
On the Security of Fully Collusion Resistant
Traitor Tracing Schemes

Yongdong Wu 1 and Robert H. Deng2

1Institute for Infocomm Research, Singapore
2 Singapore Management University, Singapore

wydong@i2r.a-star.edu.sg

Abstract. This paper investigates the security of FTT (fully collusion
resistant traitor tracing) schemes in terms of DOT (Denial Of Tracing)
and framing. With DOT attack, a decoder is able to detect tracing activ-
ity, and then prolongs the tracing process such that the tracer is unable
to complete tracing job in a realistic time duration and hence has to
abort his effort. On the other hand, by merely embedding several bytes
of non-volatile memory in the decoder, we demonstrate, for the FTT
schemes, how the decoder can frame innocent users at will. Furthermore,
we propose a countermeasure on the framing attack.

1 Introduction

CASBAA (Cable and Satellite Broadcasting Association of Asia), which studied
TV markets across 11 Asian countries, reported the number of illegal connec-
tions is expected to have risen 20% to $5.2 million in 2006, and pay-TV piracy in
Asia is estimated to cost the industry $1.13 billion in 2006, up 6.6% from 2005
[1]. It is apparent that the need for content protection in the existing broadcast
encryption systems is urgent and challenging. In a typical broadcast encryption
system, each authorized user has a legal decoder embedded with a unique de-
cryption key. A content distributor encrypts broadcast content such that only au-
thorized users can decode protected content with their legal decoders. However,
rogue authorized users, called traitors, may violate copyright protection poli-
cies by reverse-engineering the legal decoders (e.g., [2]), sharing their decryption
keys, constructing and distributing pirate decoders - illegal devices which are
not registered with a broadcaster but are able to decrypt protected content. The
broadcast encryption (BE) and traitor tracing (TT) model, an extension of the
broadcast encryption model, incorporates various measures to deter authorized
users from leaking their decryption keys.

BETT takes a confiscated pirate decoder, feeds it with special tracing mes-
sages, and outputs one or more identifiers of the colluders. Traitor tracing can
be further divided into black-box, white-box and gray-box methods. Black-box
tracing (e.g., [3]-[6]) assumes that the tracer know nothing about the internals
of the decoder. A specific black-box traitor tracing technique is black-box con-
firmation (e.g., [7]) which is used to confirm whether or not a subset of users are

traitors. White-box tracing (e.g. [8]) assumes that the tracer know the internal
detail (e.g., the decryption key) of the pirate decoder. Gray-box tracing (e.g.,
[9]) assumes that the tracer have partial knowledge on the internals of the de-
coder (e.g., the decryption key for the protected content). The main challenge
in the white-box and gray-box methods is reverse-engineering the decoder which
is beyond the scope of the paper.

Most traitor tracing schemes in the literature are only effective when the
number of traitors is much smaller than the number of authorized users. The
notion of fully collusion resistant traitor tracing (FTT) was recently put forward
in [10] [11]. A FTT scheme effectively identifies all traitors even if all authorized
users collude in producing a pirate decoder.

In a private key FTT scheme, the tracer must know a private tracing key
and therefore is assumed to be trusted by all. Boneh, Sahai and Waters [10]
introduce a cryptographic primitive called Private Linear Broadcast Encryption
(PLBE) and show that any PLBE gives a private key FTT scheme, refereed
to as FTT1 scheme here. However, private key traitor tracing schemes suffer
from the customer’s right problem1 [13]. A public key FTT scheme solves
the above problem and allows anyone to run the tracing algorithm. Boneh and
Waters [11] present a primitive called Augmented Broadcast Encryption (ABE)
that is sufficient to construct public key FTT schemes, called FTT2 schemes in
this paper. Both FTT1 and FTT2 schemes are resistant to an arbitrary number
of colluders and are secure against adaptive stateless adversaries.

