception, a PEKS scheme with decryption due to Fuhr and Paillier, is formulated in the random
oracle model, and inherently relies on the statistical properties of the random oracle. In fact, Fuhr
and Paillier leave it as an open problem to construct a PEKS scheme with decryption in the standard
model.

In this paper, we construct the first PEKS scheme with decryption (PEKSD scheme) in the stan-
dard model. Our sole assumption is an anonymous IBE scheme. We explain the technical difficulties
that arise with previous attempts to build a PEKS scheme with decryption and how we overcome
these difficulties. Technically, we isolate a vital additional property of IBE schemes (a property we
call well-addressedness and which states that a ciphertext is tied to an identity and will be rejected
when trying to decrypt with respect to any other identity) and show how to generically achieve it.

Our construction of a PEKSD scheme from an anonymous IBE scheme provides a natural ex-
ample of a non-shielding construction (in which the decryption algorithm queries the encryption
algorithm). Gertner et al. have shown that an IND-CCA secure public key encryption scheme can-
not be constructed and proven from an IND-CPA secure scheme in a black-box and shielding way.
However, our results give evidence that encryption queries in the decryption algorithm may well
prove useful in a security reduction.
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1 Introduction

Motivation. Consider an email gateway G that stores the email for a number of users. Suppose each
email message is encrypted and tagged with a number of keywords (such as “meeting” or “price offer”
or similar). We assume that the keywords are also encrypted for privacy reasons. Now imagine that
a user U wants to retrieve all messages tagged with the keyword “meeting”. Since U does not want
to download all messages, U needs to delegate to G the capability to recognize and then filter emails
tagged with keyword “meeting”.

Searchable public key encryption (PEKS). This can be done with a searchable public key encryption
(PEKS) scheme (as defined by Boneh et al. [3]). Basically, a PEKS scheme is a public key encryption
(PKE) scheme, in which, instead of decryption, the secret key allows to generate trapdoors TW for
arbitrary messages W . Using TW , it is possible to check whether an arbitrary given ciphertext c is an
encryption of W or not. However, if c is not an encryption of W , the trapdoor TW should not give any
information about the true encrypted message W ′ (besides W ′ 6= W of course). A PEKS scheme can
be used in the above example to encrypt the keywords of an email. The user U can then delegate the
capability of checking whether an email is tagged with a keyword W = “meeting” simply by handing
the trapdoor T“meeting” to the gateway G.

Searchable public key encryption with decryption (PEKSD). However, a PEKS scheme does not
allow the user U to decrypt the encrypted keywords, and thus U cannot, say, sort her emails according
to the keywords, or even just see the full list of keywords attached to a message. It might seem natural
to then encrypt the keyword not only by a PEKS scheme, but additionally use a traditional PKE scheme.
The user U could then retrieve the keyword by a PKE decryption. However, this solution does not
ensure that the PEKS encryption and the PKE encryption are really consistent (i.e., referring to the same
keyword). This can become problematic if U relies on the gateway’s actions (which only depend on the
PEKS encryptions) during local computations (which then only depend on the PKE encryptions). This
leads to a definition of a searchable public key encryption scheme with decryption (PEKSD scheme). A
PEKSD scheme is identical to a PEKS scheme, only that the secret key allows to also decrypt ciphertexts
(in the usual PKE sense).

Related literature. The definition of a PEKS scheme was first formalized by Boneh et al. [3], who
also noticed a connection between identity-based encryption (IBE) schemes and PEKS schemes. This
connection appears natural: in an IBE scheme, the master secret key can be used to generate user
secret keys which allow to decrypt a certain subset of ciphertexts; this seems a natural starting point for
trapdoors in the PEKS sense. The construction from [3] starts from a specific IBE scheme (specifically,
the Boneh-Franklin IBE scheme [2]). A more general connection to (anonymous) IBE schemes was
given by Abdalla et al. [1]; in particular, combining the results of [1] with the anonymous IBE scheme
from Boyen and Waters [5] yields a PEKS construction without random oracles. Abdalla et al. also
generalized the notion of PEKS consistency1, and corrected a flaw concerning consistency from [3].
However, Abdalla et al. leave open the question to construct a perfectly consistent PEKS scheme.

Zhang and Imai [12] consider a “hybrid” of a PEKS and a PKE scheme, in which PKE encryptions
are tagged with a PEKS encryption. While their solution provides decryption of the PKE part of the
ciphertext, it does not allow to retrieve the PEKS keyword. Hence, while the solution of [12] allows to
“tie together” a PEKS keyword and a PKE message, it does not guarantee any relation between message
and keyword. (In particular, their construction does not imply a PEKSD scheme, as required for our
purposes.)

Possibly closest to our work is the work of Fuhr and Paillier [8]: they construct a PEKSD scheme
in the random oracle model. As we will argue below, the proof of their construction hinges on the
statistical properties of the random oracle and cannot be easily transported to the standard model. This

1Roughly, consistency of a PEKS scheme ensures that the testing algorithms return results that are consistent with the
actually encrypted message.
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is also noticed by Fuhr and Paillier who specifically mention designing a solution in the standard model
as an open problem.

Our contribution. We construct the first PEKSD scheme in the standard model (i.e., without random
oracles). Our construction is surprisingly simple and, similar to previous PEKS constructions, only
assumes an anonymous identity-based encryption (IBE) scheme as a basis.2 We stress that anonymous
IBE schemes can indeed be implemented from standard bilinear complexity assumptions, cf. Boyen
and Waters [5]. For our construction, we isolate and define a useful property of the underlying IBE
scheme we call well-addressedness. Informally, a well-addressed IBE scheme has ciphertexts which
only decrypt correctly under at most one identity (i.e., a ciphertext is tied to an identity). We show
how to turn any anonymous IBE scheme into an anonymous and well-addressed IBE scheme.3 In the
following, we will motivate and explain our construction in detail.

A first attempt. As a first attempt towards constructing a PEKSD scheme, assume an IBE scheme
IBE = (IBG, IBT, IBE, IBD). (For formal definitions of IBE and PKE schemes, see Section 2.) It
seems natural to start from an IBE scheme, since an IBE master secret key allows to produce user secret
keys Tid that allow to decrypt a certain class of ciphertexts (namely, those ciphertexts associated with an
identity id ). Hence, we might try to identify IBE identities with PEKS messages. Concretely, we could
try to construct a PEKS encryption of W as

PEKSPK (W ) = IBEPK ,W (F ),

i.e., as an IBE encryption under identity W of an arbitrary (for simplicity fixed) IBE plaintext F . The
trapdoor for testing if a given ciphertext c is an encryption of W would be the IBE user secret key TW

for identity W . Accordingly, one can then test whether c is an encryption of W by checking if c decrypts
to F under TW .

