
LEGO for Two Party Secure Computation

Jesper Buus Nielsen and Claudio Orlandi

BRICS, Department of Computer Science, Aarhus Universitet,
Åbogade 34, 8200 Århus, Denmark

{buus,orlandi}@cs.au.dk

Abstract The first and still most popular solution for secure two-party computation relies
on Yao’s garbled circuits. Unfortunately, Yao’s construction provide security only against
passive adversaries. Several constructions (zero-knowledge compiler, cut-and-choose) are
known in order to provide security against active adversaries, but most of them are not
efficient enough to be considered practical. In this paper we propose a new approach called
LEGO (Large Efficient Garbled-circuit Optimization) for two-party computation, which
allows to construct more efficient protocols secure against active adversaries. The basic
idea is the following: Alice constructs and provides Bob a set of garbled NAND gates. A
fraction of them is checked by Alice giving Bob the randomness used to construct them.
When the check goes through, with overwhelming probability there are very few bad gates
among the non-checked gates. These gates Bob permutes and connects to a Yao circuit,
according to a fault-tolerant circuit design which computes the desired function even in
the presence of a few random faulty gates. Finally he evaluates this Yao circuit in the
usual way.
For large circuits, our protocol offers better performance than any other existing protocol.
The protocol is universally composable (UC) in the OT-hybrid model.

Key words: Two Party Computation, Yao’s Circuits, UC security.

Contents

LEGO for Two Party Secure Computation . i
Jesper Buus Nielsen and Claudio Orlandi

1 Introduction . 1
2 Preliminaries and Notation . 3
3 The Ideal Functionality . 4
4 The Protocol . 5

4.1 Commitment Scheme . 5
4.2 Global Difference . 6
4.3 Component Production . 6

NT Gates . 6
Key Checks . 7
Details of Component Production . 8

4.4 Key Alignment . 8
Aligning Output Wires with Input Wires . 9
Aligning NT Gates . 9
Aligning KCs with NT gates . 9

4.5 Fault-Tolerant Circuit Design . 10
4.6 Circuit Evaluation . 10

5 Analysis . 11
5.1 Cheating Alice . 12
5.2 Cheating Bob . 14

A Proof of Lemma 1 . 16
B Parameters choice . 17
C A Replicated Gate . 17
D Input/Output Structure . 17
E NOT gates for free . 17
F Sampling the Challenges using a Short Seed . 18
G How to Construct the Circuit . 20
H Coin Flipping via OT . 20
I Proof of Knowledge via OT . 21
J Extracting ∆ . 22
K Extracting Most Component Generators with High Probability 22
L Extraction and Simulation of Components . 24

L.1 NT gates . 25
Extraction Complete: . 25
Simulatable: . 25

L.2 KCs . 25
Extraction Complete: . 25
Simulation . 25

1 Introduction

In secure two-party computation we have two parties, Alice and Bob, that want to
compute a function f(·, ·) of their inputs a, b, and learn the result y = f(a, b). The
term ‘secure’ refers to the fact that Alice and Bob don’t trust each other, and therefore
want to run the computation with some security guarantees: informally they want to
be sure that y is computed correctly and they don’t want the other party to be able to
learn anything about their secret (except for what they can efficiently learn from the
output of the computation itself). Secure two-party computation was introduced by Yao
in [Yao86] and later generalized to the multi-party case in [GMW87]. Those solutions
offer computational security and are based on the evaluation of an “encrypted” Boolean
circuit. For the multi-party case, assuming that some majority of the parties are honest,
it is possible to achieve information theoretically secure protocols [CCD88,BGW88].

Yao’s original construction is only secure against a passive adversary, i.e. an adversary
that doesn’t deviate from the protocol specifications but can inspect the exchanged
messages trying to extract more information about the inputs of the other parties. A
more realistic definition of security allows the adversary to arbitrarily deviate from the
protocol: in this case a cheating party can try to learn the inputs of the other party or
force the computation to output an incorrect value. Such an adversary is called malicious
or active.

A way to design protocols that are secure against active adversaries is to start with
a passive protocol and then compile it into an active one using standard techniques. The
main idea here is that the parties commit to their inputs, randomness and intermediate
steps in the computation. Then they prove in zero-knowledge that the values inside the
commitments were computed according to the protocol. The compiler technique is of
great interest from a theoretical point of view, but unfortunately it is not really practical,
because of the generic zero-knowledge proofs involved.

Our Contribution: In this paper we focus on the two-party protocol based on Yao’s
garbled circuits [Yao86]. We assume the reader to be familiar with the protocol.1

In Yao’s protocol Alice constructs a garbled circuit and sends it to Bob: a malicious
Alice can send Bob a circuit that doesn’t compute the agreed function, therefore the
computation loses both privacy and correctness. In our protocol instead Alice and Bob
both participate in the circuit construction. The main idea of our protocol is to have
Alice prepare and send a bunch of garbled NAND gates (together with some other
components) to Bob. Then Bob uses these gates to build a circuit that computes the
desired function. Bob can in fact, with a limited help from Alice, solders the gates as
he likes. Then the circuit is evaluated by Bob as in Yao’s protocol: Bob gets his keys
running oblivious transfers (OT) with Alice and he evaluates the circuit.

As usual in Yao’s circuit, it is easy to cope with a malicious Bob, as he can’t really
deviate from the protocol in a malicious way. It is more challenging (and interesting) to
try to prevent Alice from cheating, as Alice can cheat in several ways, including:

Circuit generation: In the standard Yao’s protocol, Alice can send to Bob a circuit
that does not compute the desired function. In particular, she could send a circuit
computing the function f(a, b) = b, where b is Bob’s input, clearly violating Bob’s
privacy. In our construction, Alice sends to Bob the components of the circuit, and
Bob assembles them. So Alice cannot choose a function and force Bob to compute it.

1 A complete description of the protocol and the proof of its security can be found in [LP04].

1

However she could still cheat and send some bad gates: Alice could cheat by sending
something that is not a NAND gate, meaning either another Boolean function or
some gate that outputs error on some particular input configuration. In this case the
circuit will output an incorrect value and eventually compromise Bob’s security.

Input phase: As in Yao’s protocol, suppose Bob has an input bit b and he needs to
retrieve the corresponding key Kb for an input gate. To do so, Alice and Bob run an
OT where Alice inputs K0,K1 and Bob learns Kb. If Alice is malicious, she might
input just one real key, together with a bad formed one. For instance, Alice could
input K0, R, with R a random string. In this case, if Bob’s input is 0, he gets a real
key and he succeed in the circuit evaluation. If Bob’s input is 1, he gets a bad key, so
he cannot evaluate the circuit and therefore he aborts the protocol. Observing Bob’s
behavior, Alice learns Bob’s input bit. This kind of cheating is usually referred to as
selective failure.

To deal against a malicious Alice, Bob has the following tools:

Gate verification: When Alice provides the components to Bob, he will ask with some
probability to open the components to check their correctness. The test on the com-
ponents is destructive, and will induce on the untested components a probability of
being correct. So at the end of this preprocessing phase Bob knows that the amount
of bad components is limited by some constant with some small probability — s bad
gates with probability 2−s, say.

Gate shuffling: Once Bob gets a suitable amount of gates, he randomly permutes
them in a circuit computing the desired function. In this way, the bad gates that
might have passed the first test are placed in random positions, so Alice can’t force
adversarial errors, but just random errors.

Fault-tolerant circuit design: To cope with the residual bad gates, Bob computes
every gate with some redundancy and takes a majority vote of the outputs.

Leakage-tolerant input layer: To protect against possible selective error in the input
phase, Bob encodes his input in a way that even if Alice learns some bits of the
encoded input, she doesn’t actually learn anything but some random bits.

These techniques lead to an efficient protocol for two-party secure computation. The
sketch of the protocol is the following: first Alice prepares and sends to Bob components
of the following kind:

NAND gates: A gate is defined by 6 keys L0, L1, R0, R1,K0,K1, representing the two
possible values for the input wires L,R and the output wire K. When Bob inputs
two keys La, Rb, he gets as output the key Ka·b.

Key check (KC): A KC is defined by two keys K0,K1 representing the Boolean values
on that wire. When Bob gets a key K ′ for that wire, the wire check signals whether
K ′ is correct (i.e. K ′ ∈ {K0,K1}) or not.

Any of these components can be malfunctioning and lead to an erroneous compu-
tation. To check that most of the components are actually working, Bob checks the
correctness of a fraction of them, in a cut-and-choose flavor.

Then Alice and Bob agree on a function to be computed. Bob randomly permutes the
components and solder them, with Alice’s help. Bob replaces every gate of the original
circuit with a small amount of (possibly malfunctioning) gates and KCs, in a redundant
way. There is no fan-out limit, i.e. any output wire can be soldered to any number of

2

input wires of the next layer of gates. Alice sends the keys corresponding to her input
bits, while Bob retrieves his keys using OTs. Finally Bob evaluates the Yao circuit and
sends the output keys to Alice, that can therefore retrieve the output of the circuit.2

We prove the protocol to be UC secure [Can01] in the OT hybrid model.

Related Work: In the last years many solutions have been proposed to achieve two-
party computation secure against malicious adversaries: in Lindell and Pinkas’ solution
[LP07], Alice sends s copies of the circuit to be computed. Bob checks half of them
and computes on the remaining circuits. Due to the circuit replication, they need to
introduce some machinery in order to force the parties to provide the same inputs to
every circuit, resulting in an overhead of s2 commitments per input wire for a total of
O(s|C| + s2|I|), where |C| is the size of the circuit and |I| is the size of the input. The
protocol offers a non-UC simulation proof of security. The complexity of our protocol is
of the order O(s log(|C|)−1|C|) i.e. our replication factor is reduced by the logarithm of
the circuit size. Therefore, our construction is especially appealing for big circuits.