1.1 Features of BETT Systems

A BETT system consists of two algorithms: Broadcast Encryption (BE) and
Traitor Tracing (TT). In the BE algorithm, a broadcaster encrypts a message
M into a ciphertext C, then transmits C and some decryption tokens (or enabling
blocks) over a broadcast channel. A user can correctly decrypt/decode C if she
possesses a legal decoder. On the other hand, the TT algorithm identifies traitors
from a confiscated pirate decoder. A BETT system should have the following
features:

(a) Supporting large user population: Broadcast (e.g., pay-TV and encrypted
satellite radio broadcast) delivers the same message to all authorized users
simultaneously over a single broadcast channel, but incurs much more over-
head than unicast communications in terms of system setting up and user
device management. Hence, the larger the user population is, the more effi-
cient utilization of the broadcast channel. Most broadcast applications are
characterized by a large number N of users (e.g., N ≥ 106 in [3][4]).

(b) Accessibility of pirate decoders: In order to start a tracing process,
the tracer has to confiscate/access at least one pirate decoder. This pre-
requisition can be met when pirate decoders are easily accessible.

1 In a private key traitor tracing scheme, since the broadcaster knows all the decryption
keys, he may create a pirate decoder to frame any users at will.

(c) Guaranteed QoS: QoS (Quality of Service) is important in broadcast. For
example, video stream must be of high quality; otherwise, users won’t sub-
scribe and pay for the service. This implies that a broadcaster can only insert
in the broadcast channel a small amount of control data (e.g., messages for
tracing traitors) or noise.

(d) Structured messages: Decoders are usually designed to process messages
formatted based on international or industrial standards. For example, con-
tent sent to VCD decoders follows MPEG format. Thus, messages trans-
mitted in either normal broadcast mode or traitor tracing mode must have
clearly specified format or structure; unstructured messages may crash le-
gal decoders and/or alert pirate decoders that traitor tracing is underway.
For this reason, traitor tracing schemes in [5] seem not practical since they
assume that a pirate decoder is not able to distinguish random data from
broadcast content.

(e) Realistic tracing cost: A practical traitor tracing scheme must allow a
tracer to find traitors at an affordable cost either in terms of time (e.g.,
within the life-time of the broadcast system) or in terms of budget (e.g., at
a small fraction of the operating cost of the broadcast system). It is simply
not economically viable if a tracer has to spend 10 years or $10 millions in
trying to identify a traitor. For this reason, we believe it is inappropriate to
evaluate tracing cost based on notions in computational complexity.

For ease of exposition, notations used in this paper are listed in Table 1.

1.2 Our Contribution

The paper presents a DOT concept and attacks to FTT1 scheme [10] and FTT2
scheme [11]. Specifically,

(a) For tracing algorithm which is valid for stateless decoders, we introduce a
novel Denial-Of-Tracing (DOT) mechanism which forces the tracing process
taking too long time to complete such that the tracer is left with no choice
but giving up the arm-race game.

(b) Assuming our pirate decoder is embedded with just several bytes of non-
volatile memory, we demonstrate how the decoder is able to mislead the
tracer to frame innocent users at will in both FTT1 and FTT2. We also
improve FTT1 and FTT2 to prevent this framing attack.

The rest of the paper is organized as follows. Section 2 first briefly describes
the DOT attack for pirate decoder. Sections 3 and 4 illustrate how to customize
our pirate decoder to exploit the weaknesses in FFT1 and FFT2 respectively.
Section 5 presents a stateful version of the decoder, and shows how it leads a
tracer in FTT1 and FTT2 to frame innocent users. Section 6 draws our conclu-
sion.