Observe that secrecy of this naive PEKS scheme now requires anonymity from the IBE scheme (this
was also noticed by Abdalla et al. [1], who consider a related but more complex generic construction
for a PEKS scheme without decryption). Namely, given an IBE ciphertext, it should not be possible to
determine under which identity this ciphertext was encrypted. Observe also that there are two problems
with this naive scheme: first, it is unclear how to decrypt. Second, the usual security requirements on
IBE schemes (including anonymity) give no guarantees what happens if a ciphertext is decrypted under
an identity different from the one under which it was encrypted. Concretely, for all we know about IBE ,
we might have that

IBDTW ′ ,W ′(IBEPK ,W (F )) = F

for a cleverly chosen W ′ 6= W . (This would violate PEKS consistency, since now the PEKS test returns
that PEKSPK (W ) = IBEPK ,W (F ) is an encryption of W ′ 6= W .)

Adding decryption. To solve the first problem of our naive scheme (i.e., the lack of decryption), we
might add a PKE encryption of the PEKS message W to the ciphertext. (Also the scheme from Fuhr
and Paillier [8] follows this path, see below for more information on their approach.) So assume a PKE
scheme PKE = (PKG,PKE,PKD), and consider the construction:

PEKSPK (W ) = c = (c1, c2) = (IBEPK 1,W (F ),PKEPK 2(W )). (1)

This obviously ensures decryptability (assuming that the PEKS secret key contains the PKE secret key
SK 2), but it creates two new problems. First, combining two ciphertexts often invites malleability-style
attacks on the (IND-CCA) security of an encryption scheme (cf. Zhang et al. [13], Dodis and Katz [7]).

2For our construction, we actually use a well-addressed anonymous IBE scheme and a PKE scheme. However, we show in
Section 4 how to construct well-addressed anonymous IBE schemes from anonymous IBE schemes; also, it is known how to
construct PKE schemes from IBE schemes (Canetti et al. [6]).

3Note that turning an IBE scheme into a well-addressed IBE scheme is trivial; simply add the identity to each ciphertext.
The difficulty lies in preserving anonymity, which is vital for our application: constructing a PEKSD scheme.
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The mutual dependency problem. However, a much graver problem is that now PEKS consis-
tency is at stake, in the following sense. For consistency, we require that the PEKS testing algorithm
(which tests whether c1 is encrypted under a given identity W ) yields results which are consistent with
the actual PEKS decryption algorithm. That is, we want that TestPK (c, TW ) = “yes” if and only if
PEKSDMK (c) = W . Now the holder of the PEKS secret key MK can first extract W from the PKE
part c2 = PKEPK 2(W ) of the ciphertext and then check if the IBE part c1 is consistent with W . How-
ever, there is no guarantee for the holder of a trapdoor TW that the PKE part c2 is indeed an encryption
of W . In fact, more generally, the values of c1 and c2 depend on each other, since the results of testing
and decryption must be “synchronized”.

The approach of Fuhr and Paillier. Fuhr and Paillier [8] approach this “synchronization” problem
as follows: essentially, they also encrypt the randomness used during both IBE and PKE encryptions.
Concretely, their IBE ciphertext part is an encryption of the randomness used in the PKE encryption,
and the PKE ciphertext part contains the actual PEKS message and the randomness used in the IBE
encryption.4 In particular, they create a cyclic dependency as follows:

PKE decryption −→ IBE randomness, PEKS message

↑ ↓
PKE randomness ←− IBE decryption

where an arrow X → Y means that X allows to deterministically obtain Y , given the full ciphertext of
Fuhr and Paillier’s scheme. The holder of the full PEKS secret key can “jump into” that cycle at the upper
left corner (the PKE decryption) and check for consistency by following the arrows deterministically in
a full circle. On the other hand, the holder of the trapdoor for a PEKS message W can “jump into” the
cycle at the lower right corner (the IBE decryption) and check for consistency similarly.

While elegant from a conceptual point of view, this approach has the disadvantage that neither the
randomness used in the IBE encryption nor that used in the PKE encryption is completely hidden;
instead, all random coins are additionally encrypted. That implies that a straightforward reduction to
IBE or PKE security is not possible. The reason why [8] still can prove security follows from their use
of a random oracle: they first prove that the encryption randomness is statistically hidden, from which
point on a “usual” reduction can be conducted.

Our approach. We solve the consistency problem in a different way. To see how, reconsider the
construction from (1). The problem with this construction was that the holder of a PEKS trapdoor TW

cannot check that the PKE ciphertext c2 is really an encryption of W . But now suppose that c1 is an
encryption of the randomness used in the PKE encryption c2:

PEKSPK (W ) = c = (c1, c2) = (IBEPK 1,W (R),PKEPK 2(W ;R)).

Then, decrypting c1 yields the randomness for c2, which allows to check whether c2 is an encryption of
W . This is exactly the information that the holder of TW needs to decide whether the whole ciphertext
is consistent. On the other hand, the holder of the PEKS secret key can first decrypt c2 to obtain a
“candidate message” W , generate an IBE trapdoor TW for c1, and then proceed as the holder of TW .

IND-CCA attacks and well-addressed IBE schemes. This simple construction thus ensures (perfect)
consistency; however, we still might get into trouble if we strive for encryption security against chosen-
ciphertext attacks (IND-CCA security). Indeed, suppose that an IND-CCA adversary A gets a challenge
ciphertext

c∗ = (c∗1, c
∗
2) = (IBEPK 1,W ∗(R),PKEPK 2(W

∗;R)),

and A’s goal is to determine whether W ∗ = W0 or W ∗ = W1 (for adversarially chosen messages W0

and W1). Now suppose further that the IBE scheme has the property that IBDTW ′ ,W ′(IBEPK 1,W (R)) =

4Actually, [8] use a more “low-level” KEM/DEM based approach to avoid some technicalities of our high-level description.
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0 for all R and W ′ 6= W . (This property does not violate anonymity or security of the IBE scheme.)
Then, A can use its CCA oracle and request a decryption of

c = (c1, c2) = (c∗1,PKEPK 2(W0; 0)),

where PKEPK 2(W0; 0) denotes a PKE encryption of W0 with randomness 0. Technically, c 6= c∗ with
high probability, so A gets the correct decryption W of c. By definition, PEKSD will first decrypt
c2 (which yields W0) and then decrypt c1 = c∗1 under identity W0. If W ∗ = W0, then decrypting
c∗1 will yield the randomness R used to encrypt c∗2, which is 6= 0 with high probability. After this,

PEKSD will check c2
?= PKEPK 2(W0;R), which is most likely not the case, so PEKSD will reject

the ciphertext c. Conversely, if W ∗ = W1, then PEKSD will decrypt c∗1 under identity W0, which
by our assumption on IBE yields 0. Then, PEKSD will successfully verify that PKEPK 2(W0; 0) and
output W0. Summarizing, A can break the IND-CCA security of the PEKSD scheme with only one
CCA query.

For the described attack, it is crucial that the IBE scheme does not reject ciphertexts when trying
to decrypt under a “wrong” identity. In fact, we can show that when the IBE scheme is well-addressed
(which means that the decryption algorithm rejects ciphertexts when trying to decrypt under the wrong
identity), we can prove the described PEKSD scheme IND-CCA secure. As hinted, IBE schemes may or
may not be well-addressed. However, we give a construction that turns any IND-CCA secure and anony-
mous IBE scheme into a well-addressed scheme, while preserving IND-CCA security and anonymity.
(For more details on our construction, see Section 4.)

