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Abstract

In this short note, we present an extension of Nguyen'sdslirmap based accumulator scheme [8]
to supportnon-membership witnessasd correspondingon-membership progfs.e., cryptographic
proofs that an element has not been accumulated to a giveftgstcomplements the non-membership
proofs developed by Lét al. [7] for the RSA accumulator [2, 3, 5], making the functiomalof the
bilinear-map accumulator equivalent to that of the RSA audator. Our non-membership extension of
Nguyen’s scheme [8] makes use of fx&trong Diffie-Hellman assumption the security of the orai
scheme is based on.

1 Introduction

Dynamic accumulators are cryptographic authentication primitives for optimetifying set-membership
relations. Given a seX of elements, an accumulator can be used to computeceanmulation valuea
short (namely, of constant size) secure descripldX') of X, subject to which there exist short (namely,
of constant sizeyitnessedor any element inX that has been “accumulated” #(.X). Each element-
specific witness can be used to provide an efficient (namely, of congtafitation time) cryptographic
proof that the corresponding element is a membe¥ oElement insertions in or deletions from sétresult
in corresponding updates on the accumulation values and the element @stness

Accumulators were first introduced by Benaloh and de Mare [3], are \eger further studied and
extended by Baric and Pfitzmann [2]. Both constructions were basededRSA exponentiation function
and proved secure under tsBong RSAassumption. Camenisch and Lysyanskaya [5] further advanced
the RSA accumulator by introduced dynamic extensions, as well as pirasgrving membership proofs.
Consequently, many extensions of the RSA accumulator have been edoposiuding accumulation of
composite integers [11], bounded number of accumulated elements [Lfp sdthout trapdoor [10], and,
finally, non-membership witnesses and corresponding non-membersioifs proroduced by Liet al. [7].
Non-membership witnesses extend the functionality of accumulators by rsimgporyptographic proofs
that a given element is not a member of the set, that is, it was never accuiroléite current set. Finally,
works improving on the efficiency of the RSA accumulator include [6, 9].
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The first alternative construction of a dynamic accumulator (beyond teédagsed on RSA) is due to
Nguyen [8]. This scheme is based on bilinear pairings and the construstigmoven secure under the
g-strong Diffie-Hellmarassumption [4] on general groups. We refer to this accumulator schelilenaar-
map accumulatar Recently a new construction based Fillier’'s encryptionsystem has been proposed
that additionally offers batch element updates [12].

In this short note, we describe an extension of Nguyen’s bilinear-meymmadator scheme to support
non-membership withesses and non-membership paoafgrove the security of this extended scheme.

2 Non-Membership Verification for Bilinear-map Accumulators

We first present some necessary preliminaries related to the underlyimgutational hardness assump-
tion our non-membership extension (and also the original scheme by N¢8)da based on. We then
build on Nguyen'’s original accumulator scheme to define the new non-mehipevitnesses, describe their
corresponding verification test and finally prove their security.

2.1 Theg-strong Diffie-Hellman Assumption

We first present the-strong DH assumption [4] over general groups, which has beenmuseghy contexts.

Definition 2.1 (¢-Strong Diffie-Hellman Assumption.) LetG =< g > be a cyclic group of prime order
andr € Z,. Under theg-strong Diffie-Hellman assumptip@ny probabilistic polynomial-time algorithm
A that is given se{g“i 10 <7 < g}, finds a pair(x,gﬁ) € Zy, x G with at mostO(1/p) probability,
where the probability is over the random choice«of Z; and the random bits chosen by

In the sequel, whenever operating on group elementsaf prime orderp, we always make use of the
fact thatg® = ¢° ™1 P 1 € Z:i.e., all operations in the exponent can be reduced modulo the grougorde

2.2 Accumulators Based on Bilinear Maps

We now present Nguyen’s scheme and appropriately extend it to duppemembership proofs.