Going more into the details, the protocol in [LP07] requires s copies of a circuit of
size |C|+|D|, where D is an input decoder, added to the circuit to deal with the selective
failure attack. They propose a basic version of it with size O(s|I|) and a more advanced
with size O(s+|I|). However, because of the s2|I| commitments, their optimized encoding
gives them just a benefit in the number of OT required. With our construction, we can
fully exploit their encoding. In fact we need just to replicate s/ log(|C|) times a circuit
of size O(|C| + s + |I|) = O(|C|).

The protocol from [LP07] was recently implemented in [LPS08]. It would be interest-
ing to implement also our protocol, to find out which protocol offers better performance
for different circuit sizes. In particular, we note that we can instantiate our primitives
(encryption scheme, commitments, OT) with the ones they used. In this case our proto-
col should achieve a weaker security level, the same as [LPS08]. Clearly we can’t preserve
UC security if we instantiate our protocol with a non-UC OT.

Other related works include: To optimize the cut-and-choose construction, Woodruff
[Woo07] proposed a way of proving input consistency using expander graphs: using this
construction it is possible to get rid of the dependency on the input size and there-
fore achieving communication and computational complexity of O(s|C|). Considering
UC security, in [JS07] a solution for two party computation on committed inputs is
presented. This construction uses public key encryption together with efficient zero-
knowledge proofs, in order to prove that the circuit was built correctly. Their asymptotic
complexity is O(|C|). However, due to their massive use of factorization-based public
key cryptography, we believe that our protocol will offer better performance.

2 Preliminaries and Notation

Security parameters: the protocol has two security parameters: κ is a computational
security parameter for the commitment schemes, oblivious transfers, encryption schemes
and hash functions used, while s is a statistical security parameter that deals with the

2 If both parties need to get the output, standard constructions can be used.

3

probability that the computation fails due to bad components.3 Alice’s security relates
just to κ, while Bob’s security relates to both κ and s.

For the protocol to work, we choose a prime number p of size O(κ). The keys for the
Yao gates are going to live in the group (Zp,+), and every time we write K + K ′ we
actually mean K + K ′ mod p.

Hash function: The protocol needs a hash-function H : Zp → Zp. In the analysis we
model it as a non-programmable and non-extractable random oracle for convenience.
This assumption can be replaced by a complexity theoretical assumption very similar
to the notion of correlation robustness in [IKNP03]. Most hash functions of course work
on bit-strings. We can use any non-programmable and non-extractable random oracle
G : {0, 1}∗ → {0, 1}ℓ as H(x) = G(x) mod p, where ℓ > log2(p) + s and x ∈ {0, 1}ℓ is
considered a number x ∈ [0, 2ℓ).

Encryption scheme: We implement our symmetric encryption scheme with the hash
function in the following way: Our encryption scheme has the functionality E : Zp×Zp →
Zp, D : Zp × Zp → Zp. To encrypt we compute C = EK(M) = H(K) + M . To decrypt
we compute M = DK(C) = C − H(K).

3 The Ideal Functionality

The ideal functionality is described in Fig. 1. It is “insecure” in the sense that it allows
Alice to guess input bits. This can be solved in a block-box manner by computing a
function of a randomized encoding of the input, where any s bits are uniformly random
and independent. This allows Alice to guess s or more bits with probability at most
2−s and ensures that guessing less bits will not leak information: The guessed bits are
uniformly random and independent. One method for this is given in [LP07]. The extra
number of gates used is O(|b| + s), where |b| is the length of Bob’s input and s the
statistical security parameter. From now on we can therefore focus on implementing the
slightly insecure ideal functionality above.

The ideal functionality FSFE runs as follows:

Circuit and inputs: Alice inputs (a, cA), Bob inputs (b, cB), and cA and cB are leaked to the
adversary. If cA 6= cB , then the ideal functionality outputs disagreement! to both parties and
terminates. Otherwise, let c = cA and parse c as (ℓA, ℓB, ℓy, C, ℓ), where ℓA, ℓB, ℓ ∈ N and C is
a NAND circuit with ℓA + ℓB input wires and ℓy output wires. The size of the circuit C is L

NAND gates. Parse a as a ∈ {0, 1}ℓA and b ∈ {0, 1}ℓB . Here ℓ is a replication parameter.
Corrupt Alice: If Alice is corrupted, she can specify a set {(i, βi)}i∈I , where I ⊆ {1, . . . , ℓB}

and βi ∈ {0, 1}. If βi = bi for i ∈ I , then output correct! to Alice. Otherwise, output
You were nicked! to Alice and output Alice cheats! to Bob.

Evaluation: If both parties are honest or Alice was not caught above, then the ideal functionality
computes y = f(a, b) and outputs y to Alice. The adversary decides the time of delivery.

Figure 1. The ideal functionality for secure circuit evaluation.

3 We use κ to instantiate cryptographic primitives. Given that all cryptographic primitives were per-
fectly secure, the insecurity in s would be 2−s, independent of the running time of the adversary. For
a given desired security level 2−σ one therefore needs κ to grow with the computational capability of
the adversary, whereas s can be fixed. We therefore think of s as smaller than κ.

4

4 The Protocol

The main structure of the protocol is as follows.

Setup: Alice and Bob agree on the parameters (κ, s, p). They run in the hybrid world
with an ideal functionality for OT and agree on a hash function H.

Commitment scheme: Alice and Bob samples a public key pk for the trapdoor com-
mitment scheme using an UC-secure coin flip protocol (see Appendix H). All later
commitments from Alice to Bob are performed under this key.

Global difference: Alice samples ∆, r∆ ∈R Zp with ∆ 6= 0 and sends the commitment
[∆; r∆] to Bob. She also gives a zero-knowledge UC-secure proof of knowledge of ∆
(see Appendix I). We return to the use of ∆ later.

Component production: Alice produces a number of components and sends them to
Bob. For each type of component Alice sends a constant factor more components
than needed.

Component checking: For each type of component Bob randomly picks a subset of
the components to be checked. Alice sends the randomness used to generate them,
and Bob checks the components.

Soldering: Bob permutes the remaining components, and use them to build a Yao
circuit which computes the desired function. The circuit is constructed such that it
can tolerate a few bad components when they occur at random positions. To connect
the components we require Alice to open some commitments towards Bob.

Evaluation: Bob gets his input keys using the OT, and Alice sends her keys. Then
Bob evaluates the circuit in a similar way as in Yao’s protocol. Bob sends Alice the
output keys.

Alice and Bob do not have to agree on the function to be computed until the soldering
step and do not have to know their inputs until the evaluation step.

4.1 Commitment Scheme

We need a perfectly hiding trapdoor commitment scheme, homomorphic in Zp: for this
purpose we can use a Pedersen’s commitment scheme over the group of points of an
elliptic curve of size p. Once the elliptic curve is selected, we have a group (G, p, ·, g)
where G is a multiplicative abelian group of order p, and g generates G. To generate
a key for the commitment scheme, a random element h will be sampled, using an UC
coin-flip protocol. For the proof to work we need in fact the simulator to be able to
extract the trapdoor t ∈ Zp s.t. h = gt. Now the public key is pk = (G, p, ·, g, h) and the
trapdoor is t. To commit compute commpk(x; r) = gxhr. The commitment is perfectly
hiding and computationally binding, and given the trapdoor t it is possible to open the
commitment to any value.

To keep the notation simple we will write [K] for commpk(K; r), for some randomness
r. When computing with the commitments we will write [K0+K1] = [K0]+[K1] meaning
commpk(K0+K1; r+s) = commpk(K0; r)·commpk(K1; s) for some r, s. When we want to
stress the randomness, we write [K; r] for commpk(K; r). When we write x = open([x])
we mean: Alice sends Bob x, r, and Bob checks that gxhr = [x]. If not Bob aborts the
protocol, else he outputs x.

5

4.2 Global Difference

To each wire we associate one uniformly random key K0, which we call the zero-key.
We then define Kc = K0 + c∆ for i = 1, 2, In the evaluation of the circuit, if a wire
carries the value c ∈ {0, 1, 2, . . .} 4 then Bob will learn the key Kc, and only the key
Kc. Since K0 is uniformly random, Kc is uniformly random, and thus does not reveal
the value of c. We here note that it is important that the global difference ∆ is hidden
from Bob, as ∆ would allow Bob to compute all keys for a given wire from just one of
the keys.

We will have gates with the functionality e : {0, 1, . . . , C}×{0, 1, . . . ,D} → {0, 1, . . . , E}
for positive integers C, D and E. Let L0 be the zero-key for the left wire, let R0 be
the zero-key for the right wire and let O0 be the zero-key for the output wire. Then the
garbled version of e will map (Lc, Rd) to Oe(c,d) for (c, d) ∈ {0, 1, . . . , C}×{0, 1, . . . ,D}.

We already now note that the addition gate can be garbled in a trivial manner.5 The
garbling consists of the shift value S = L0 + R0 − O0. Given Lc and Rd one evaluates
the garbling by computing Lc + Rd − S = (L0 + c∆) + (R0 + d∆) − L0 − R0 + O0 =
(c + d)∆ + O0 = Oc+d.

4.3 Component Production

We describe how the components are generated and checked, and describe their intended
use. Later we describe how to connect components to get a Yao circuit. For all compo-
nents we call the randomness used by Alice to compute the component the generator of
the component. It is insecure for Alice to send the entire generator to Bob in the check,
as it would reveal ∆ to Bob, which would violate the security of Alice. Therefore a finite
challenge set E will be given. In the check Bob will send e ∈ E to Alice and Alice returns
part of the generator. Bob then checks that part. In Appendix L it is argued that the
checks are complete in the sense that given an answer to all challenges one can compute
a generator.