Table 1. Notations and abbreviations

N the number of users

Uj the jth user

Dj decoder of the jth user

n the actual number of collusion traitors

t the maximum number of tolerable traitors, n ≤ t ≤ N

Uπj the jth traitor, πj < πj+1

T the set of the traitors

D a pirate decoder

M plaintext message

C ciphertext used in broadcasting or tracing mode

Mj output of decoder Dj

τ initialization time of the pirate decoder D
ε the minimal successful decoding probability of

a useful decoder

λ a security parameter

BETT Broadcast Encryption and Traitor Tracing

DOT Denial Of Tracing

FTT Fully collusion resistant Traitor Tracing

FTT1 private FTT [10]

FTT2 public FTT [11]

2 Denial-of-Tracing

To start the DOT attack, a pirate decoder should have a RST unit which resets
the pirate decoder to an initialization state. Usually, RST is able to be activated
(1) externally: a traitor tracing scheme designed for stateless decoders demands
that a decoder be reset before each new trail begins in order to clear any state
information recorded by the decoder; or (2) internally, the RST unit trigs itself
whenever the decoder detects that tracing is underway. In either case, the RST
unit introduces an initialization (or intentional) delay τ that is related to the
toleration time for a user to start a decoder. Thus, given the number ω of trials,
the total tracing time is

Ttrace = ω × τ.

Generally speaking, Ttrace is bounded by the tracing budget and/or the life-
time of the broadcast system. When the tracer confiscates several pirate decoders
and traces them in parallel, Ttrace serves as a good estimation of the total tracing
cost. Therefore, if the number of tracing trials is too large so that the tracing
time surpasses the budget, the tracer will have to give up. Hence, if any traitor
tracing algorithm for stateless decoder requires a lot of trials, it is vulnerable to
DOT attack in nature. In the following, we will employ DOT attack to defeat
FTT1 and FTT2 tracing methods.

3 DOT Attack to FTT1

FTT1 is the first fully collusion resistant traitor tracing scheme with ciphertext
of size O(

√
N) and private key of size O(1). In this section, we demonstrate how

a pirate decoder with DOT attack invalidates FTT1.

3.1 Overview of FFT1

Boneh, Sahai and Waters propose a private linear broadcast encryption (PLBE)
primitive, and employ PLBE to realize a traitor tracing algorithm Trace(·) in
FTT1 [10].

PLBE PLBE consists of a set of cryptographic functions Setup(·), Encrypt(·),
TrEncrypt(·), and Decrypt(·).

– Setup(N,λ): a probabilistic algorithm that takes as input N and a security
parameter λ. The algorithm runs in polynomial time in λ and outputs a
public key PK, a secret key TK and private keys K1, . . . ,KN , where Ki is
given to user Ui.

– Encrypt(PK,M): takes as input PK and a message M . It outputs a cipher-
text C which is broadcast to all users.

– TrEncrypt(TK, i, M): takes as input TK, an integer i satisfying 1 ≤ i ≤
N + 1, and a message M . It outputs a ciphertext C. TrEncrypt(·) is pri-
marily used for traitor tracing. Note that TrEncryptL(TK, 1,M) outputs a
ciphertext distribution that is indistinguishable from the distribution gener-
ated by Encrypt(PK, M).

– Decrypt(j,Kj , C, PK): takes as input the private key Kj for user j, a ci-
phertext C, and the public key PK. The algorithm outputs a message M or
⊥.

Loosely speaking, PLBE is similar to an encryption system whose secret keys
are constructed with a hash chain. Formally, the PLBE property is as follows:

∀i ∈ [1, N + 1] and j ∈ [1, N], and message M :
Let (PK, TK, (K1, . . . ,KN)) ← Setup(N,λ),

and C ← TrEncrypt(TK, i,M).
If j ≥ i then Decrypt(j, Kj , C, PK) = M .

The scheme FTT1 defines index hiding (IH) game as follows: if the decryption
key Ki is unknown, then one cannot distinguish encryptions with index i from
encryptions with index i + 1. The indistinguishability of IH game implicitly
express that if the decryption key Ki is unknown, then one cannot distinguish
encryptions with index i from encryptions with index i+x for x > 0. Otherwise,
it makes no sense.

Tracing Algorithm Given a pirate decoder D, and a ε > 0, the linear tracing
algorithm Trace(TK, ε) is shown in Fig.1. In the tracing algorithm, a tracer
scans all users sequentially and compares the successful decoding probabilities
of users’ decoders. If the decoding probability of a user’s decoder is abnormal,
that user is incriminated.