Perfect consistency. We stress that our PEKSD construction enjoys perfect consistency (i.e., the test
performed by a holder of a trapdoor TW will always be consistent with the output of the decryption
algorithm). While already the PEKSD scheme of Fuhr and Paillier [8] achieves perfect consistency, our
scheme is the first scheme that does so in the standard model.

Privacy preserving trapdoors. As a side remark, we informally introduce PEKS schemes with pri-
vacy preserving trapdoors, which allow to hide the keyword even from the server holding the trapdoor,
assuming sufficient entropy in the message space. We discuss a construction in the RO model to compile
a PEKS scheme (with or without decryption) into a scheme with privacy preserving trapdoors.

Importance of non-shielding constructions. Our PEKSD scheme constitutes a natural example of
a non-shielding construction (that is, a construction of an encryption scheme from another encryption
scheme, in which the constructed decryption algorithm queries the encryption algorithm of the under-
lying scheme). Gertner et al. have been shown that an IND-CCA secure public key encryption scheme
cannot be constructed and proven from an IND-CPA secure scheme in a black-box and shielding way.
Their work in fact raises the question whether non-shielding reductions are of importantance at all. Our
results give evidence that the answer to that question might be “yes”: encryption queries in the decryp-
tion algorithm may well prove useful in a security reduction. (We should mention that, independently,
Rosen and Segev [11] gave another example of a non-shielding construction of an IND-CCA secure
encryption scheme.)

IBE with powerful center. Boneh et al. [3, Section 2.1] prove that any PEKS scheme gives rise to an
anonymous IBE scheme. If we plug our PEKSD scheme into the construction from [3, Lemma 2.3], then
we obtain an IBE scheme in which the master secret key can be used to efficiently break the anonymity
and to decrypt arbitrary ciphertexts. We call such an IBE scheme an IBE scheme with powerful center.
We envision that an IBE scheme with powerful center can be useful in optimistic protocols (in which a
trusted party knows the master secret key and only intervenes upon conflicts): generally, encryptions are
anonymous; however, as soon as a conflict occurs, the trusted party can break anonymity and identify
cheaters.
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2 Preliminaries

A probabilistic polynomial-time (PPT) algorithm A is a randomized algorithm which runs in time poly-
nomial in the length of its input. Sometimes we will want to make explicit the random coins that A
uses; we write A(x; r) to express that A should be run on input x and with random coins r. A function
f : N → R is negligible iff it vanishes faster than any polynomial, i.e., iff ∀c > 0∃k0 ∀k > k0 :
|f(k)| < k−c. If S is a set, then x

$← S denotes the process of assigning x a value from S uniformly at
random.

The definitions for families of pairwise independent hash functions, public-key encryption schemes,
and identity-based encryption schemes have been outsourced into Appendix A due to space constraints.

3 Searchable public key encryption

We start with a definition of PEKS as it appears in [3].

Definition 3.1 (PEKS [3]). A non interactive public key encryption with keyword search (PEKS) scheme
consists of the following polynomial time randomized algorithms:

1. KeyGen(1k): Takes a security parameter 1k and generates a public/secret key pair (PK ,MK ).
2. PEKSPK (W ): For a public key PK and a word W , produces a searchable encryption of W .
3. TrapdoorMK (W ): For a secret key MK and a word W , produces a trapdoor TW .
4. TestPK (S, TW ): Given a public key PK , a searchable encryption S = PEKS(PK ,W ′), and a

trapdoor TW = TrapdoorMK (W ), outputs ‘yes’ if W = W ′ and ’no’ otherwise.

We continue to the definition of security against an active attacker as it appears in [3].

Definition 3.2 (PEKS security [3]). A PEKS scheme PEKS = (KeyGen,Trapdoor,PEKS,Test) is
called indistinguishable under chosen-trapdoor attacks (IBE-IND-CTA secure) iff for every pair of PPT
adversaries A = (A1, A2), the function

Advpeks-ind-cta
PEKS,A (k) := Pr

[
Exppeks-ind-cta

PEKS,A (k) = 1
]
− 1/2

is negligible in k, where Exppeks-ind-cta
PEKS,A (k) is the following experiment:

Experiment Exppeks-ind-cta
PEKS,A (k)

(MK ,PK )← KeyGen(1k)
(m0,m1, st)← A

TrapdoorMK (·)
1 (PK )

b
$← {0, 1}

c∗ ← PEKSPK (mb)
b′ ← A

TrapdoorMK (·)
2 (st , c∗)

Return 1 iff b = b′

To avoid trivialities, we require that A1 always returns m0,m1 with |m0| = |m1|, that A1 never returns
a value mi on which Trapdoor(MK , ·) has been queried, and that A2 never queries TrapdoorMK (m0)
and TrapdoorMK (m1).

We consider enhanced PEKS schemes which enable the holder of the secret key to decrypt.

Definition 3.3 (PEKS with decryption (PEKSD)). A PEKS scheme with decryption (PEKSD scheme) is
a PEKS scheme with the following extra polynomial time randomized algorithm:

1. PEKSDMK (S): Given a secret key MK and a searchable encryption S = PEKSPK (W ) outputs
W .
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We require correctness in the sense that for (MK ,PK ) in the range of KeyGen(1k) and all messages
W ∈M, we have PEKSDMK (PEKSPK (W )) = W always.

We also require consistency of PEKSDMK with Test, even for inconsistent ciphertexts, in the follow-
ing sense. We require that for all keypairs (MK ,PK ) in the range of KeyGen(1k), for all syntactically
possible encryptions S and words W , and all trapdoors TW in the range of TrapdoorMK (W ), we have
that

TestPK (S, TW ) = yes if and only if PEKSDMK (S) = W .

Definition 3.4 (PEKSD security). A PEKSD scheme PEKSD = (KeyGen,Trapdoor,PEKS,Test,
PEKSD) is called indistinguishable under chosen-ciphertext attacks (IBE-IND-CCA secure) iff for ev-
ery pair of PPT adversaries A = (A1, A2), the function

Advpeksd-ind-cca
PEKSD,A (k) := Pr

[
Exppeksd-ind-cca

PEKSD,A (k) = 1
]
− 1/2

is negligible in k, where Exppeksd-ind-cca
PEKSD,A (k) is the following experiment:

Experiment Exppeksd-ind-cca
PEKSD,A (k)

(MK ,PK )← KeyGen(1k)
(m0,m1, st)← A

PEKSDMK (·),TrapdoorMK (·)
1 (PK )

b
$← {0, 1}

c∗ ← PEKSPK (mb)
b′ ← A

PEKSDMK (·),TrapdoorMK (·)
2 (st , c∗)

Return 1 iff b = b′

To avoid trivialities, we require that A1 always returns m0,m1 with |m0| = |m1|, that A1 never returns
a value mi on which TrapdoorMK (·) has been queried, and that A2 never queries TrapdoorMK (m0),
TrapdoorMK (m1), and PEKSDMK (c∗).