NT Gates The first component is the not-two gate or NT gate. It is a slightly fuzzy
garbling of the unary function nt : {0, 1, 2} → {0, 1} where nt(c) = 0 iff c = 2. It will
be used to implement a NAND gate by applying it to the sum of the two input bits.6

The generator for an NT gate consists of two keys I0, O0 ∈ Zp, two randomizers for the
commitment scheme rI , rO ∈ Zp and a permutation π of {0, 1, 2}. The gate is of the
form

([I0; rI], [O0; rO], C0, C1, C2) = NT(I0, O0, rI , rO, π) ,

where Cπ(0) = EI0(O1), Cπ(1) = EI1(O1), Cπ(2) = EI2(O0). Here Ic = I0 + c∆ and
Od = O0 + d∆ for the global difference ∆. Note that Cπ(c) = EIc(Ont(c)) for c = 0, 1, 2.

Intended Use: Given an NT gate NT = ([I0, rI], [O0, rO], C0, C1, C2) = NT(I0, O0, rI , rO, π)
and a valid input key Ic = I0 + c∆, for c ∈ {0, 1, 2}, one can compute Kd = DIc(Cd) for
d = 0, 1, 2. One of these keys will be the key DIc(Cπ(c)) = Ont(c). I.e., the NT gate NT
maps Ic to a set of three candidate keys which contains Ont(c). For a given NT gate NT
and a key I we denote the set of candidate keys by NT (I). Another component, called

4 Usually c ∈ {0, 1}, but other values are possible.
5 In fact any linear function can be garbled in this way, see Appendix E.
6 In Appendix G how to implement any Boolean gate using just one nt gate is explained.

6

key checks, will be used to find the correct key among the three candidates NT (I). Key
checks are described below.

It is convenient to introduce the concept of a shifted NT gate, as we will need it in
the soldering phase. A shifted NT (SNT) is of the form (ΣI , ΣO,NT) with ΣI , ΣO ∈ Zp

being shift values. The two shifts define a new zero-key I ′0 = I0 − ΣI for the input
wire and a new zero-key O′

0 = O0 − ΣO for the output wire. These zero-keys define
I ′c = I ′0 + c∆ and O′

d = O′
0 + d∆. Given I ′c one can evaluate the gate by computing the

candidate keys SNT (I ′c) = NT (I ′c + ΣI) − ΣO, which contains Ont(c) − ΣO = O′
nt(c).

We call SNT a SNT for the keys I ′0, O
′
0. We can consider an NT gate a SNT gate with

ΣI = ΣO = 0. Alice will only produce NT gates. The SNT gates are produced as part
of the soldering.

Check: Clearly Alice cannot send the whole generator to Bob when an NT gate is being
checked, as it would leak ∆ to Bob. Therefore Bob will pick a uniformly random challenge
e ∈ {0, 1, 2} and Alice will reveal partial information on the generator as follows:

– If e = 0, then Alice sends π0 = π(0) and I0 = open([I0]) and O1 = open([O0] + [∆])
to Bob who checks that Cπ0 = EI0(O1).

– If e = 1, then Alice sends π1 = π(1) and I1 = open([I0]+ [∆]) and O1 = open([O0]+
[∆]) to Bob who checks that Cπ1 = EI1(O1).

– If e = 2, then Alice sends π2 = π(2) and I2 = open([I0] + 2[∆]) and O0 = open([O0])
to Bob who checks that Cπ2 = EI2(O0).

We note that while checking the correctness of the NT gates, Bob is also checking
the that ∆ 6= 0. It’s trivial to notice that ∆ 6= 0 iff C0 6= C1 6= C2 or Alice can find
collisions for the hash function.

Key Checks A generator for a key check (KC) consists of a key K0 ∈ Zp, a randomizer
rK ∈ Zp and a bit π ∈ {0, 1}. The KC is of the form

([K0; rK], T0, T1) = KC(K0, rK , π) ,

where Tπ = H(K0), T1−π = H(K0 + ∆).

When a KC is checked, the challenge is e ∈ {0, 1}. The replies are as follows:

– If e = 0, then Alice sends π and K0 = open([K0]) and Bob checks that Tπ = H(K0).

– If e = 1, then Alice sends π and K1 = open([K0] + [∆]) and Bob checks that
T1−π = H(K1).

Intended Use: Given a KC KC = ([K0; rK], T0, T1) = KC(K0, rK , π) and an arbitrary
key K one outputs KC(K) = 1 if H(K) ∈ {T0, T1} and outputs KC(K) = 0 otherwise.

It is clear that if K ∈ {K0,K0+∆}, then KC(K) = 1. Assume then that KC(K) = 1
but K 6∈ {K0,K0 + ∆}. Assume that we are in addition given ∆ and the generator
of the KC. Since KC(K) = 1 we have that Tb = H(K) for some b. We know that
Tb = H(K0 + c∆) for some c ∈ {0, 1}, where K0 is given in the generator. Since K 6∈
{K0,K0 +∆} we have that K 6= K0 + c∆. It follows that we can efficiently compute the
collision H(K) = H(K0 + c∆). This means that if we know ∆ and a generator such that
KC = KC(K0, rK , π), then we know that KC(K) = 1 iff K ∈ {K0,K0 + ∆}, except
with negligible probability.

7

A shifted KC (SKC) is of the form (Σ,KC) for ([K0; rK], T0, T1) = KC(K0, rK , π)
and Σ ∈ Zp. It defines a new zero-key K ′

0 = K0 −Σ and K ′
b = K ′

0 + b∆. We call SKC a
SKC for the key K ′

0. We evaluate SKC as SKC(K) = KC(K + Σ). Since KC(K) = 1
iff K ∈ {K0,K1} (except with negligible probability), we have that SKC(K ′) = 1
iff K ′ ∈ {K ′

0,K
′
1}. Alice will only produce KCs. The SKCs are generated as part of

soldering.

Details of Component Production We now describe the details of the component
production.

NT gates: We let L be the number of NAND gates in the circuit, and ℓ be the replica-
tion factor. Then N = (ℓ+1)L is the number of NT gates needed. Alice prepares φ1N
NT gates and sends them to Bob. Bob picks a random subset C of size about and at
most (φ1 − 1)N for testing, such that about and at most a fraction ǫ1 = (φ1 − 1)/φ1

is checked. For each i 6∈ C Bob sends e(i) = 3 to Alice to indicate that component i
is not checked. For i ∈ C Bob picks random e(i) ∈ {0, 1, 2} and sends e(i) to Alice.
Alice reveals part e(i) of the randomizer of component i to Bob, and Bob checks it.
If any check fails, then Bob terminates with output Alice cheats!. If all checks
succeed, N of the remaining NT gates are used.

KCs: Here N = (2ℓ + 1)L is the number of KCs needed. Alice prepares φ2N and Bob
checks about and at most (φ2−1)N , or about and at most a fraction ǫ2 = (φ2−1)/φ2.
If any check fails, then Bob terminates with output Alice cheats!. If all checks
succeed, N of the remaining KCs are used.

For the checks to be zero-knowledge, as detailed in the analysis in Section 5, we need
the challenge from Bob to be flipped using a UC secure coin-flip protocol. This can be
implemented via the OT functionality (see Appendix H). Since UC secure coin-flipping
is inefficient, we use an optimization trick, which to the best of our knowledge is new:
We use the UC coin flip to flip a short seed S ∈ {0, 1}O(s). We then define the set C and
the challenges e(i) from S. The set C makes up at most a fraction ǫi of the whole set
and has a distribution such that for all fixed subsets I with |I| ≤ βi (where βi = O(s)

is some threshold fixed by the analysis) and for fixed challenges e
(i)
0 ∈ Ei for i ∈ I, it

holds that

Pr[∄i ∈ I(e(i) 6= e
(i)
0)] ≤

4

3
(1 − ǫi/|Ei|)

|I| + 2−βi ,

where E1 = {0, 1, 2} and E2 = {0, 1} are the challenge spaces used when checking
components. Using challenges with such a distribution is sufficient to extract witnesses
for all but O(s) components. We discuss in Appendix F how to construct such challenges
by using a 2O(s)-almost O(s)-wise independent sampling space with seed length O(s).

4.4 Key Alignment

An important part of the circuit construction done by Bob consists of key alignment,
which allows to take a key associated with some wire and securely shift it to become
identical to a key associated to some other wire. Since all keys are committed to, this
is done simply by opening the difference between the two commitments and using this
difference as a key shift. We go over the different types of key alignment.

8

Aligning Output Wires with Input Wires Given two NT gates

NT (1) = ([I
(1)
0], [O

(1)
0], C

(1)
0 , C

(1)
1 , C

(1)
2) , NT (2) = ([I

(2)
0], [O

(2)
0], C

(2)
0 , C

(2)
1 , C

(2)
2)

and an NT gate NT = ([I0], [O0], C0, C1, C2), Bob can ask Alice to make NT (1) and

NT (2) the input gates of NT . In response to this Alice shows ΣI = open([I0]− [O
(1)
0]−

[O
(2)
0]) to Bob and they both replaces NT with SNT = (ΣI , 0,NT). Now SNT is an

SNT for input key I ′0 = I0 − ΣI = O
(1)
0 + O

(2)
0 .

In particular, given O
(1)
a = O

(1)
0 + a∆ and O

(2)
b = O

(2)
0 + b∆ for a, b ∈ {0, 1}, Bob

can compute O
(1)
a + O

(2)
b = O

(1)
0 + O

(2)
0 + (a + b)∆ = I ′a+b. If in addition the NT gate

NT is correct, Bob can then compute SNT (I ′a+b) = Ont(a+b) = Oa NAND b.
Intuitively, the alignment is secure as the only value which is leaked is Σ = I0 −

O
(1)
0 −O

(2)
0 . Since I0 is uniformly random, and NT is placed in only one position in the

circuit, I0 acts as a one-time pad encryption of the sensitive information O
(1)
0 − O

(2)
0 .