Let the traitor set T = φ,
(a) For i = 1 to N + 1

The target event E is that the decoder has key
Ki. Let η = 0. Repeat the following trial Ω3 =
8λ(N log N/ε) times:

– Select a message M from the finite message space
at random.

– Let C ← TrEncrypt(TK, i, M).
– Call D on input C to get the output M̃ . If M̃ =

M, η ← η + 1.

Let p̂i be the fraction of trial times that D decrypted
the ciphertexts correctly, thus, p̂i = η/Ω3.

(b) If p̂i − p̂i+1 ≥ ε/(4N), event E is regarded to really
occur, and thus Ui is inserted into T.

(c) Output T as the set of guilty colluders.

Fig. 1. Linear traitor tracing algorithm in FTT1.

3.2 Attack to FTT1 Scheme

Detection of Tracing Let n be the number of traitors who actually colluded
in the construction of a pirate decoder. The pirate decoder divides users into
n + 1 subsets,

G0 = [1, π1],
Gj = (πj , πj+1], j = 1, 2, . . . , n− 1
Gn = (πn−1, N].

where πi is the identification number of the ith traitor, the tracing algorithm
Trace(TK, ε) in Fig.1, the tracer generates a ciphertext C = TrEncrypt(TK, i,M),
and sends C to the pirate decoder D. Upon receiving C,

– The decoder D gets n plaintexts Mπj generated by traitor’s decoder Dπj , j =
1, 2, . . . , n. With reference to Fig.2, the index i of the user under examination
must be

i ∈




G0 : Mπ1 = Mπn

Gj : ∃j ∈ [1, n− 1], Mπj 6= Mπj+1 = Mπj+2

Gn : ∀j, k, j 6= k, Mπj 6= Mπk
,

(1)

1 π1 πj i

s
πj+1 πj+2 πn

-
N

random¾ M -

Fig. 2. Intervals a user index i belongs to.

The above relationship reveals a lot of information about the index i of
user Ui. This invalidates the statement in [10] that “a broadcast to users
{i, . . . , N} should reveal no non-trivial information about i”. The decoder D
translates Eq.(1) into the following

Op =





1 : i ∈ G0

−1 : i ∈ Gj , j ∈ [1, n− 1]
0 : i ∈ Gn

(2)

– If Op = 1, the ACT unit instructs the decoder to output the correct message
M ; however, if Op 6= 1, the decoder knows it is being traced, and then takes
protective actions against the tracer, e.g., DOT attack.

DOT attack FTT1 is designed to trace stateless decoder. Hence, a suspected
decoder D is reset by the tracer before each trial, optionally, the decoder D can
also be activated by the RST unit if Op 6= 1. Any of the resetting actions will
start the reset process which will introduce a time delay τ . Therefore, the total
tracing time in FTT1 is at least

Ttrace = τNΩ3 = 8τλN2 log N/ε

Example 1: Let N = 100, λ = 100, ε = 0.1 (note ε = 0.01 is used in [7]), τ = 1
minute. Then a complete tracing process would take

Ttrace ≈ 8× 1× 100× 1002 × log 100/0.1
≈ 7.972× 107 minutes ≈ 150 years!

Even the binary search algorithm is used, the cost is still very high. Thus,
if the decoder must be stateless by resetting after each tracing trial, the tracing
algorithm in FTT1 is certainly infeasible in practice. However, if the decoder is
kept stateful by not resetting it after each tracing trial, our pirate decoder can
launch a framing attack (see Section 4).

4 DOT Attack to FTT2

The public fully collusion traitor tracing scheme (or FTT2) [11] allows anyone
to trace a pirate decoder. In addition, a broadcaster can revoke any set of users.
In this section we give a brief overview of FTT2 and point out its vulnerability
against DOT attack.

4.1 Overview of FTT2 Scheme

The cryptographic primitive used to construct the traitor tracing algorithm
Trace(·) in FFT2 is called augmented broadcast encryption (ABE) [11].