4 Well-addressed IBE schemes

The security definition. Informally, an IBE scheme is well-addressed if it is not feasible, given an
encryption of a random message under an adversarially chosen identity, to find another identity under
which the given ciphertext is not rejected, i.e., decrypts to an (arbitrary) message from the message
space. For our results, we need that this property holds even if the adversary gets the master IBE key:

Definition 4.1 (Well-addressed IBE scheme). An IBE scheme IBE = (IBG, IBT, IBE, IBD) is called
well-addressed iff for every PPT adversary A = (A1, A2), the function

Advibe-wa
IBE,A(k) := Pr

[
Expibe-wa

IBE,A(k) = 1
]
− 1/2

is negligible in k, where Expibe-wa
IBE,A(k) is the following experiment:

Experiment Expibe-wa
IBE,A(k)

(MK ,PK )← IBG(1k)
(id , st)← A1(MK ,PK )

m
$← {0, 1}k

c← IBEPK ,id (m)
id ′ ← A2(st ,m, c)
m′ ← IBDMK ,id ′(c)
Return 1 iff id ′ 6= id and m′ 6= ⊥
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How to construct a well-adressed IBE scheme. Not every IBE scheme is well-addressed. For
instance, a scheme might decrypt invalid ciphertexts to, say, 0, instead of rejecting them with ⊥. Hence,
formally, no ciphertext at all is rejected. This does not contradict security or anonymity, but obviously
breaks well-addressedness. There is a trivial way to turn any IBE scheme into a well-addressed one:
append the identity to every ciphertext and check that identity during decryption. It is easy to see that
this transformation achieves Definition 4.1 and preserves IBE-IND-CCA security, but breaks anonymity.
However, our purposes require an IBE scheme which is anonymous, IBE-IND-CCA secure, and well-
addressed.

A seemingly better idea (that preserves anonymity) would be to encrypt the identity id along with
the message m (so actually the tuple (id ,m) is encrypted). Upon decryption, the identity can then be
extracted from the message and checked. But with this idea, a particularly “uncooperative” IBE scheme
might decrypt messages under a “wrong” identity id ′ 6= id to (id ′, 0); such ciphertexts are then accepted
as valid, which breaks well-addressedness. Similar to the initial example above, this does not contradict
anonymity or secrecy, since no information about the message is leaked. Note that in this example,
we can view the IBE scheme that is used as a basis in fact as part of the adversary: it tries to lure the
decryption construction around it into accepting the ciphertext as valid.

So we need a slightly more sophisticated way to achieve well-addressedness. Concretely, similar
to the previous example, our approach is to hide the identity as part of the encrypted message, so that
anonymity is preserved. But to avoid the attack on well-addressedness above, we will equip the identity
with an “authentication tag” which is hard to guess from the basic IBE scheme’s perspective.

Construction 4.2 (Well-addressed IBE scheme). Let IBE ′ = (IBG′, IBT′, IBE′, IBD′) be an IBE
scheme with identity space {0, 1}k and message space {0, 1}` for a polynomially bounded ` = `(k) >
3k. Let H = (Hk)k∈N be a family of pairwise independent hash functions mapping from {0, 1}k to
{0, 1}3k. In this situation, define an IBE scheme IBE = (IBG, IBT, IBE, IBD), with message space
{0, 1}`−3k and identity space {0, 1}k, as follows:

• IBG(1k) uniformly samples h
$← Hk, runs (MK ′,PK ′)← IBG′(1k), and returns (MK ,PK ) :=

((MK ′, h), (PK ′, h)).
• IBT(MK , id) parses MK = (MK ′, h) and returns T = (IBT′(MK ′, id), h).
• IBEPK ,id (m) parses PK = (PK ′, h) and returns c := IBE′

PK ′,id (h(id),m).
• IBDT,id (c) parses T = (T ′, h), computes m′ ← IBD′

T ′,id (c), then parses m′ = (Y, m), and
finally returns m if Y = h(id), and ⊥ otherwise.

So roughly speaking, Construction 4.2 encrypts h(id) along with m. We will now formally prove
that this modification does not damage the secrecy and the anonymity of the underlying IBE scheme,
and we will prove that this modification achieves well-addressedness.

Lemma 4.3 (Construction 4.2 preserves IBE-IND-CCA). In the situation of Construction 4.2, if IBE ′
is IBE-IND-CCA secure, then so is IBE .

Proof. This can be shown using a merely syntactic reduction and will be given in Appendix B.

Lemma 4.4 (Construction 4.2 preserves IBE-ANO-CCA). In the situation of Construction 4.2, if IBE ′
is IBE-IND-CCA secure and IBE-ANO-CCA secure, then IBE is IBE-ANO-CCA secure.

Proof. The reduction used in this proof is slightly more complex than the one from Lemma 4.3, since the
challenge message m in the IBE-ANO-CCA experiment with IBE corresponds to a challenge message
m′ = (h(id b),m) in the IBE-ANO-CCA experiment with IBE ′ which depends on the used identity id b.
We hence provide a game-based proof for clarity.

Assume an adversary A on IBE’s IBE-ANO-CCA property, and let Game 1 be the original IBE-
ANO-CCA experiment Expibe-ano-cca

IBE,A . Let out1 denote the experiment’s output bit, so that

Pr [out1 = 1]− 1/2 = Advibe-ano-cca
IBE,A (k)
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by definition.
In Game 2, we modify the generation of the challenge ciphertext c∗. Recall that in the original

experiment Expibe-ano-cca
IBE,A , we have c∗ ← IBEPK ,idb

(m). If we write PK = (PK ′, h), this is equivalent
to c∗ ← IBE′

PK ′,idb
(h(id b),m). In Game 2, we now construct c∗ as c∗ ← IBE′

PK ′,idb
(03k,m). A

straightforward reduction to IBE ′’s IBE-IND-CCA security shows that

Pr [out2 = 1]− Pr [out1 = 1]

= Pr
[
Expibe-ind-cca

IBE ′,A∗ (k) = 1 | b = 1
]
− Pr

[
Expibe-ind-cca

IBE ′,A∗ (k) = 1 | b = 0
]

= 2Advibe-ind-cca
IBE ′,A∗ (k)

is negligible, where A∗ is a suitable IBE-IND-CCA adversary on IBE ′ that chooses m0 = (h(id b),m)
and m1 = (03k,m), and out2 denotes the experiment output in Game 2.

Now note that in Game 2, the message (03k,m) encrypted in c∗ does no longer depend on the
identity id b used for that encryption. Hence, we can now reduce to IBE ′’s IBE-ANO-CCA security.
Namely, we can construct an adversary A′ on IBE ′’s IBE-ANO-CCA security, such that A′ simulates
A, but translates A’s oracle calls like in the proof of Lemma 4.3. A′ constructs its challenge message as
m′ = (03k,m), where m is A’s challenge message. This perfectly simulates Game 2, so that

Pr [out2 = 1]− 1/2 = Pr
[
Expibe-ano-cca

IBE ′,A′ (k) = 1
]
− 1/2 = Advibe-ano-cca

IBE ′,A′ (k)

is negligible. Summing up, also Advibe-ano-cca
IBE,A (k) must be negligible, which shows the claim.