Aligning NT Gates The above way to connect NT gates allows to build a circuit of
NAND gates. Such a circuit can, however, be incorrect, and even insecure, if just one
NT gate is incorrect. To deal with this we use replication of NT gates. For this we need
to be able to take two NT gates and make their input keys the same and their output
keys the same. We say that we align the keys of the NT gates.

Given two NT gates

NT (1) = ([I
(1)
0], [O

(1)
0], C

(1)
0 , C

(1)
1 , C

(1)
2] ,NT (2) = ([I

(2)
0], [O

(2)
0], C

(2)
0 , C

(2)
1 , C

(2)
2] ,

Bob can ask Alice to align the keys of NT (2) with those of NT (1). In response to this

Alice will send ΣI = open([I
(2)
0]− [I

(1)
0]) and ΣO = open([O

(2)
0]− [O

(1)
0]) to Bob and they

both let SNT (2) = (ΣI , ΣO, NT (2)). It is clear that if NT (2) was a correct NT gate for

keys (I
(2)
0 , O

(2)
0), then it is now a correct SNT gate for keys (I

(1)
0 , O

(1)
0).

Intuitively, the alignment is secure as I
(2)
0 acts as a one-time pad encryption of I

(1)
0

and O
(2)
0 acts as a one-time pad encryption of O

(1)
0 — each NT (2) will have its keys

aligned with at most one NT gate.
Given NT,NT (1), . . . , NT (ℓ) we can produce NT,SNT (1), . . . , SNT (ℓ) by doing the

ℓ alignments from (NT,NT (i)) to (NT,SNT (i)) for i = 1, . . . , ℓ. As a result all the
(S)NT gates NT,SNT (1), . . . , SNT (ℓ) will be for the same keys (I0, O0).

The intended use of aligned NT gates is as follows: Given Ic for c ∈ {0, 1, 2} each
correct SNT (i) (let SNT (0) = NT with the all-zero shifts) will have the property that
Ont(c) ∈ SNT (i)(Ic). The incorrect SNT (i) might produce only wrong keys, but if there

is just one correct gate among the ℓ+1 gates, then ∪iSNT (i)(Ic) will contain Ont(c). We
use KCs to identify the correct key, as described now.

Aligning KCs with NT gates Given an NT gate NT = ([I0], [O0], C0, C1, C2) and a
key check KC = ([K0], T0, T1) we align KC with NT by Alice sending Σ = open([K0]−
[O0]) to Bob and both letting SKC = (Σ,KC). If SKC was a correct KC for K0, then
it is now a correct SKC for O0.

Intuitively, the alignment is secure as the only leakage is Σ = K0 − O0, where K0

acts as a one-time pad encryption of O0 — each KC will be aligned with at most one
NT .

9

The intended use of aligned KCs is as follows: Assume that we are given a set {Ki}
of keys with Ob ∈ {Ki} for b ∈ {0, 1} and that we are given a correct SKC SKC for O0.
Now compute SKC(K) for all keys K ∈ {Ki}. Since SKC(Ob) = 1, there will be at
least one K for which SKC(K) = 1, and if SKC(K) = 1 for exactly one key K, then
K = Ob was found.

If SKC(K) = 1 and SKC(K ′) = 1 for K 6= K ′, then except with negligible proba-
bility {K,K ′} = {O0, O0 +∆}. Even thought we cannot determine the right key, we can
compute ∆ from these two keys. We return to how this case is dealt with in Section 5.

4.5 Fault-Tolerant Circuit Design

Given a pool of unused NT gates and KCs, Alice and Bob constructs a Yao circuit for
f(a, b) as follows.

Circuit: First Alice and Bob agree on a NAND circuit C which computes the function
f(a, b). We assume that they agree on f , so we can assume that they agree on the
circuit too. Before each input wire w, where one of the parties is to provide the input
bit a, the parties prepend one NAND gate which outputs to wire w — we call this
input gate w. This creates two new input wires. When evaluating the circuit, we will
input ā on both of them, to make a = āNAND ā appear on wire w.7

Backbone: For each NAND gate g in C, Bob picks a uniformly random unused NT
gate NT and associates NT with g, we write NT (g) = NT , and announces this
association to Alice. For each l, r, g ∈ C, where l and r are the input gates of g, Alice
and Bob then makes NT (l) and NT (r) the input gates of NT (g) by a key alignment.

Replication: For each g ∈ C, Bob

– picks ℓ uniformly random unused NT gates NT (g,1), . . . ,NT (g,ℓ) and aligns their
keys with the keys of NT (g). Let NT (g,0) = NT (g).

– picks 2ℓ+1 unused KCs KC(g,1), . . . ,KC(g,2ℓ+1) and aligns these with the output
key of NT (g).

4.6 Circuit Evaluation

The circuit is evaluated as follows.

Alice’s Input: For each input gate g ∈ C for which Alice is to provide the input bit
ai, Alice sends the key Iai+1 = I2−ai

to Bob, where I0 is the input key of NT (g). Bob
lets I(g) = I2−ai

denote the received key. Note that nt(2 − ai) = ai. So, if NT (g) is

correctly evaluated it will output O
(g)
ai .

Bob’s Input: For each input gate g ∈ C for which Bob is to provide the input bit bi,
Alice and Bob run an OT. Alice offers the values ((I2, r2), (I1, r1)), where (I2, r2) =
open([I0] + 2[∆]) and (I1, r1) = open([I0] + [∆]) and [I0] is the input commitment of
NT (g). Bob uses the input bit bi as selection bit, to learn (I2−bi

, r2−bi
). Bob checks

that (I2−bi
, r2−bi

) is an opening of [I0] + (2− bi)[∆], Note that nt(2− bi) = bi. So, if

NT (g) is correctly evaluated it will output O
(g)
bi

.

Evaluation: Bob then computes an output key O(g) for all gates g ∈ C as follows:

7 The reason for this construction is that the gate will be implemented by an NT gate, which has only
one input key. The construction is sketched in Fig. 4 on page 19.

10

– If g is an input gate, then let I(g) be the key defined above. Otherwise, let l and
r be the input gates of g and let I(g) = O(l) + O(r).

– Let K = ∪ℓ
i=0NT (g,i)(I(g)).

– Compute KC(g,1)(K), . . . ,KC(g,2ℓ+1)(K) and let O(g) consist of the keys K which
are in at least ℓ + 1 of these sets. If |O(g)| = 0, then output Alice cheats!. If
|O(g)| = 1, then let O(g) be the element in O(g). If |O(g)| > 1, then O(g) =

{O
(g)
0 , O

(g)
1 }. If g is an input gate then Bob outputs Alice cheats!. Otherwise,

Bob can extract ∆ as explained in Appendix J and use it to determine c such

that I(g) = I
(g)
c . Then Bob lets O(g) = O

(g)
nt(c).

Output: For each output gate g ∈ C Bob sends O(g) to Alice. If O(g) 6∈ {O
(g)
0 , O

(g)
1 } for

some output gate, then Alice outputs Bob cheats!. Otherwise she determines for

each output gate yi such that O(g) = O
(g)
yi , which defines the output y.

5 Analysis

In the analysis with use the following lemma (formalized and proved in Appendix K).

Informal Lemma 1 Assume that Alice is corrupted and Bob is honest. Let ǫ1 denote

the fraction of NT gates being checked and let ǫ2 denote the fraction of KCs being checked.

– Let γ1 = 1− ǫ1/3. If Bob accepts the checks of the NT gates with probability ≥ 2γβ1
1 ,

then generators for all NT gates used in the protocol, except at most β1, can be

extracted in expected poly-time.

– Let γ2 = 1− ǫ2/2. If Bob accepts the checks of the KCs with probability ≥ 2γβ2
2 , then

generators for all KCs used in the protocol, except at most β2, can be extracted in

expected poly-time.

The extractor uses black-box rewinding access to the environment and the adversary.

I.e., it is not a “UC extractor”.

It is fairly easy to see that if each gate is made out of ℓ+1 NT gates of which at most
ℓ are bad8 and 2ℓ + 1 KCs of which at most ℓ are bad, then Bob will compute correct
keys. We are therefore interested in the probability that all L gates are composed of at
least one good NT gate and ℓ + 1 good KCs.

Here is a ball game: There are L buckets. The player picks B = (ℓ+1)L balls, where
β1 balls are red and the rest green. A player picking β1 red balls is let into the second
phase of the game with probability 2γβ1

1 for some fixed γ1 ∈ [0, 1]. In the second phase,
the balls will be distributed uniformly at random into the L buckets. The player wins
if it is let into the second phase of the game and at least one bucket ends up containing
only red balls. There is a second variant of the game, where β2 balls are let into the
second phase with probability 2γβ2

2 , where buckets have size 2ℓ+1 and where the player
wins if it gets at least ℓ + 1 red balls in the same bucket. It is straight-forward to prove
the following lemma (see Appendix A).

Lemma 1. Consider a player which plays both games in parallel and wins if it wins

either game. There is no strategy which allows it to win with probability better than

L−ℓ(2(0.37(ln γ−1
1)−1)ℓ+1 + (0.99(ln γ−1

2)−1)ℓ+1).

8 We could not extract a correct generator using the above lemma.

11

Combining the above lemmas we get the following informal lemma.

Informal Lemma 2 Assume that Alice is corrupted and Bob is honest. Let ǫ1 denote

the fraction of NT gates being checked, let ǫ2 denote the fraction of KCs being checked.