ABE ABE consists of a set of cryptographic functions: Setup(·), Encrypt(·),
and Decrypt(·).

– Setup(N,λ): A probabilistic algorithm that takes as input N , and a security
parameter λ. The algorithm runs in polynomial time in λ and outputs a
public key PK and private keys K1, . . . , KN , where Kj is given to user Uj .

– Encrypt(SD, PK, i, M): Takes as input a subset of users SD ⊆ {1, . . . , N},
a public key PK, an integer i satisfying 1 ≤ i ≤ N + 1, and a message M .
It outputs a ciphertext C. This algorithm encrypts a message to the set of
users SD ∩ {i, . . . , N}.

– Decrypt(SD, j, Kj , C, PK): Takes as input a subset SD ⊆ {1, . . . , N}, the
private key Kj for user j, a ciphertext C, and the public key PK. The
algorithm outputs a message M or ⊥.

ABE property : For all subsets SD ⊆ {1, . . . , N},
∀i, j ∈ {1, . . . , N + 1} (where j ≤ N), and all mes-
sages M :
Let (PK, (K1, . . . ,KN)) ← Setup(N, λ),

and C ← Encrypt(SD, PK, i,M).
If j ∈ SD and j ≥ i, Decrypt(SD, j,Kj , C, PK)

yields M , otherwise, ⊥.

Tracing Algorithm Given a pirate decoder D, a predetermined ε > 0 and a
set SD, the tracing algorithm Trace(SD, PK, ε) is shown in Fig.3.

Tracing All Traitors Like the tracing algorithm in FTT1, the above Trace(SD, PK, ε)
in FTT2 may identify only one traitor. To identify all the traitors, FTT2 re-
vokes the identified traitors and iteratively updates the set SD. Specifically, the
TraceAll(SD, PK, ε) algorithm is shown in Fig.4.

4.2 Attack to FTT2

Since the tracing algorithms in FTT2 and FTT1 are similar, they are vulnerable
to the same kind of attacks. To keep the paper compact, we will not present
the details of DOT attack to FFT2 here. It should be pointed out that FTT2 is
much more vulnerable to DOT attack than FTT1 since it requires more tracing
trials.

Let the suspected user set T = φ.
(a) For i = 1 to N + 1 do

The target event E is that the decoder has key Ki.
Let η = 0. Repeat the following trial Ω4 = 8λ(N/ε)2

times:
– Sample message M from the finite message space

at random.
– Let C = Encrypt(SD, PK, i, M).
– Call D on input C to get decoder output M̃ . If

M̃ = M , η ← η + 1.
Let p̂i be the fraction of trial times that D decrypted
the ciphertexts correctly, i.e., p̂i = η/Ω4.

(b) If p̂i − p̂i+1 ≥ ε/(4N), then event E is considered
true, and Ui is added to set T.

(c) Output T as the set of guilty colluders.

Fig. 3. Traitor tracing algorithm in FTT2.

(a) Set SD as the set of all of users.
(b) Find one traitor u with Trace(SD, PK, ε);
(c) Let T← T ∪ {u} and SD ← SD\{u};
(d) If Trace(SD, PK, ε) outputs a traitor, go to step (b).

Otherwise, quit.

Fig. 4. Tracing all of the traitors in FTT2.

Example 2: Let’s estimate the linear tracing time in FTT2 with the same
parameters as in Example 1, i. e., τ = 1 minute, N = 100, ε = 0.1, λ = 100. The
total tracing time is

Ttrace = N ×Ω4 × τ = N × 8λ(N2/ε2) = 8λτN3/ε2

= 800× 106/10−2 = 8× 1010 minutes = 1.5× 105 years!

Thus, it requires on the average about 7.7×104 years to trace a traitor among a
small group of N = 100 users. If the trace-revoke process TraceAll(SD, PK, ε)
is used to trace all the traitors, it would take about 7.7× 106 years.