Lemma 4.5 (Construction 4.2 achieves well-addressedness). In the situation of Construction 4.2, IBE
is well-adressed.

Proof. Note that the claim is unconditional, so we will not rely on any computational assumptions, but
only on the fact thatH is a family of pairwise independent hash functions.

Consider the well-addressedness experiment Expibe-wa
IBE,A with an arbitrary adversary A. Let rIBE

and rIBD denote the respective random coins used by the experiment for the computations of c ←
IBEPK ,id (m) and m′ ← IBDMK ,id ′(c). Denote by rA the random coins that A1 and A2 are run with.

Recall that PK = (PK ′, h) and MK = (MK ′, h). Now fix arbitrary values PK ′, MK ′, m, and
r := (rIBE, rIBD, rA) (but not h). Then, any pair of identities id , id ′ ∈ {0, 1}k and a value y = h(id)
deterministically induces a ciphertext

c = IBEPK ,id (m) = IBE′
PK ′,id (h(id),m; rIBE)

and thus a decryption
(y′, m̃′) = m̃ = IBDMK ′,id ′(c; rIBD). (2)

By the universal property of h, we hence have for any fixed tuple (PK ′,MK ′,m, r, id , id ′) with id 6=
id ′:

Pr
h

[
y′ = h(id ′)

]
= 2−3k,

where y′ is defined through (2). A union bound over all values of id , id ′ ∈ {0, 1}k with id 6= id ′ yields

Pr
h

[
∃id , id ′ ∈ {0, 1}k : y′ = h(id ′)

]
≤ 2−k. (3)

Now observe that any successful adversary run (in which A2 finally produces an id ′ such that c decrypts
to m′ 6= ⊥ under identity id ′) implies that there exist id 6= id ′ with y′ = h(id ′). Since PK ′, MK ′, m,
and r are chosen independently by the experiment, and (3) holds for all fixed such values, we get that
A’s probability to succeed in the Expibe-wa

IBE,A experiment is upper bounded by 2−k.
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5 The Construction

We show how to construct a PEKSD scheme from an IBE scheme and a PKE scheme.

Construction 5.1 (PEKSD scheme from IBE and PKE). Let IBE = (IBG, IBT, IBE, IBD) be an IBE
scheme, and let PKE = (PKG,PKE,PKD) be a PKE scheme, such that:
• IBE is anonymous, well-addressed5, IBE-IND-CCA secure, and has identity and message space
{0, 1}k,

• PKE is IND-CCA secure, has message space {0, 1}k, and the encryption algorithm PKE always
uses at most k bits of randomness6.

Consider the following construction of a PEKSD scheme:
• KeyGen(k): Executes key generation algorithms of both the IBE and the PKE. The public (secret)

key is a concatenation of the two corresponding public (secret, respectively) keys. That is PK =
(PK 1,PK 2) and MK = (MK 1,SK 2) where (MK 1,PK 1) ← IBG(k) and (SK 2,PK 2) ←
PKG(k).

• PEKS((PK 1,PK 2),W ): Given a word W , the encryption algorithm works as follows:
1. Choose two random strings r1, r2 ∈ {0, 1}k.
2. Compute c1 = IBEPK 1,W (r1; r2) and c2 = PKEPK 2(W ; r1).
3. Output (c1, c2).

• Trapdoor(MK 1,SK 2)(W ): Given a word W , to generate a trapdoor, execute the trapdoor algorithm
TW = IBT(MK 1,W ) and output the resulting user secret ket (TW ,W ).

• Test(PK 1,PK 2)(S, (TW ,W )): Given a public key (PK 1,PK 2) and a searchable encryption S =
(c1, c2), as well as an IBE trapdoor TW = Trapdoor((MK 1,SK 2),W ) along with a word W ,
do the following:

1. Compute r′1 = IBDTW ,W (c1), using the decryption algorithm of the IBE scheme and the
user secret key associated with the identity W .

2. Compute c′2 = PKEPK 2(W ; r′1), using the encryption algorithm of the PKE scheme with
r′1 as the random string.

3. if c2 = c′2 output ‘yes’, and otherwise output ‘no’.
• PEKSD(MK 1,SK 2)(S), given a secret key (MK 1,SK 2) and a searchable encryption S = (c1, c2)

do the following:
1. Compute W ′ = PKDSK 2(c2), using the secret key of the PKE scheme.
2. Compute TW ′ = IBT(MK 1,W

′) using the exatraction algorithm of the IBE scheme.
3. Compute r′1 = IBDTW ′ ,W ′(c1) using the decryption algorithm of the IBE scheme.
4. Compute c′2 = PKEPK 2(W

′; r′1) using the encryption algorithm of the PKE scheme, with
r′1 as a random string.

5. if c2 = c′2 output W ′, and otherwise output ⊥.

We remark that for efficiency, an identity-based key encapsulation mechanism (instead of a full IBE
scheme) can be used, similar to [8].

Correctness and consistency. The correctness of our construction is immediate. To see that also the
consistency requirement of Definition 3.3 is met, consider an arbitrary PEKSD keypair (MK ,PK ) =
((MK 1,SK 2), (PK 1,PK 2)) (as produced by KeyGen), S = (c1, c2), W . Let (TW ,W ) denote the
unique trapdoor produced by TrapdoorMK (W ).7 Then, by definition, PEKSDMK (S) = W means

W = PKDSK 2(c2) and c2 = PKEPK 2(W ; r1) where r1 = IBDTW ,W (c1).

By the perfect correctness of PKE , this is equivalent to

c2 = PKEPK 2(W ; r1) for r1 = IBDTW ,W (c1).
5Recall that the assumption of well-addressedness is without loss of generality, considering Construction 4.2.
6The assumption about PKE’s use of random coins is without loss of generality, since one can always use a pseudorandom

number generator to stretch k bits of randomness suitably.
7Uniqueness follows from our requirement that IBT is deterministic, cf. Definition A.4.

9



Game c∗1 c∗2 Decryption rule
G0 IBEPK 1,W (r1; r2) PKEPK 2(W ; r1)
G1 IBEPK 1,W (r1; r2) PKEPK 2(W ; r1) reject (c∗1, c2) for c2 6= c∗2
G2 IBEPK 1,W (0; r2) PKEPK 2(W ; r1) reject (c∗1, c2) for c2 6= c∗2
G3 IBEPK 1,0(0; r2) PKEPK 2(W ; r1) reject (c∗1, c2) for c2 6= c∗2
G4 IBEPK 1,0(0; r2) PKEPK 2(0; r1) reject (c∗1, c2) for c2 6= c∗2

Table 1: Games in the security proof of the PEKSD construction.

But this is equivalent to Test(PK 1,PK 2)(S, (TW ,W )) = yes.

Privacy against the server. In case of Construction 5.1, trapdoors are of the form (TW ,W ) and thus
contain the word W being tested for in plain. This is crucial for our construction, since we want to
enable Test to decrypt an IBE ciphertext with respect to the “right” identity W . But obviously, this way
the holder of the trapdoor (TW ,W ) learns the word W which the trapdoor allows to test for. To a certain
degree, this property of the trapdoor is unavoidable in general: if the trapdoor holder suspects that the
trapdoor is associated with a word W , he can always encrypt W and see if the trapdoor recognizes W .