There exists an expected poly-time extractor with black-box rewinding access to the envi-

ronment and the adversary which can extract generators for at least one NT gate and at

least ℓ+1 KCs per gate in the circuit when Bob accepts the check with probability at least

P = L−ℓ(2(0.37(ln γ−1
1)−1)ℓ+1 + (0.99(ln γ−1

2)−1)ℓ+1) with γ1 = 1 − ǫ1/3, γ2 = 1 − ǫ2/2

We pick the parameters (ℓ, ǫ1, ǫ2) such that P ≤ 2−s. For fixed constants ǫ1, ǫ2,
the size of the garbled circuit is O(ℓL) = O(sL/ log L). Note that P drops and the
communication complexity of the protocol grows with all three parameters ℓ, ǫ1 and ǫ2.
It is therefore by far trivial for a given size L of the circuit to pick the parameter triple
(ℓ, ǫ1, ǫ2) which optimizes the protocol under the constraint that P ≤ 2−s. Some possible
choices for the parameters are provided in Appendix B.

5.1 Cheating Alice

We argue security against a cheating Alice by showing that all ways to cheat can be
simulated in the ideal world. The sketch easily translates into a simulation proof in the
UC model.

When Bob rejects the checks in the simulation, then the simulator will input abort!
to the ideal functionality on behalf of Alice. Assume now that Bob accepts the proof
with probability ≤ 2−s. This is negligible in the security parameter s, so this case is
simulated by Alice inputting abort! to the ideal functionality, except with negligible
probability.

We can now assume that Bob accepts the proof with probability ≥ 2−s. This means
that there exists an expected poly-time extractor which could extract a generator for
one NT gate and ℓ + 1 KCs per gate in the circuit. We call the components for which
generators are known correct, the others incorrect. Given the generator for the correct

components we can define9 the correct output keys O
(g)
0 , O

(g)
1 for each gate as the output

keys occurring in the correct NT gate, properly shifted. In the same way we can compute

the correct input keys I
(g)
0 , I

(g)
1 .

It is easy to see that O(g) ⊆ {O
(g)
0 , O

(g)
1 }, except with negligible probability, where

O(g) is the set computed by Bob.10 Furthermore, if I(g) = I
(g)
c for c ∈ {0, 1, 2}, then

O
(g)
nt(c) ∈ O(g), as the correct NT gate outputs O

(g)
nt(c). We can also assume Alice, so the

simulator, knows ∆ as she gives a proof of knowledge detailed in Appendix I.

Alice’s Input: When Alice sends I(g) she could herself compute the K and O(g) computed
by Bob in Evaluation. If |O(g)| = 0, then Bob aborts, which Alice can accomplish in
the ideal world by inputting abort!. If |O(g)| = 1, then Bob assigns the element in

O(g) to O(g). This element is either O
(g)
0 or O

(g)
1 . Let ai be the smallest bit such that

O(g) = O
(g)
ai . Alice can compute O(g) and can use the ℓ+ 1 correct KCs to compute O

(g)
0

and O
(g)
1 , and therefore ai.

11 In the ideal world Alice would simply use ai as her input

9 We are not describing a behavior of the simulator, just making definitions!
10 By the majority voting, each K in O(g) was accepted by at least one correct KC.
11 If Alice knows one correct output key, then because she knows ∆, she can compute the other one.

A correct KC can then be used to tell which is which. Since a majority of the KCs are correct, this
allows Alice to determine ai.

12

bit. If |O(g)| > 1, then O(g) = {O
(g)
0 , O

(g)
1 }. Bob lets O(g) be a random of these elements.

In the ideal world Alice could simply have input a uniformly random ai to the ideal
functionality.

Bob’s Input: When Alice offers values ((I2, r2), (I1, r1)) then call (Ic, rc) bad if it is not
an opening of the corresponding commitment. If both values are bad for some OT, then
Bob will always see a bad value and terminate. In the ideal world Alice could have input
abort!. Otherwise, let I be the indices of OTs for which Alice inputs exactly one bad
value, and let βi be the value of bi which would lead Bob to not see the bad value. If
Bob terminates then Alice knows that bi 6= βi for some i ∈ I. If Bob does not terminate,
then Alice knows that bi = βi for all i ∈ I. Alice could accomplish the same in the ideal
world by inputting I and {βi}i∈I to the ideal functionality.

Evaluation: If Bob did not yet abort, then Bob now has O(g) = O
(g)
ai for each of Alice’s

input gates and O(g) = O
(g)
bi

for each of his own input gates, corresponding to Alice
and Bob having input a and b in the ideal world. From a and b we can compute the
value c that should go into all NT gates given these initial inputs to the circuit and the
bit d = nt(c) that the gates should output. The output wire of input gates holds the
corresponding correct keys (as defined above). So, we can assume inductively that the

input key to an internal NT gate g is I
(g)
c for the correct c ∈ {0, 1, 2}. This means that

O
(g)
d will be in O(g). In particular, |O(g)| = 1 or |O(g)| > 1. If |O(g)| = 1 then because

O
(g)
d is in O(g), Bob set O(g) = O

(g)
d , as desired. If |O(g)| > 1, then O(g) = {O

(g)
0 , O

(g)
1 }.

This gives him ∆′ = ±∆. It is easy to see that Bob can use the good components to
find ∆ from ∆′ (details in Appendix J).

He then determines the correct output value d for gate g and lets O(g) = O
(g)
d . The

value d is found as follows: For each input gate g of Alice, Bob takes the key O(g) = O
(g)
ai ,

which at this point we can assume correct. Then he uses ∆ and the ℓ + 1 KCs of g to
determine the value of ai: He checks if there is a hash of O(g) − ∆ or O(g) + ∆ and set
ai = 1 respectively ai = 0 and he takes the majority vote. Then he computes y = f(a, b)
and the value c and d for all internal NT gates along the way.

At the end Bob sends O(g) to Alice for all output gates. We argued above that all

keys were computed correctly, so O(g) = O
(g)
yi for the correct output bit yi in y = f(a, b).

In the ideal world Alice can learn y from the ideal functionality by not gambling for

the input. Given yi she could then have computed O(g) = O
(g)
yi = O

(g)
0 + yi∆ herself.

Note that to compute O(g) = O
(g)
yi = O

(g)
0 + yi∆ she needs ∆ and O

(g)
0 . The value

∆ she knows, as she gave a proof of knowledge. There is no a priori reason why she

should know O
(g)
0 as she could have prepared the components used to build gate g in

any fashion, in particular without knowing the correct output key. Note, however, that
she does know the values she offered in the OT — we are in the OT-hybrid model. This
means that Alice knows a correct key I(w) for all of Bob’s input wires w. She also knows
the keys that she sent to Bob — we assume an ideal secure channel. From these she can
(as done by Bob) compute at least one correct key O(w) for all input gates w. She can

evaluate the circuit on these keys —as done by Bob— and learn one output key O
(g)
y′

i

for each output gate g, along with the bit y′i. She knows ∆ and can therefore compute

O
(g)
0 , as desired.

13

5.2 Cheating Bob

We consider the case where Alice is honest and Bob is cheating. Here the simulator gets
the input b of Bob and nothing else.

The simulator discards the value b, as the real input of Bob is going to be defined
via how Bob behaves in the protocol. The simulator runs Alice honestly, with input
a = 0∗. If Bob sends keys which makes Alice reject in the simulation, then the simulator
inputs abort! to the ideal functionality on behalf of Bob. Otherwise, the simulator
takes the input bit bi of Bob to be the negation12 of his selection bit in the OT for the
corresponding input wire.

Correctness: For each output wire w, Bob learns O
(w)
yi , where y = f(a, b′), and Bob knows

which value O′(w)
yi

he is sending to Alice, as we assume ideal secure channels. We can

therefore define ∆(w) = O′(w)
yi

−O
(w)
yi for each output wire. It is clear that if Alice accepts

the keys, then it holds for each output wire w that ∆(w) = 0 or ∆(w) ∈ {∆,−∆}. I.e.,
either all keys are correct or Bob can guess ∆ with probability negligibly close to 1

2 .13

It is easy to see that when H is a correlation robust hash function, then the probability
with which Bob can guess ∆ is negligible. It follows that when Alice accepts, then all
keys sent by Bob are correct.

Privacy: The above argument, that Alice only accepts correct keys, did not depend on
the use of the correct input a. It also holds in the simulation where y = f(0∗, b′). In fact,
Bob will know when he sends the keys whether Alice rejects or not. The simulator can
therefore simulate Bob by inputting abort! to the ideal functionality on behalf of Bob
if there is some output wire w for which Bob uses ∆(w) 6= 0.

What remains is then to show that the view of Bob is indistinguishable in the
simulation and the real protocol. The only difference between the two is in whether
Alice uses input a′ = 0∗ or the real a.

For now, let us ignore the way the components are checked and assume that Alice
simply prepares enough good components to build the circuit. It is straight-forward
to verify that when H is a uniformly random function, the soldered circuit leaks no
information on a to a party which did not query H on a pair of points P1 and P2 of the
form P2 = P1 + ∆ or P2 = P1 + 2∆. And, until this happens ∆ is uniformly random
in the view of Bob. We can therefore use the birthday bound to pick p such that no
adversary can make such queries except with negligible probability.

Let’s now also consider the way the components are checked: The problem with
the previous argument for the indistinguishability of circuits with different a’s is that
during the check Alice sends parts of the generators to Bob, and the generators include
∆. The way around this problem is that the simulator can make Bob accepts the checks
even without knowing ∆: The checks are simulatable by knowing the challenges and the
trapdoor for the commitments, which allows to answer exactly one challenge without
knowing ∆, as explained in Appendix L. The simulator gets the trapdoor as it simulates
the coin flip protocol for the commitment pk. To foresee which challenge Bob is going
to send, the simulator picks a random seed S and prepares the incorrect components to
pass the check against the challenges sampled given S. When it is time to generate the
seed, it simulates the coin flip protocol to hit the seed S.