5 Framing Attack to FTT

In this section, we first discuss the soundness of the assumption of stateless
pirate decoders. We then introduce a framing attack to FTT assuming that
the pirate decoder has several bytes of non-volatile memory. We also propose a
countermeasure to defeat the framing attack. For simplicity, we address FTT1
only since it is straightforward to extend the attack and the countermeasure to
FTT2.

5.1 Stateless vs. Stateful Decoder

Many traitor tracing schemes including FTT assume stateless pirate decoders.
However, this stateless assumption seems too restrictive for several reasons.

(a) Memory is getting cheaper. Embedding a few bytes of non-volatile memory,
which essentially cost nothing, makes a decoder stateful.

(b) Most decoders require non-volatile memory to store private data and to keep
track of history information. For example, in order to decode MPEG video,
a VCD decoder has to store recently decoded pictures in rendering a movie.

(c) Many authors assume that a traitor tracing scheme for stateless decoders can
be converted into a tracing scheme for stateful decoders using the conversion
algorithm introduced by Kiayas and Yung [21]. However, this conversion al-
gorithm works under two assumptions. First, the algorithm is designed for
partial collusion resistant traitor tracing schemes, not for FTT which as-
sumes that all users may be involved in collusion. Second, the algorithm
assumes that it is possible to identify at least one traitor from a copy which
is generated from several watermarked copies. This assumption is still ques-
tionable:
• It is proved in [22] that no traitor can be identified from a pirated copy if

the number of the traitors is above a threshold given that the probability
of implicating innocent is low;

• Secure Digital Music Initiative (http://www.sdmi.org/) aimed to de-
velop and standardize four audio watermarking techniques to protect dig-
ital music from illegal playing, storing, and distributing. Unfortunately,
all four schemes were broken [23]. Additionally, many other watermark
schemes have been published and then broken. Even the well-cited spread
spectrum method [24] is being challenged [25].

Thus it is still very challenging to convert a tracing scheme for stateless
decoders into one for stateful decoders. This is more so for FTT.

5.2 Framing Attack to Stateful Decoder

Assuming that our pirate decoder D is embedded with a non-volatile memory
counter lC (e. g., 8 bytes) to record the number of ciphertexts received. By
exploiting the deterministic scanning pattern during traitor tracing in FTT1,
Fig.5 shows how the decoder frames innocent users.

After completing the tracing/anti-tracing game in Fig.5, the tracer observes
that ∀α = π1 + 2d− 1 ≤ πn with some integer d, the pirate decoder D decoded
all ciphertexts C = TrEncrypt(TK, α, M), but none of the ciphertexts C =
TrEncrypt(TK, α + 1,M). Hence, the tracer concludes that

p̂α = 1 but p̂α+1 = 0

which in turns implies that,

p̂α − p̂α+1 = 1 ≥ ε/(4N)

Let lC = 0.
For each ciphertext received, D proceeds as follows.
(a) The WATCH unit computes Op using Eq. (2). If

Op 6= −1, the ACT unit outputs the average of all
the {Mπj}n

j=1 and then receives the next ciphertext.
(b) If Op = −1, the ACT unit detects tracing is under-

way. It increments lC by 1 and sets γ = blC/Ω3c+1.
Since each user is examined Ω3 times continuously,
the decoder knows that the user Uπ1+γ is being ex-
amined.

(c) If (γ mod 2) = 1, the ACT unit instructs the de-
coder to output Mπn which is identical to M ; other-
wise, the decoder outputs some random data.

Fig. 5. Framing attack to FTT1 with stateful pirate decoder.

Based on the FTT1 tracing algorithm in Fig.1, the tracer identifies the innocent
user Uα as a traitor. Clearly, many users can be framed in this way.