In our example from the introduction, an email gateway uses trapdoors to test incoming user emails
for a keyword W . With our scheme (in which trapdoors are of the form (TW ,W )), the server hence
knows all relevant keywords W , and what messages contains which keywords. However, an email user
might be interested in not letting the server know the keyword W itself, but only providing the server
with a trapdoor test (which in itself does not leak the keyword, but only accepts or rejects). In other
words, we might want that, given a trapdoor for a randomly chosen keyword W , one cannot efficiently
find W . (As outlined above, we cannot expect indistinguishability, but only one-wayness here.) We
informally say that PEKS schemes with this property have privacy-preserving trapdoors.

We briefly sketch how to construct PEKS (and PEKSD) schemes with privacy-preserving trapdoors.
As a basis, we assume a PEKS scheme PEKS. As a first attempt, we can use PEKS not with messages
W , but instead with messages f(W ) for a one-way permutation f . (That is, we construct a new PEKS
scheme PEKS ′ in which PEKS′PK (W ) = PEKSPK (f(W )), etc.) This way, trapdoors are constructed
for messages f(W ), and hence finding W from a trapdoor for (uniform) W requires breaking the one-
way property of f . With a similar construction, one obtains a PEKSD scheme with privacy-preserving
trapdoors from any PEKSD scheme and a trapdoor one-way permutation.

Of course, this first attempt has the drawback that privacy holds only for a uniform message W ,
where one might hope even for privacy as soon as the message comes from a distribution with significant
min-entropy. And indeed, truly random permutation is one-way as soon as the input distribution has
significant min-entropy. Since (almost) truly random permutations can be constructed in the random
oracle model (cf. [10]), we obtain a PEKS (but not a PEKSD) scheme with privacy-preserving trapdoors
in the random oracle model.

6 Security Proof

We prove the security of the PEKSD scheme presented in Construction 5.1 using a series of games. The
first game is the IND-CCA-PEKSD security game, while in the last game the adversary has information
theoretically no chance of winning. We prove that every two adjacent games are indistinguishable to a
polynomial time adversary, relying on the different properties of the IBE and the PKE schemes. The
games differ in the way challenge messages are encrypted and in the way the decryption queries are
being answered. The games are depicted in Table 6. For simplicity of notation, we denote by Gi(A)
the probability that Advpeks-ind-cta

PEKS,A (k) = 1 while adapting the Advpeks-ind-cta
PEKS,A experiment to the changes

described in Gi.
The difference between games G0 and G1 is that in the latter, after the adversary gets his challenge

ciphertext (c∗1, c
∗
2), we reject decryption queries of the form (c∗1, c2) where c2 6= c∗2. The next claim
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asserts that since the IBE scheme is well-addressed these two games are indistinguishable.

Claim 6.1. If the IBE scheme in Construction 5.1 is well-addressed then games G0 and G1 are indistin-
guishable.

Proof. Suppose there exists an adversary A = (A1, A2) such that G0(A) − G1(A) = f(k) is a non-
negligible function of the security parameter. We construct an adversary B for the Expibe-wa

IBE,B(k) experi-
ment that succeeds with probability f(k). The adversary B is described as follows:

1. Get the parameters (MK ,PK ) of the IBE from the experiment Expibe-wa
IBE,B(k).

2. Generate public and private parameters for the PKE scheme.
3. Hand A the public parameters for the PEKSD scheme as described in the construction.
4. Answer PEKSD and Trapdoor queries by following the description in Construction 5.1. PKE

operations can be done since B holds the secret key for the PKE system. IBE operations can be
done since B has the master secret key of the IBE scheme.

5. Get (m′
0,m

′
1) from A1.

6. Pick b
$← {0, 1} and r1

$←M.
7. Hand m′

b to the experiment Expibe-wa
IBE,B(k) to obtain a ciphertext c∗1 = IBEPK .m′

b
(r1) and a message

r1.
8. Give (c∗1, c

∗
2) to A2, where c∗2 = PKEPK 2(m

′
b; r1).

9. Handling decryption queries: given a query of the type (c1, c2), where c1 6= c∗1, answer exactly
as in step 4. On queries of the form (c∗1, c2) with c2 6= c∗2, decrypt c2 to obtain an identity id ′. If
id ′ = mb, then reject. (Since c2 6= c∗2 but c1 = c∗1, this ciphertext would have been rejected in
both G0 and G1.) For id ′ 6= mb, check if IBDPK ,id ′(c∗1) = ⊥. If yes, reject (again, this ciphertext
would have been rejected in G0 and G1). If not, we have found an identity useful for attacking the
well-addressedness of IBE , so we can return id ′ to the experiment Expibe-wa

IBE,B(k).
It is clear that in order to detect a difference between G0 and G1, A has to submit a decryption query
(c∗1, c2) such that IBDPK ,id ′(c∗1) 6= ⊥ for id ′ being the decryption of c2. But these queries, B manages
to extract id ′ from B’s query and can use it to break IBE’s well-addressedness. We have

|G0(A)−G1(A)| ≤ Advibe-wa
IBE,B

which proves the claim.

Next, game G2 differs from G1 in the fact that the message encrypted by the IBE scheme is no
longer related to the random string used in the PKE encryption. The indistinguishability of these games
in based on the secrecy property of the IBE scheme.

Claim 6.2. If the IBE scheme in Construction 5.1 is IBE-IND-CCA secure, then games G1 and G2 are
indistinguishable.

Proof. Suppose there exists an adversary A = (A1, A2) such that G1(A) − G2(A) = f(k) is a non-
negligible function of the security parameter. We construct an adversary B to the Expibe-ind-cca

IBE,B experi-
ment that gets advantage f(k)/4. The adversary B is described as follows:

1. Get public parameters for the IBE scheme from the Expibe-ind-cca
IBE,B experiment.

2. Generate public and private parameters to the PKE scheme.
3. Hand A1 the public parameters for the PEKSD scheme as described in Construction 5.1.
4. Answer PEKSD and Trapdoor queries of A1 by following the algorithms as described in Con-

struction 5.1. PKE operations can be done since B holds the secret key for the PKE system. IBE
operations are done by using oracle calls to the IBD and IBT algorithms, which are allowed in
the Expibe-ind-cca

IBE,B experiment.
5. Get (m′

0,m
′
1) from A1.

6. Pick b
$← {0, 1} and r1

$←M.
7. Hand the Expibe-ind-cca

IBE,B the following values: id∗ = m′
b,m0 = r1, and m1 = 0.

11



8. Get c∗ from Expibe-ind-cca
IBE,B and give (c∗1, c

∗
2) to A2, where c∗1 = c∗ and c∗2 = PKEPK 2(m

′
b; r1).

9. Answer PEKSD and Trapdoor queries of A2 as follows: if the query is of the form (c∗1, c2), then
reject the query. Otherwise, answer exactly as in step (4). The key point is that since c1 6= c∗1, the
adversary B can still use oracle calls to the IBD and IBT algorithms.