12 Negated because we added the extra NAND gates on the input wires acting as negations.
13 He knows the ∆(w), picks one which is not 0 and outputs (−1)r∆(w) for a random bit r.

14

References

[AGHP92] Noga Alon, Oded Goldreich, Johan H̊astad, and René Peralta. Simple construction of almost
k-wise independent random variables. Random Struct. Algorithms, 3(3):289–304, 1992.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-
cryptographic fault-tolerant distributed computation (extended abstract). In STOC, pages
1–10. ACM, 1988.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In FOCS, pages 136–145, 2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally secure pro-
tocols (extended abstract). In STOC, pages 11–19, 1988.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a
completeness theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO, volume 2729 of Lecture Notes in Computer
Science, pages 145–161. Springer, 2003.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on commit-
ted inputs. In Moni Naor, editor, EUROCRYPT, volume 4515 of Lecture Notes in Computer
Science, pages 97–114. Springer, 2007.

[LP04] Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-party computation.
Electronic Colloquium on Computational Complexity (ECCC), (063), 2004.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[LPS08] Yehuda Lindell, Benny Pinkas, and Nigel P. Smart. Implementing two-party computation
efficiently with security against malicious adversaries. In Rafail Ostrovsky, Roberto De Prisco,
and Ivan Visconti, editors, SCN, volume 5229 of Lecture Notes in Computer Science, pages
2–20. Springer, 2008.

[Woo07] David P. Woodruff. Revisiting the efficiency of malicious two-party computation. In EURO-
CRYPT, pages 79–96, 2007.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS,
pages 162–167, 1986.

15

A Proof of Lemma 1

For the second variant of the game the player picks B = (2ℓ + 1)L balls. Consider a

player picking β2 red balls. It is let into the second phase with probability 2γβ2
2 . Now the

balls are distributed at random into the buckets under the condition that each bucket
contains exactly 2ℓ + 1 balls. Let ρ denote the probability that some bucket contains at
least ℓ + 1 red balls. We assume that β2 ≥ ℓ + 1 (or ρ = 0). It is then easy to see that
the probability that at least ℓ + 1 balls in bucket j are red is no more than

2ℓ+1
∑

i=ℓ+1

(

2ℓ + 1

i

)

(β2/B)i ≤
2ℓ+1
∑

i=ℓ+1

(

2ℓ + 1

i

)

(β2/B)ℓ+1

= (β2/B)ℓ+1
2ℓ+1
∑

i=ℓ+1

(

2ℓ + 1

i

)

= (β2/B)ℓ+122ℓ

= 22ℓ(β2/(2ℓ + 1))ℓ+1L−ℓ−1 .

We use the union bound to get

ρ < L22ℓ(β2/(2ℓ + 1))ℓ+1L−ℓ−1 = 22ℓ(β2/(2ℓ + 1))ℓ+1L−ℓ .

The probability of winning is then

2γβ2
2 ρ < 2γβ2

2 22ℓ(β2/(2ℓ + 1))ℓ+1L−ℓ .

It is easy to see that for fixed γ2, L and ℓ the right-hand side is maximal when
γβ2
2 βℓ+1

2 is maximal, which happens when β2 = −(ℓ + 1)(ln γ2)
−1. We plug this into

2γβ2
2 22ℓ(β2/(2ℓ + 1))ℓ+1L−ℓ and get the following bound on winning

2γ
−(ℓ+1)(ln γ2)−1

2 22ℓ(−(ℓ + 1)(ln γ2)
−1/(2ℓ + 1))ℓ+1L−ℓ

≤ e−(ℓ+1)22(ℓ+1)(−(2/3)(ln γ2)
−1)ℓ+1L−ℓ

≤ e−(ℓ+1)22(ℓ+1)(−(2/3)(ln γ2)
−1)ℓ+1L−ℓ

= (e−14(2/3)(ln γ−1
2)−1)ℓ+1L−ℓ

< (0.99(ln γ−1
2)−1)ℓ+1L−ℓ .

Consider then a player picking β1 red balls and playing the first variant of the game.
It is let into the second phase with probability γβ1

1 . Now the balls are distributed at
random into the buckets under the condition that each bucket contains exactly ℓ + 1
balls. Let ρ denote the probability that some bucket contains only red balls. We as-
sume that β1 ≥ ℓ + 1. It is easy to see that the probability that all ℓ + 1 balls in
bucket j are red is no more than (β1/B)ℓ+1 = (β1/(ℓ + 1))ℓ+1L−ℓ−1. We use the
union bound to get ρ < L(β1/(ℓ + 1))ℓ+1L−ℓ−1 = (β1/(ℓ + 1))ℓ+1L−ℓ. The probabil-

ity of winning is then 2γβ1
1 ρ < γβ1

1 (β1/(ℓ + 1))ℓ+1L−ℓ. It is easy to see that for fixed
γ1, L and ℓ the right-hand side is maximal when β1 = −(ℓ + 1)(ln γ1)

−1. We plug

this into 2γβ1
1 (β1/(ℓ + 1))ℓ+1L−ℓ and get a maximum of 2e−ℓ−1(−(ln γ1)

−1)ℓ+1L−ℓ =
2(−e−1(ln γ1)

−1)ℓ+1L−ℓ < 2(0.37(ln γ−1
1)−1)ℓ+1L−ℓ.

16

B Parameters choice

In Fig. 2 we show some possible values for (ℓ, ǫ1, ǫ2), for different security parameters s
and circuit sizes L. In particular, we have chosen parameters that minimize the cost per
gate – defined as 1 for any commitment or hash that needs to be transmitted per gate
in the original circuit. The quantity we tried to minimize is therefore given by the cost
expression

c = 5(ℓ + 1)/(1 − ǫ1) + 3(2ℓ + 1)/(1 − ǫ2) ,

under the constraint that P ≤ 2−s, with P as defined in Lemma 2. Every entry in the
table is of the form (ℓ, ǫ1, ǫ2); c.

L

s
30 50 70

103 (5, 0.15, 0.21); 77 (8, 0.13, 0.21); 117 (11, 0.13, 0.20); 156

104 (4, 0.07, 0.09); 57 (6, 0.08, 0.11); 82 (8, 0.08, 0.15); 109

106 (2, 0.17, 0.26); 39 (4, 0.03, 0.04); 54 (5, 0.05, 0.08); 68

109 (2, 0.01, 0.02); 31 (2, 0.18, 0.29); 40 (3, 0.05, 0.07); 44

1012 (1, 0.08, 0.12); 22 (2, 0.01, 0.01); 31 (2, 0.18, 0.38); 43

Figure 2. Parameters choice for different security parameters s and circuit sizes L, and resulting cost
per gate.

To better understand the significance of the numbers in the table, it’s useful to recall
that in the standard (passive secure) Yao protocol the cost per gate is 4, while in the
protocol from [LPS08] the cost per gate is 4s, plus O(s2) commitments for every input
gate.

C A Replicated Gate

Fig. 3 illustrates the structure of a replicated gate with key checks.

D Input/Output Structure

Fig. 4 illustrates how Alice and Bob provide their inputs to the garbled circuit, and how
Alice gets her output.

E NOT gates for free

In Section 4.2 we noted that our keys are constructed in a way that allows to compute
addition gates for free. During the circuit soldering we use this fact to align the output
wires of two gates with the input wire of the next gate. This process of key alignment is
described in Section 4.4. What we note here is that in fact we can compute for free any
linear combination gate. Plugging this construction in the key alignment phase gives us
the possibility to get NOT gates for free.

17

EI0(O1)

EI1(O1)

EI2(O0)

EI0(O1)

EI1(O1)

EI2(O0)

H(O0), H(O1)

H(O0), H(O1)

H(O0), H(O1)

EI0(O1)

EI1(O1)

EI2(O0)

ℓ + 1

2ℓ + 1

O

I = L + R

Figure 3. The alignment of ℓ+1 NT gates and 2ℓ+1 KCs. Illustrated for the case where all components
are correct.

In particular, if we have a set of keys Ki
xi

= Ki
0 + xi∆, with i ∈ {1, n}, and some

known integers a0, . . . , an ∈ N, we can compute a key Oy with y =
∑n

i=1 aixi +a0 in the
following way: Alice opens the value S = open(

∑n
i=1 ai[K

i
0] − a0[∆] − [O0]), then Bob

can compute
∑n

i=1 aiK
i
xi

− S =
∑n

i=1 ai(K
i
0 + xi∆) −

∑n
i=1 aiK

i
0 + a0∆ + O0 = Oy.

A special case of this is when n = 1, a0 = 1, a1 = −1, in which case we get a NOT
gate. When we align two output wires with an input wire we can negate any of the inputs
by setting the three values (a0, a1, a2) to: (0, 1, 1) for straight connection, (1,−1, 1) to
negate the left input, (1, 1,−1) to negate the right input and (2,−1,−1) to negate both
inputs.

F Sampling the Challenges using a Short Seed

To challenge Alice, Bob will for each component send a challenge e ∈ {0, . . . , |E|} with
e = |E| meaning that the component is not checked and e < |E| meaning that part e of
the generator must be shown.

18

Ok
y

BobAlice

Encrypted Circuit C

OT

b

Iw
a

Iw
a

Iv
b

Iv
b

Iv
0

Iv
1

NAND NAND

Figure 4. Alice inputs a bit a into the input wire Ii, while Bob inputs a bit b into the input wire Ij .
After the evaluation, Alice gets the k-th output key, encoding the bit y.