Given the security parametgr let G be a multiplicative cyclic group of prime orderthat is generated
by g, wherep grows exponentially witt\.! Additionally, groupG is chosen such that it supports a (non-
degenerate) bilinear pairing to a target cyclic gratp of prime orderp. That is, if G is generated by
elementy, then there exists a bilinear, non-trivial, map G x G — Gp from pairs of elements i~
to elements of target groufz, such that for any two integets b it holds thate(g?, ¢°) = e(g, ¢)** and
where, additionally, elememrtg, g) € Gr generates: .

Let A, : 2% — G be an accumulation function that is parameterized: by Z, and maps setX of
integers inZ; to elements ir: according to the mapping

A(X) = gllex(et)

This has been the accumulation function used by Nguyen in [8] to congtrifitst accumulator scheme that
is not based on the RSA exponentiation function. In Nguyen’s constryetics the trapdoor information
and set{¢"' |0 < i < g} is the public keyg in an upper bound opX| = n that grows polynomially with

1The security parameter can be equal to the bit-length of either a grouprleman exponent in the group (integers modh)lo



the security parameter = O(log p). Seen as a polynomial onof degree X | = n, let fx(x) denote the
product in the exponent of.(X), that is,

fx(r) &[] = +r).

reX

As in [8], for anyx € X, we define thenembership withess, € G of z with respect to accumulation
value 4,,(X) to be the valueu, satisfying themembership verification test

w{T = A (X), (1)
which, using the bilinear mag(-, -) and the publicly known group elemeht= ¢, is realized in practice as

e(wg, g - h) = e(Ax(X),9) . (2)

Fx (%)
That is, any member of setX has auniquecorresponding membership witness = ¢ e = gix.=(K)
(since(z + x)| fx (k)), for some polynomiafx ,(x) of degreen — 1 that is uniquely defined by s&f — z.

2.3 Non-membership Verification for Accumulators Based on Bihear Maps

Inspired by the non-membership test proposed It k. in [7] for the RSA accumulator, we introducen-
membership witnessésr the accumulation functior (). For anyy ¢ X, thenon-membership witness
w, of y with respect tod,;(X) is a pair of valuegw,, u,) € G x Z;, subject to the requirements) u, # 0
and(ii) (y + k)|[fx (k) + u,], additionally satisfying th@on-membership verification test

Wit = Ag(X) - g" 3)
which, using the bilinear magy-, -) and the publicly known group elemeiat= ¢*, is realized in practice as
e(wy, 9" - h) = e(Ax(X) - g™, 9) . (4)

In particular, any non-memberof set X has auniquecorresponding non-membership witnesgs =
(wy, uy), by setting

uy £ —fx(-y) modp=—J[(@—y) modp, (5)
rzeX

and then accordingly setting
Ix()—fx(=y) -

wy =g v =g 6)
for some polynomialjx (x) of degreen — 1 that is uniquely defined by sef. Note that, since) ¢ X,
it holds thatu, # 0. Also note that, ithx(x) = fx(k) — fx(—y), thenhx(—y) = 0, thus it holds that
(y + r)|hx (r) (thus, justifying the last part of Equation 6) and, in fact, that- <)|[fx () + u,]. Thus,
in addition to Equations 3 and 4, the pair of vales, u,) defined above satisfies the required conditions
uy # 0and(y + &)|[fx (k) + u,]. We require that the verification process immediately rejeatg i 0.

Also, observe that the non-membership witnesg/fgr X can be computed efficiently (in polynomial in

| X | time), using only seX and the public key, by evaluating polynomiafx (x) on —y and then computing
the group element, through Equation 6.



We say that a membership, respectively non-membership, witngssespectivelyw, = (wy,u,), iS
fakeif x ¢ X, respectively € X, and, still, the corresponding membership. respectively non-membership,
verification test (in particular, expressed through Equations 1 ang8cteely) is satisfied.