10. Get the output b′ from A2.

11. Pick b1, b2
$← {0, 1}. If b1 = 0, output b∗ = b′, else, output b∗ = b2.

Note that in case the experiment Expibe-ind-cca
IBE,B chose to encrypt the message m0 = r1, then the

experiment is distributed identically to the game G1 while if it chose to encrypt the message m1 = 0,
then the experiment is distributed identically to the game G2.

Pr[Expibe-ind-cca
IBE,B (k) = 1] =

= 1/2 Pr[Expibe-ind-cca
IBE,B (k) = 1|b1 = 0] + 1/2 Pr[Expibe-ind-cca

IBE,B (k) = 1|b1 = 1] =

= 1/2 Pr[Expibe-ind-cca
IBE,B (k) = 1|b1 = 0] + 1/4 =

= 1/2(1/2 Pr[Expibe-ind-cca
IBE,B (k) = 1|b1 = 0 and m0 = r1 was encrypted]+

+1/2 Pr[Expibe-ind-cca
IBE,B (k) = 1|b1 = 0 and m1 = 0 was encrypted]) + 1/4 =

= 1/2(1/2(1−G1(A)) + 1/2G2(A)) + 1/4 =

= 1/2(1/2− 1/2(G1(A)−G2(A))) + 1/4 =

= 1/4− 1/4f(k) + 1/4 = 1/2− 1/4f(k)

Therefore, Advibe-ind-cca
IBE,B (k) = −f(k)/4 is non-negligible.

The difference between game G3 and G2 is that the identity used to encrypt a message in game G3

is now replaced to be the zero identity. The games are proved indistinguishable based on the anonymity
property of the IBE scheme.

Claim 6.3. If the IBE scheme in Construction 5.1 is anonymous then games G2 and G3 are indistin-
guishable.

Proof. Suppose there exists an adversary A = (A1, A2) such that G2(A) − G3(A) = f(k) is a non-
negligible function of the security parameter. We construct an adversary B for the Expibe-ano-cca

IBE,B experi-
ment that gets advantage f(k)/4. The adversary B is described as follows:

1. Get public parameters for the IBE scheme from the Expibe-ind-cca
IBE,B experiment.

2. Generate public and private parameters to the PKE scheme.
3. Hand to A1 the public parameters for the PEKSD scheme as described in Construction 5.1.
4. Answer PEKSD and Trapdoor queries of A by following the algorithms as described in the

PEKSD construction. PKE operations can be done since B holds the secret key for the PKE
system. IBE operations are done by using oracle calls to the IBD and IBT algorithms, which are
allowed in the Expibe-ano-cca

IBE,B experiment.
5. Get (m′

0,m
′
1) from A1.

6. Pick b
$← {0, 1} and r1

$←M.
7. Hand to Expibe-ano-cca

IBE,B the following values: id0 = m′
b, id1 = 0, and m = 0.

8. Get c∗ from Expibe-ano-cca
IBE,B and give (c∗1, c

∗
2) to A2, where c∗1 = c∗ and c∗2 = PKEPK 2(m

′
b; r1).

9. Answer PEKSD and Trapdoor queries as follows: if the query is of the form (c1, c2), where
c1 = c∗1, then reject the query. Otherwise, answer exactly as in step (4). The key point is that since
c1 6= c∗1, the adversary B can still use oracle calls to the IBD and IBT algorithms.

10. Get the output b′ from A2.

11. Pick b1, b2
$← {0, 1}. If b1 = 0, output b∗ = b′, else, output b∗ = b2.
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Note that in case the experiment Expibe-ind-cca
IBE,B chose to encrypt under the identity id0 = mb, then

the experiment is distributed identically to the game G2 while if it chose to encrypt under the identity
id1 = 0, then the experiment distributes identically to the game G3. The analysis of the advantage of B
is identical to the analysis from Claim 6.2.

Finally, game G4 differs from G3 in that the message encrypted by the PKE scheme no longer
depends on the message W . This makes the encryption challenge information theoretically independent
of the message, and thus the adversary has no advantage in guessing which of W0 and W1 was encrypted.
The games are proven indistiguishable using the secrecy property of the PKE scheme.

Claim 6.4. If the PKE scheme in Construction 5.1 is IND-CCA secure, then games G3 and G4 are
indistinguishable.

Proof. Suppose there exists an adversary A = (A1, A2) such that G3(A) − G4(A) = f(k) is a non-
negligible function of the security parameter. We construct an adversary B to the Exppke-ind-cca

PKE,B experi-
ment that gets advantage f(k)/4. The adversary B is described as follows:

1. Get public parameters for the PKE scheme from the Exppke-ind-cca
PKE,B experiment.

2. Generate public and private parameters to the IBE scheme.
3. Hand A the public parameters for the PEKSD scheme as described in Construction 5.1.
4. Answer PEKSD and Trapdoor queries by following the algorithms as described in the Construc-

tion 5.1. IBE operations can be done since B holds the master secret key for the IBE scheme.
PKE operations are done by using oracle calls to the PKD algorithm, which are allowed in the
Exppke-ind-cca

PKE,B experiment.
5. Get (m′

0,m
′
1) from A1.

6. Pick b
$← {0, 1} and r1, r2

$←M.
7. Hand the Exppke-ind-cca

PKE,B the following values: m0 = m′
b and m1 = 0.

8. Get c∗ from Exppke-ind-cca
PKE,B and give (c∗1, c

∗
2) to A2, where c∗1 = IBE0(0) and c∗2 = c∗.

9. Answer PEKSD and Trapdoor queries as follows: if the query is of the form (c1, c2), where
c1 = c∗1, then reject the query. Otherwise, if c2 6= c∗2, answer exactly as in Step 4. Finally,
if c2 = c∗2 answer as follows (here we show how to answer a decryption query; a test query is
answered similarly):

(a) Compute T0 = IBT(MK 1, 0) using the extraction algorithm of the IBE scheme.
(b) Compute r′1 = IBDT0,0(c1) using the decryption algorithm of the IBE scheme.
(c) Compute c′2 = PKEPK 2(0; r′1) using the encryption algorithm of the PKE scheme, with r′1

as a random string. If c′2 = c∗2 answer 0. otherwise continue.
(d) Compute Tmb

= IBT(MK 1,mb) using the extraction algorithm of the IBE scheme.
(e) Compute r′′1 = IBDTmb

,mb
(c1) using the decryption algorithm of the IBE scheme.

(f) Compute c′′2 = PKEPK 2(mb; r′′1) using the encryption algorithm of the PKE scheme, with
r′′1 as a random string. If c′′2 = c∗2 answer mb. otherwise reject the query.