Example 3: Assuming users U3, U8 and U9 are traitors who create a pirate
decoder D. In the tracing algorithm in Fig.1, if 3 < i ≤ 8, the pirate decoder
detects tracing is underway on account of M3 6= M8 = M9. Hence, during the
tracing process, the output for i = 4, 6 is from D9, while the output for i = 5, 7
is from D3. The tracer concludes that

p̂4 = p̂6 = 1 but p̂5 = p̂7 = 0

or equivalently,
p̂4 − p̂5 = 1 > ε/(4N)

and
p̂6 − p̂7 = 1 > ε/(4N)

Thus, users U4 and U6 are identified as traitors wrongly.

5.3 Countermeasure on Framing Attack

In FTT, a tracer scans users following a known pattern (linear or binary), thus
a stateful decoder knows whose decoder is being examined. Therefore, if the
tracer randomly scans users during tracing, the pirate decoder may fail to frame
innocent users. Such an improved tracing algorithm is depicted in Fig.6.

It should be noted that we use structured messages in tracing; otherwise
the pirate decoder can defeat tracing by always outputting noise whenever it
sees an unstructured message. With the random scan pattern, the probability
of p̂i − p̂i+1 is small due to semantic security of either PLBE or ABE if Ui is
innocent. Therefore, no innocent users in any interval (πj , πj+1] can be accused.

Let the traitor set T = φ.
(a) The algorithm repeats the following trial NΩ3 times:

(i) Sample a structured message M , and select
i ∈R [1, N] randomly.

(ii) Let C = Encrypt(SD, PK, i, M).
(iii) Call D on input C, and compare the output of

D to M .
(b) Let p̂i be the fraction of times that D decrypted the

ciphertexts correctly.
(c) If p̂i − p̂i+1 ≥ ε/(4N), then add i to set T.

Fig. 6. Countermeasure to the framing attack.

6 Conclusion

One of the novel notions and techniques we introduced is Denial-Of-Tracing
(DOT). DOT attack forces a traitor tracing process to take a very long time
to complete such that the tracer is left with no choice but giving up its tracing
attempt. To this end, the proposed pirate decoder injects a fixed amount of delay
in each tracing trial by resetting the decoder. This reset mechanism is activated
either by the tracer as required by most traitor tracing schemes for stateless de-
coders, or automatically by the decoder itself upon detection of an active tracing
trial. Many traitor tracing schemes require a large number of trails and therefore
are vulnerable to DOT attack. As concrete examples, we demonstrated success-
fully DOT attacks to black-box confirmation based schemes, combinatorial-key
schemes, the private fully collusion resistant traitor tracing (FTT1) scheme and
the public fully collusion resistant traitor tracing (FTT2) scheme. We presented
several methods to counter DOT attack, but none of them seems effective.

We discussed the limitations and the impractical assumption on stateless
pirate decoders. Assuming that the proposed pirate decoder is embedded with
just several bytes of non-volatile memory, as another contribution of the paper,
we showed how the decoder is able to mislead a tracer to frame innocent users
at will in both FTT1 and FTT2. We also discussed ways to prevent this framing
attack.

References

1. CASBAA, “Pay-TV piracy on the rise in Asia: study,” AsiaMedia Me-
dia News Dialy, http://news.yahoo.com/s/afp/20061024/ennew_afp/

asiatvindustrycrime_061024162529, Oct 24, 2006
2. Joris Evers, “Breaking through Apple’s FairPlay,” http://news.cnet.com/

Breaking+through+Apples+FairPlay/2008-1025_3-6129420.html

3. B. Chor, A. Fiat and M. Naor, “Tracing Traitors,” Crypto’94, LNCS 839, pp.
257-270, 1994.

4. B. Chor, A. Fiat, M. Naor, and B. Pinkas, “Tracing Traitors,” IEEE Transactions
on Information Theory, 46(3):893-910, May, 2000.

5. A. Kiayias and M. Yung, “Traitor Tracing with Constant Transmission Rate,”
Eurocrypt ’02, LNCS 2332, pp. 450-465, 2002.

6. Y. Dodis and N. Fazio, “Public Key Trace and Revoke Scheme Secure Against
Adaptive Chosen Ciphertext Attack,” PKC, pp.100-115, 2003.