Fix a subset I of the indices of the components and for each i ∈ I pick a challenge

e
(i)
0 ∈ {0, . . . , |E| − 1}. If we picked each e(i) independently with Pr[e(i) = e0] = ǫ/|E|

for e0 ∈ {0, . . . , |E| − 1} and Pr[e(i) = |E|] = 1 − ǫ, then we would have that

Pr[∄i ∈ I(e(i) = e
(i)
0)] = (1 − ǫ/|E|)|I| .

For simplicity we assume that the distribution (ǫ/|E|, ǫ/|E|, . . . , ǫ/|E|, 1 − ǫ) can
be sampled using a finite number of uniformly random bits, such that we can sample
e = e(r) for a uniformly random r ∈ {0, 1}c for a constant c. We can then sample all
N elements e(i) from r ∈ {0, 1}cN . If we instead use r which is δ-close to uniform on
{0, 1}cN , then

Pr[∄i ∈ I(e(i) = e
(i)
0)] ≤ (1 − ǫ/|E|)|I| + δ . (1)

In fact, it is enough that r is δ-almost k-wise independent on {0, 1}cN with k ≥ c|I|, as
the |I| values e(i) depend on at most c|I| bits from r.

To sample r we use a δ-almost k-wise independent sampler space sspc : {0, 1}σ →
{0, 1}m, where for a uniformly random seed S ∈ {0, 1}σ the string rI is δ-close to
uniformly random, where r = sspc(S), I ⊂ {1, . . . ,m}, |I| ≤ k and rI denotes the |I|-bit
string consisting of r projected to coordinates i ∈ I. We can e.g. use a construction from
[AGHP92], where

σ = 2(log2 log2 m − log2 δ − log2 k − 1) .

19

We need k = O(s) and δ = 2−O(s), and can safely assume that the bit length of r is less
that 22s

, giving us a seed length of O(s), as desired.
The distribution of each e(i) is δ-close to the distribution (ǫ/|E|, ǫ/|E|, . . . , ǫ/|E|, 1−

ǫ), so the expected number of i for which e(i) = |E| is at least N(1 − ǫ) − Nδ. We
always need to be left with N(1 − ǫ) components. By picking δ ≤ 2−s and by starting
with N any small constant fraction larger than now (like 10%), we can by Chebychev’s
inequality, ensure that the probability that we end up with N(1 − ǫ) components not
checked being at least 3

4 . This very soon holding for large enough L and still with (1)
holding for all I with |I| ≤ k/c (we will soon fix k).

Now, let H denote the event that ∄i ∈ I(e(i) = e
(i)
0) and let E denote the event that

we are left with enough components (N(1−ǫ)). We have that Pr[H|E] ≤ Pr[H]/Pr[E] ≤
4
3 Pr[H] ≤ 4

3 ((1 − ǫ/|E|)|I| + δ).
For any β = O(s), let k = βc and δ = min(2−s, 2−β−2). Then for all I with |I| ≤ β

we have that
Pr[∄i ∈ I(e(i) 6= e

(i)
0)] ≤

4

3
(1 − ǫ/|E|)|I| + 2−β−1 . (2)

By sampling S until it occurs that there are enough components left, we get enough
components by using an expected 4

3 tries. Formally the UC model does not allow ex-
pected poly-time protocols. We can handle this by terminating with some fixed C and
e(i) if β + 1 tries failed. This occurs with probability at most 2−βi−1. Since (4

3(1 −
ǫ/|E|)|I| + 2−β−1) + 2−β−1 = 4

3(1 − ǫ/|E|)|I| + 2−β we get that

Pr[∄i ∈ I(e(i) 6= e
(i)
0)] ≤

4

3
(1 − ǫ/|E|)|I| + 2−β , (3)

as desired.

G How to Construct the Circuit

In Fig. 5 we implement the 16 binary Boolean functions using nt() gates and linear com-
putation, achievable for free as explained in Appendix E. In this way we can implement
any of the Boolean functions using just one nt() gate.

H Coin Flipping via OT

During the protocol we need to sample some random strings in a secure way. In particular
we need to sample a random element h in the group G and the seed S for the s-biased
source of Appendix F.

Given that we are in the OT-hybrid model, we will present a way to reduce UC coin
flipping to UC OT. The protocol allows the simulator to arbitrarily select the outcome
of the coin flip.

The protocol is the following: To flip a random bit r Alice transfers two random
strings A0 6= A1 ∈R {0, 2s − 1}. Bob retrieves one of the two strings at random, say
he picks b ∈R {0, 1} and he gets Ab. After the OT Alice sends a random bit a. Finally
Bob sends Alice the retrieved string Ab. The outcome of the protocol is the random bit
r = a⊕ b. The protocol is intuitively secure, as the probability that Bob guesses A1−b is
negligible in s, and Alice gets no information at all about Bob’s bit b in the OT-hybrid
model.

To see that the protocol is UC secure, consider the following simulator: when Alice
is corrupted, the simulator gets both A0, A1 from the OT. Suppose that the simulator

20

x 0 0 1 1

y 0 1 0 1 Gate Circuit

0 0 0 0 0 —

0 0 0 1 AND 1 − nt(x + y)

0 0 1 0 x > y 1 − nt(1 + x − y)

0 0 1 1 x x

0 1 0 0 x < y 1 − nt(1 − x + y)

0 1 0 1 y y

0 1 1 0 XOR x + y + 2nt(x + y) − 2

0 1 1 1 OR nt(2 − x − y)

1 0 0 0 NOR 1 − nt(2 − x − y)

1 0 0 1 NXOR 3 − x − y − 2 nt(x + y)

1 0 1 0 NOT y 1 − y

1 0 1 1 x ≥ y nt(1 − x + y)

1 1 0 0 NOT x 1 − x

1 1 0 1 x ≤ y nt(1 + x − y)

1 1 1 0 NAND nt(x + y)

1 1 1 1 1 —

Figure 5. How to implement each of the binary Boolean functions using one NT gate.

wants to force the output to be r′: The simulator waits for Alice to send a and then he
replies b = a ⊕ r′. If Bob is malicious the simulator simply gets Bob’s choice b from the
OT, and he replies with a = b ⊕ r′.

This protocol is composable, so if the parties need to sample a k-long bit-string, they
just need to run the protocol k time in parallel.

I Proof of Knowledge via OT

During the protocol Alice needs to prove in zero-knowledge that she knows an opening
of the commitment [∆; r∆]. She doesn’t know the commitment trapdoor, so this defines
a value for ∆.

Given that we are in the OT-hybrid model, we will present a way to reduce UC zero-
knowledge proof of knowledge to UC OT. The protocol allows the simulator to extract
∆.

The protocol is the following: Alice picks at random K0, r0 ∈R Zp. Define K1 =
K0 + ∆, r1 = r0 + r∆. Then Alice offers ((K0, r0), (K1, r1)) to the OT. Bob chooses a
random bit e ∈R {0, 1} and accepts if Ke, re is an opening of [K0]+e[∆]. They repeat the
protocol s times in parallel. Therefore, Alice cannot guess Bob’s choice with probability
better than 2−s. Given that we are in the OT-hybrid model, If Alice is corrupted the
simulator gets to see K0,K1, and therefore it can compute ∆ = K1 − K0.

Note that this protocol is essentially a copy of the one that Alice and Bob run
when Bob needs to retrieve his keys. The main difference is that here Bob chooses his
selection bits at random, and therefore Alice cannot guess them with non-negligible
probability, while during the protocol we cannot exclude that Alice knows Bob’s input.
We can exploit it to reduce the number of needed OTs: Alice and Bob run the proof
of knowledge, where Bob uses random selection bits. At the end of the protocol, Bob

21

saves the tuples (ei,K
i
ei

, [Ki
0]) he gets during the protocol. Later, when he needs an

input key I
(g)
b for an input gate g, he can ‘recycle’ those keys permuting them randomly

and aligning them to the input wires. As shown in Appendix E this can be done even if
b 6= ei, using the NOT gate for free construction.

J Extracting ∆

We describe here what Bob should do if, for some internal gate g, he gets a set of keys

O(g) s.t |O(g)| > 1. In this case, except with negligible probability, O(g) = {O
(g)
0 , O

(g)
1 }.

We call O
(g)
d , O

(g)
1−d those two keys, as Bob doesn’t know which key is which. Clearly,

∆ = (−1)d(O
(g)
1−d − O

(g)
d), and therefore Bob needs to find d in order to find the right

value of ∆. The value d is found as follows: For each input gate g′ where Bob is supposed

to provide input, Bob takes the key O
(g′)
bi

, which at this point we can assume correct.
Then he uses his input bit bi and the ℓ + 1 KCs of g′ to determine the value of d: He

checks if there is a hash of O
(g′)
bi

+ (−1)bi(O1−d − Od) or O
(g′)
bi

+ (−1)bi(Od −O1−d) and
set d = 0 respectively d = 1 and he takes the majority vote.

K Extracting Most Component Generators with High Probability

We now describe an extractor which allows to extract generators for most components
when Bob is honest and accepts the checks. We note that the extractor rewinds the
environment. Therefore the extractor is not a sub-routine which can be run by the
simulator in a proof in the UC model. This is not a problem, as this is not the intended
use. Our UC simulator does not run this extraction. The fact that some imaginary
algorithm X could have rewound the environment and the entire execution to produce
generators will be used to analyze the simulator, not construct it.

In a bit more details, if Alice is corrupted and Bob is honest, then for all adversaries
and all environments we consider an extractor X which can be run on the terminal
global state of the environment, the adversary and the execution of the protocol to try
to extract components generators for the components used by Alice and Bob. By the
augmented execution we mean: First run the protocol with the given environment and
adversary until it terminates, and then if Bob accepts the checks, then run the extractor
on the terminal global state of the environment, the adversary and the execution of the
protocol. The extractor X has the following properties:

– The augmented execution is expected poly-time.

– The extractor in the augmented execution computes generators for all components
except a few, where the exactly number of missing components relates to the prob-
ability the Bob accepts.