10. Get the output b′ from A2.

11. Pick b1, b2
$← {0, 1}. If b1 = 0, output b∗ = b′, else, output b∗ = b2.

Note that in case the experiment Exppke-ind-cca
PKE,B chose to encrypt the message m0 = m′

b, then the
experiment is distributed identically to the game G3 while if it chose to encrypt the message m1 =
0, then the experiment distributes identically to the game G4. The analysis of the advantage of B is
identical to the analysis from Claim 6.2.
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A Standard definitions

A.1 Universal hashing

Definition A.1 (Family of pairwise independent hash functions). Let H = (Hk)k∈N and ` : N → N

with h : {0, 1}k → {0, 1}`(k) for all k and h ∈ Hk. Then H is a family of pairwise independent hash
functions iff for all k, for all X, X ′ ∈ {0, 1}k with X 6= X ′, and for all Y, Y ′ ∈ {0, 1}`(k)

Pr
h

[
h(X) = Y and h(X ′) = Y ′] = 2−2`(k),

where the probability is over a uniform choice of h ∈ Hk.

A.2 Public key encryption

Definition A.2 (PKE scheme). A public key encryption (PKE) scheme PKE = (PKG,PKE,PKD)
with message spaceM consists of three PPT algorithms with the following syntactics:
Key generation: (PK ,SK ) ← PKG(1k) samples a keypair (PK ,SK ) consisting of a public key PK

along with a secret key SK .
Encryption: c← PKEPK (m) encrypts a message m ∈M and produces a ciphertext c.
Decryption: m← PKDSK (c) decrypts a ciphertext c to a message m.
We require that PKDSK (PKEPK (m)) = m always, for all m ∈ M and all possible (PK ,SK ) ←
PKG(1k).

Definition A.3 (IND-CCA secure PKE scheme). A PKE scheme PKE = (PKG,PKE,PKD) is called
indistinguishable under chosen-ciphertext attacks (IND-CCA secure) iff for every pair of PPT adver-
saries A = (A1, A2), the function

Advpke-ind-cca
PKE,A (k) := Pr

[
Exppke-ind-cca

PKE,A (k) = 1
]
− 1/2

is negligible in k, where Exppke-ind-cca
PKE,A (k) is the following experiment:

Experiment Exppke-ind-cca
PKE,A (k)

(SK ,PK )← PKG(1k)
(m0,m1, st)← A

PKDSK (·)
1 (PK )

b
$← {0, 1}

c∗ ← PKEPK (mb)
b′ ← A

PKDSK (·)
2 (st , c∗)

Return 1 iff b = b′

To avoid trivialities, we require that A1 always returns m0,m1 ∈ M with |m0| = |m1|, and that A2

never queries PKDSK (c∗).

A.3 Identity based encryption

Definition A.4 (IBE scheme). An identity-based encryption (IBE) scheme IBE = (IBG, IBT, IBE,
IBD) with identity space ID ⊆ {0, 1}∗ and message space M ⊆ {0, 1}∗ is comprised of four PPT
algorithms with the following syntactics:
Key generation: (MK ,PK )← IBG(1k) returns a master secret key MK along with a public key PK .
Trapdoor generation: T ← IBT(MK , id) returns a user secret key MK for an identity id ∈ ID.
Encryption: c ← IBEPK ,id (m) encrypts a message m ∈ M under public key PK and identity id ∈

ID.
Decryption: m← IBDT,id (c) decrypts a ciphertext c under identity id with a user secret key T .
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Occasionally, we will write c ← IBDMK ,id (c) as a shorthand for executing first T ← IBT(MK , id)
and then c ← IBDT,id (c). We require that for all id ∈ ID and m ∈ M, we always have m ←
IBDMK ,id (IBEPK ,id (m)) for all possible (MK ,PK ) ← IBG(1k). As a technicality, we also require
that algorithm IBT is deterministic (this is without loss of generality, cf. Boneh et al. [4]).

Definition A.5 (IND-CCA secure IBE scheme). An IBE scheme IBE = (IBG, IBT, IBE, IBD) is
called indistinguishable under chosen-ciphertext attacks (IBE-IND-CCA secure) iff for every pair of
PPT adversaries A = (A1, A2), the function

Advibe-ind-cca
IBE,A (k) := Pr

[
Expibe-ind-cca

IBE,A (k) = 1
]
− 1/2

is negligible in k, where Expibe-ind-cca
IBE,A (k) is the following experiment:

Experiment Expibe-ind-cca
IBE,A (k)

(MK ,PK )← IBG(1k)
(id∗,m0,m1, st)← A

IBT(MK ,·),IBDMK ,·(·)
1 (PK )

b
$← {0, 1}

c∗ ← IBEPK ,id∗(mb)
b′ ← A

IBT(MK ,·),IBDMK ,·(·)
2 (st , c∗)

Return 1 iff b = b′

To avoid trivialities, we require that A1 always returns m0,m1 ∈ M with |m0| = |m1|, that A1 never
returns an id∗ on which IBT(MK , ·) has been queried, and that A2 never queries IBT(MK , id∗) and
IBDMK ,id∗(c∗).

Definition A.6 (Anonymous IBE scheme). An IBE scheme IBE = (IBG, IBT, IBE, IBD) is called
anonymous (IBE-ANO-CCA secure) iff for every pair of PPT adversaries A = (A1, A2), the function

Advibe-ano-cca
IBE,A (k) := Pr

[
Expibe-ano-cca

IBE,A (k) = 1
]
− 1/2

is negligible in k, where Expibe-ano-cca
IBE,A (k) is the following experiment:

Experiment Expibe-ano-cca
IBE,A (k)

(MK ,PK )← IBG(1k)
(id0, id1,m, st)← A

IBT(MK ,·),IBDMK ,·(·)
1 (PK )

b
$← {0, 1}

c∗ ← IBEPK ,idb
(m)

b′ ← A2(st , c∗)
Return 1 iff b = b′

To avoid trivialities, we require that A1 always returns id0, id1 with |id0| = |id1|, that A1 never returns
an id0 or an id1 on which IBT(MK , ·) has been queried, and that A2 never queries IBT(MK , id i) and
IBDMK ,idi

(c∗) for i ∈ {0, 1}.

B Postponed proofs

Proof of Lemma 4.3. Given an arbitrary IBE-IND-CCA adversary A = (A1, A2) on IBE , we construct

an IBE-IND-CCA adversary A′ = (A′
1, A

′
2) on IBE ′. A′IBT′(MK ′,·),IBD′

MK ′,·(·)
1 (PK ′) samples h

$← Hk,
sets PK := (PK ′, h), and runs (id∗,m0,m1, st)← A

IBT(MK ,·),IBDMK ,·(·)
1 (PK ). Here, the trapdoor or-

acle IBT(MK , id) returns (IBT′(MK ′, id), h), and the decryption oracle IBDMK ,id (c) is implemented

16



as follows: run m′ ← IBD′
MK ′,id (c), parse m′ = (Y, m), and return m if h(id) = Y (and ⊥ other-

wise). Next, A′
1 returns (id∗,m′

0,m
′
1, st), where m′

i = (h(id∗),mi) for i ∈ {0, 1}. Finally, A′
2 runs A2

with oracles IBT and IBD implemented as above, and outputs A2’s output. This perfectly emulates the
IBE-IND-CCA experiment with IBE for A, and we have

Advibe-ind-cca
IBE,A (k) = Advibe-ind-cca

IBE ′,A′ (k),

which shows the lemma.
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