The security of non-membership test relies on the following:if in X theny + « divides polynomial
fx(x), and thereforg + « cannot divide polynomiafx () + u,, for any choice ot # 0. (Recall that the
verifier first checks whethar, # 0, according to the definition of non-membership witnesses.) Based on
the fact tha(y + ) t [fx (k) + uy], one can easily reduce any fake non-membership witness to an attack to
the ¢-Strong DH assumption, using a simple polynomial division and the public kaycdmpleteness we
present the security proof for both membership and non-membership sates

Lemma 1 Under theg-Strong Diffie-Hellman assumption, any PPT algorithingiven any sek’, | X| < ¢
and set{¢g"' |0 < i < ¢}, finds a fake non-membership witness of a membé¥ of a fake membership
witness of a non-member &f with respect taA,,(X) with probability at mostO(1/p), measured over the
random choice of: € Z; and random bits of3.

Proof: Consider the case of membership witnesses first. Suppose that therdP&is&dgorithmB that
with non-negligible probability outputs a fake membership witnesdor x ¢ X with respect toA, (X).
Then,w? ™~ = A (X) = ¢/x(®, wherefx(x) = S5 ¢; - s, with ¢; being a known coefficient that
depends on the elements &f 0 < i < |X|. Sincex ¢ X, itis (x + k) 1 fx(x). Thus, using polynomial
division and givenX, =, one can compute a non zero integand a polynomiag(x) of degreg X | — 1 such
that fx (k) = ¢ + q(k) - (z + ). Thereforew, = g2 . g7tz andg#= = [w, - [¢**)]~1]°"", computed
efficiently using the public key, which contradicts thstrong DH assumption.

The case of non-membership witnesses is very similar. Indeed, suppbsedte exists PPT algorithm
B that with non-negligible probability outputs a fake non-membership witdgss= (w,, uy), u, # 0,
for y € X with respect tod, (X). Then,wy™™ = ¢/x(W)+u Sincey € X, (y + k)| fx(k), SO(y + K) 1
[fx (k) +uy] foranyu, # 0. Thus, as before, using polynomial division and giugn.X, y, one can express
fx(k) +uy asc+ q(k) - (y + &) for some non zere and some polynomiaj(x). This again allows the

efficient computation ogf;yﬁ, contradicting the-strong DH assumption.

Note that both reduction arguments can be extended to the case whevétfadeses are defined with
respect to the verification tests of Equations 2 and 4. In this case, krgeviddake witnesses satisfying
equationse(w,, g)*" = e(g, g)/*x*) ande(w,, 9)V** = e(g, )"+, implies knowledge ofv, and
(w,, u,) that correspondingly satisfy*+* = ¢/x() andwj ™ = g/x(®+w O

Therefore, we have a new secure non-membership verification tekefaccumulation functiod,, (-).

Theorem 1 (Non-membership withesses.Ynder theg-Strong Diffie-Hellman assumption, for any non-
member of seX there exists a unique non-membership withess with respect to the actiomwalue
A (X) and a corresponding efficient and secure non-membership véigficist.

3 Conclusion

In this short note, we extend the accumulator scheme that is based on lpliméags, which was introduced
by Nguyen in [8], to also support non-membership witnesses and pomésg cryptographic proofs of
non-membership in a given set. That is, given the (authentic) accumulatios of a setX, the public key,

and a corresponding short (of size that is independent of the siX¢ nbn-membership witness, a verifier
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can efficiently (in time independent of the size ¥j verify that a given elemeni is not a member o,
i.e.,y ¢ X. The security of this new non-membership verification test is proved uségdtrong Diffie-
Hellman assumption on general groups, the exact cryptographic assortmi@riginal scheme [8] by
Nguyen is based on. Similar to the non-membership extension of the RSA datoinfsee, e.g., [2, 3, 5])
that was proposed by Let al. in [7], this non-membership extension enriches the functionality of the
bilinear-map accumulator [8] and widens its usability in real-life security apijdics.
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