We start by some technical definitions and lemmas.

Definition 1. Given a poly-time binary relation R we call (E, reply, accept) a simple

proof of knowledge for R if E is a finite set and accept(x, e, reply(w, e)) = 1 for all

(x,w) ∈ R and e ∈ E, and if given ze such that accept(x, e, ze) = 1 for all e ∈ E one

can in poly-time compute w such that (x,w) ∈ R, except with negligible probability.

22

The check we do for NT gates and KCs are clearly simple proofs of knowledge (see
Appendix L), with the witness being the generator of the components and the relation
being that the generator gives rise to the component.

For a simple proof of knowledge we are interested in the following protocol for gener-
ating proved instances, parametrized by some constant ǫ ∈ (0, 1) and integers δ, L ∈ N.

1. The prover P sends L instances x1, . . . , xL for which it knows witnesses w1, . . . , wL.

2. The verifier V selects a random subset C of the instances, and sends ei = |E| for i 6∈
C. For each i ∈ C, V in addition sends a random challenge ei ∈ E = {0, . . . , |E|−1}.

3. For each ei 6= |E|, P sends zi = reply(wi, ei) to P .

4. V checks that verify(xi, e, zi) = 1 for all ei 6= |E|. If so, the output is (accept!, {xi}ei=|E|).
Otherwise, the output is reject!.

We pick the challenges ei such that for any fixed subset I with |I| ≤ δ and for fixed
challenges ei

0 ∈ E for i ∈ I, it holds that

Pr[∄i ∈ I(ei 6= ei
0)] ≤

4

3
(1 − ǫ/|E|)|I| + 2−δ .

For each β ∈ {1, . . . , δ − 3} we describe an extractor Xβ . It can be run on a state
of the protocol execution right after the verifier accepted the checks, and it will try to
extract witnesses for L − β of the instances.

1. For each xi and each e ∈ E for which no correct reply zi
e is stored: rewind the

execution to where the challenges are sent and send a random seed S giving rise to
ei = e, run the execution to receive some zi

e, and store it if it is correct. Note the an
independent rewind and rerun is used for each such (xi, e), meaning that the step
can include as many as L|E| reruns.

2. If for all but β of the instances correct replies zi
e are stored for all e ∈ E, then

compute witnesses for all these L− β instances and terminate. Otherwise, go to the
above step.

By the β-augmented protocol we mean the following: First run the protocol until
V accepts or rejects. If V rejected then stop. Otherwise, run Xβ on the trace of the
execution to extract L − β witnesses.

Lemma 2. If β ≤ δ−3 and the probability that V accepts the proof is ≥ 2(1− ǫ|E|−1)β ,

then the expected running time of the β-augmented protocol is polynomial.

Proof. Fix a state of the protocol execution right after Step 1 is executed, i.e., right
after the instances are sent. We make some definitions relative to such a state.

For an index i ∈ {1, . . . , L} and a challenge e ∈ E we define Accept(i, e) ∈ [0, 1] to
be the probability that the prover replies with a correct zi if the verifier sends a random
seed S giving rise to ei = e. For each i we let ǫi be an element e ∈ E which minimizes
Accept(i, e) and we let Accept(i) = Accept(i, ǫi).

For each β ∈ {1, . . . , L} we can pick Aβ such that there exists Aβ ⊆ {1, . . . , L} for
which |Aβ| = L − β and Accept(i) ≥ Aβ for i ∈ Aβ and Accept(i) ≤ Aβ for i 6∈ Aβ.
Think of Aβ as the largest accept probability we can pick such that at most β instances
have a challenge which is answered correctly with smaller probability. We call these β
ways of challenging the good challenges (for the verifier)— as they are the hardest to
answer for the prover.

23

We first compute the probability a that the check accepts, expressed via Aβ. We say
that the value ei sent by V hits (a good challenge) if ei = ǫi for some i 6∈ Aβ. Since
|Aβ| = L − β and β ≤ δ, the probability that there is no hit is at most

h̄ =
4

3
(1 − ǫ|E|−1)β + 2−δ .

If there is no hit, then the check might accept with probability 1. If there is a hit, then
the check accepts with probability ≤ Aβ. I.e.,

a ≤ h̄ · 1 + (1 − h̄)Aβ ≤ h̄ + Aβ . (4)

We estimate the expected running time of Aβ given that the check succeeds. Consider
a given index i ∈ Aβ and any e ∈ E. Since Accept(i, e) ≥ Aβ, the expected number of
rounds until a correct zi

e is stored is A−1
β . There are (L−β)|E| such pairs (i, e). Therefore

the expected number of rounds until a correct zi
e is stored for all of them is at most

A−1
β log((L − β)|E|) = A−1

β poly. Each round is poly. So, the expected running time of

Xβ given that the test succeeds is A−1
β poly.

The running time of the augmented execution is poly when the check fails, as then
no extraction is run. When the test succeeds, it is poly (for running the protocol) plus
the expected running time of the extraction. I.e.,

T ≤ (1 − a) poly +a(poly +A−1
β poly) ≤ poly(1 + aA−1

β) .

For T to be poly it is therefore sufficient that a ≤ αAβ for α = 1+ 1
4 , for which (by (4))

it is sufficient that Aβ ≥ (α− 1)h̄. So, assume that Aβ < (α− 1)h̄. Then it follows from
a ≤ h̄ + Aβ that

a ≤ αh̄ ≤ α
4

3
(1 − ǫ|E|−1)β + α · 2−δ .

We have δ ≥ β − 3 and (1 − ǫ|E|−1) ≥ 1
2 , meaning that α · 2−δ ≤ α · 2−32−β ≤

2−2(1 − ǫ|E|−1)β. So,

a ≤

(

(1 +
1

4
)
4

3
+ 2−2

)

(

1 − ǫ|E|−1
)β

=
23

12

(

1 − ǫ|E|−1
)β

< 2
(

1 − ǫ|E|−1
)β

.

This contradicts the premise of the lemma that a ≥ 2(1 − ǫ|E|−1)β.

L Extraction and Simulation of Components

For the checks of the components we will argue that the check is extraction complete in
the sense that giving correct replies to all e ∈ E will allow Bob to either: 1) compute a
correct generator for the component, 2) compute a double opening of the commitment
scheme [·; ·], or 3) compute a collision for the hash function H. Since Alice is assumed
to not be able to break the commitment scheme or H, this will be sufficient for later
use. We also argue that the checks are simulatable by Alice without knowing ∆ in the
following sense: knowing the trapdoor of the commitment scheme and the challenge e,
Alice can compute a component for which she can correctly reply to the challenge e.
The simulated components and reply are computationally indistinguishable from a real
component and a real reply.

24

L.1 NT gates

Extraction Complete: We argue that the three tests are extraction complete. For this
purpose, assume that Alice can answer all three challenges for ([I0], [O0], C0, C1, C2).

The answer to e = 0 gives an opening of [I0] to some I0 and an opening of [O0]+ [∆]
to some O1.

The answer to e = 1 gives an opening of [I0] + [∆] to some I1 and an opening of
[O0] + [∆] to some O1. From the opening of [I0] to I0 (from the reply to e = 0) and the
opening of [∆] to ∆ we can compute an opening of [I0]+ [∆] to I0 +∆. So, if I1 6= I0 +∆
we can compute a double opening of [I0]+[∆]. We can therefore assume that I1 = I0+∆.
Using a similar argument we can assume that O1 equals the O1 from the reply to e = 0.

The answer to e = 2 gives an opening of [I0] + 2[∆] to some I2 and an opening of
[O0] to some O0. Using arguments as above we can conclude that I2 = I0 + 2∆ and
O1 = O0 + ∆ or that a double opening can be computed efficiently.

From the other parts of the checks we get that the obtained keys fulfill that Cπ0 =
EI0(O1), Cπ1 = EI0+∆(O1), Cπ2 = EI0+2∆(O0) for some π0, π1, π2. Let π(i) = πi for
i ∈ {0, 1, 2}. Then (I0, rI , O0, rO, π) is a generator, unless π0, π1, π2 are not distinct so
that π is not a bijection. Below we will not assume that the extracted witnesses have π
which are bijections.

Simulatable: We show how to simulate for e = 2. The other two cases are handled
using the same technique. Alice picks uniformly random keys I2 and O0. Then she defines
I1 = I2−∆ and I0 = I2−2∆ and O1 = O0+∆.14 She picks π at random and randomizers
r′I and rO and sends ([I0], [O0], C0, C1, C2), where [I0] = [I2; r

′
I]−2[∆], [O0] = [O0; rO] and

Cπ(2) = EI2(O0). She lets Cπ(0) and Cπ(1) be uniformly random group elements. On the
challenge e = 2 she has to open [I0]+2[∆] = [I2; rI] and [O0] = [O0; r0] to values such that
Cπ(2) = EI2(O0), which is possible by construction. The simulation is computationally
indistinguishable from the protocol by our assumptions on the encryption scheme.

L.2 KCs

Extraction Complete: We argue that the two tests are extraction complete. For this
purpose, assume that Alice can answer both challenges for ([K0], T0, T1).

As for the NT gates we can assume that K1 = K0+∆, as we would otherwise be able
to compute a double opening of the commitment scheme. It follows that Tπ0 = H(K0)
and T1−π1 = H(K0 + ∆) for some π0, π1. If π0 = π1, then H(K0) = H(K0 + ∆), which
gives a collision. If π0 6= π1, then (K0, rK , π0) is a generator.

Simulation This is handled as for NT gates. Here we use that H(V1+∆), . . . ,H(Vm+∆)
are computationally indistinguishable from uniformly random values given V1, . . . , Vm

when the Vi are distinct and ∆ is uniformly random.

14 Defines, as she does not know ∆.

25