7. Y. Dodis, N. Fazio, A. Kiayias, and M. Yung,“Scalable Public-Key Tracing and
Revoking,” PODC, pp.190-199, 2003.

8. A. Kiayias and M. Yung, “Breaking and Repairing Asymmetric Public-key Traitor
Tracing,” ACM DRM 2002, LNCS 2696, pp. 32-50, 2002.

9. J. McGregor, Y. L. Yin, and R. Lee, “A Traitor Tracing Scheme Based on RSA
for Fast Decryption,” ACNS 2005, LNCS 3531, pp. 56-74, 2005.

10. D. Boneh, A. Sahai, and B. Waters, “Fully Collusion Resistant Traitor Tracing
With Short Ciphertexts and Private Keys,” Eurocrypt ’06, LNCS 4004, pp. 573-
592, 2006.

11. D. Boneh and B. Waters, “A Collusion Resistant Broadcast, Trace and Revoke
system,” ACM CCS 2006, http://eprint.iacr.org/2006/298

12. D. Boneh, A. Sahai, and B. Waters, “Fully Collusion Resistant Traitor Tracing,”
http://eprint.iacr.org/2006/045, full paper of [10]

13. L. Qiao and K. Nahrstedt, “Watermarking Schemes and Protocols for Protecting
Rightful Ownership and Customer’s Rights,” J. Vis. Commun. Image Representa-
tion, vol. 9, pp. 194-210, 1998.

14. D. Tonien, R. Safavi-Naini, “An Efficient Single-Key Pirates Tracing Scheme Using
Cover-Free Families,” ACNS, LNCS 3989, 82-97, 2006.

15. N. Alon, J. Bruck, J. Noar, M. Noar and R. Roth, “Construction of Asymptotically
Good Low-Rate Error-Correcting Codes thorough Pseudo-Random Graphs,” IEEE
Trans. on Information Theory, vol. 38, pp.509-516, 1992.

16. B. Pfitzmann and M. Waidner, “Asymmetric Fingerprinting for Larger Collusions,”
ACM Conference on Computer and Communication Security, pp151-160, 1997.

17. E. Gafni, J.Staddon, and Y. L. Yin, “Efficient methods for integrating traceability
and broadcast encryption,” CRYPTO’99, pp. 372-387, 1999.

18. M. Naor and B. Pinkas, “Threshold traitor tracing,” CRYPTO’98, pp. 502-517,
1998.

19. Y. Dodis and N. Fazio, “Public key broadcast encryption for stateless receivers,”
ACM Digital Rights Management Workshop, LNCS 2696, pp.61-80, 2002.

20. D. Naor, M. Naor, and J. Lotspiech, “Revocation and Tracing Schemes for Stateless
Receivers,” Crypto’01, LNCS 2139, pp. 41-62, 2001.

21. Aggelos Kiayias and Moti Yung, “On Crafty Pirates and Foxy Tracers,” ACM
Workshop in Digital Rights Management -DRM 2001, Lecture Notes in Computer
Science (LNCS) 2320, pp.22-39, 2002.

22. F. Ergun, J. Kilian and R. Kumar, “A Note on the Limits of Collusion-Resistant
Watermarks,” EUROCRYPT’99, LNCS 1592, pp. 140-149, 1999.

23. S. A. Craver, M. Wu, B. Liu, A. Stubblefield, B. Swartzlander, D. S. Wallach, D.
Dean, and E. W. Felten, “Reading Between the Lines: Lessons from the SDMI
Challenge,” 10th USENIX Security Symposium, pp.353-363, 2001.

24. I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “Secure Spread Spectrum
Watermarking for Multimedia,” IEEE Trans. Image Processing, 6(12):1673-1687,
1997.

25. T. Kanti Das and S. Maitra,“Cryptanalysis of Correlation-Based Watermark-
ing Schemes Using Single Watermarked Copy,” IEEE Signal Processing Letters,
11(4):446-449, 2004.

