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Abstract. We prove that Lenstra proposition suggesting existence of many counterexamples to Agrawal
conjecture is true in a more general case. At the same time we obtain a strictly ascending chain of subgroups
of the group (Z,,[X]/(C,(X)))* and state the modified conjecture that the set {X-1, X+2} generate big enough
subgroup of this group.

1 Introduction

Prime numbers are of fundamental importance in mathematics in general: there are few better
known or more easily understood problems in pure mathematics than the question of rapidly
determining whether a given number is prime or composite. Efficient primality tests are also useful
in practice: a number of cryptographic protocols need big prime numbers.

In 2002 M.Agrawal, N.Kayal and N.Saxena [1] presented a deterministic polynomial-time
algorithm AKS that determines whether an input number is prime or composite. It was proved [4]
that AKS algorithm runs in O™ ((log n)7'5) time. H.Lenstra and C.Pomerance [4] gave a significantly
modified version of AKS with O"((log n)6) running time.

In the paper we do not consider randomozed primality proving algorithm which was
introduced by P.Berrizbeitia and investigated by Q.Cheng, D.Bernstein, P.Mihailescu-R.Avanzi [2].

The note concerns Agrawal conjecture. The conjecture was given in [2] and verified for
<100 and n <10'% in [3].

Conjecture. If r is a prime number that does not divide n and if (X-1)"=X"-1 (mod n, X'-1), then
either n is prime or n’=I (mod r).

If Agrawal conjecture were true, this would improve the polynomial time complexity of the
AKS primality testing algorithm from O™((log n)®) to O((log n)*).

H.Lenstra and C.Pomerance [4] gave a heuristic argument which suggests that the above
conjecture is false. However, M.Agrawal, N. Kayal and N. Saxena [1] pointed out that some variant
of the conjecture may still be true (for example, if we force r>log n).

In this paper we prove that proposition (H.Lenstra) from [4] suggesting existence of many
counterexamples to the Agrawal conjecture is true in a more general case. We also give some

modified conjecture and arguments that this conjecture may be true.
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2 Preliminaries

Z, denotes a ring of numbers modulo n. Recall that if p is prime and A(X) is a polynomial of degree
d and irreducible in Z, then Z,[X]/(h(X)) is a finite field of order pd. We will use the notation

f(X)=g(X) (mod n, h(X)) to represent the equation f{X)=g(X) in the ring Z,[X]/(h(X)).
We use the symbol O™ (#(n)) for O(#(n)-poly(log #(n))) where t(n) is any function of n. We use

log for base 2 logarithm.

N and Z denote the set of natural numbers and integers respectively. (a,b) denotes the
greatest common divisor of integers a and b. Given re N, ac Z with (a,r)=1 the order of a modulo r
is the smallest number k such that a*=1 (mod r). It is denoted O,(a). For re N, ¢(r) is Euler’s totient
function giving the number of numbers less than r that are relatively prime to . It is easy to see that
O/(a)! ¢(r) for any a, (a,r)=1.

(uy,..., ug) denotes the group generated by elements uy,..., u. A" denotes the group of units
of the ring A.

AKS algorithm basis consists in the following reasoning [1]. Let n is arbitrary integer for
which it is necessary to determine whether it is prime or composite. For this purpose we verify the
equalities (X+a)"=X"+a in the ring Z,[X]/(X"-1) for numbers /=1,...,a. We choose as power r of the

polynomial X"-1 the smallest r, that satisfies the condition O,(n)>log’n. The number of equalities is

equalto [ = \_W log nJ

Then we consider the subgroup A of the group Z :, generated by elements n and p. Assume

that |Al=z.

We also consider the subgroup G of the group U:(Zp[X]/(h(X)))* (p is prime divisor of n,
h(X) is irreducible over Z, divisor of X'-1), generated by the set of elements X+a, a=0,...,1.

As <@(r), I<t, then creating products of at most /+1 polynomials of the form X+a and
proving that they are different in U , we obtain the lower bound IGI>2"*" (note that it is possible to
obtain more accurate bound).

If p is not a power of n, then one can also obtain an upper bound for |IGl. For this goal we
. 1 1 . . . 2 .
consider the set I:{(n/p)lp1|0§1,J§|_\/;J}. I consists of (]35 J+ 1) >t different numbers. As |Gl=t

then at least two numbers in I coincide modulo r: a=f mod r. Then (X+a)*=X%+a=X"+a=(X+a)’.

Hence, (X+a)®=1 and |G| divides af. So |Gk a < (X% p)) < b
p

As r>log’n then | G > 2 > plieent S ) 3nd we come to contradiction.

So the idea of AKS algorithm proof consists in the following: to show that the set of
elements X+a generates “big enough” subgroup in the group (Z,[X1/(h(X)))".



From this point of view it is possible to interpret the Agrawal conjecture in the following
way. If the identity (X-1)"=X"-1 (mod n, X'-1) holds then the set that consists of unique element X-1
generates big enough subgroup.

In this paper we generalize H.Lenstra proposition which indicates that the set {X-1} very
likely does not generate big enough subgroup. At the same time we obtain a chain of subgroups
X)c(X+1)c(X-1)c(X-1, X+2) and state the conjecture that the set {X-1, X+2} generate big
subgroup. The goal of future work is to clear up this question: what minimal set of elements one
have to take to generate big enough subgroup. Primality proving algorithm running time depends on
a number of elements of the set.

We will need the following simple fact.

Lemma 2.1. (1) n-p' for any integer i is divided by p-1 if and only if p-11n-1.

(2) n-p' for any integer i is divided by p+1 if and only if p+1ln+1.
Proof. (1) The equality n-p'=( n-1)-(p'-1) holds. Since p-1lp-1, n-p' is divided by p-1 if and only if
p-lin-1.

(2) The equality n-p'=( n+1)-(p'+1) holds. Since p+1lp'+1, n-p' is divided by p+1 if and only
if p+1in+1. 0

3 Suggesting existence of counterexamples

Proposition 3.1. Let py,...,pr be k pairwise distinct prime integers, and let n= p;...pi, r is prime

number, p; is primitive modulo r for all i. If for all i exist such integers a; that
n=p mod2r(p™""* —1), then

(X-1)"=X"-1 (mod n,X"-1).
Proof. Polynomials X-1 and CAX)=X""+X"+.. +X+1 are coprime in the polynomial ring Z,[X].
Hence, in order to prove the identity (X-1)"=X"-1 (mod n,X"-1) it suffices to prove that

(X-1)"=X"-1 (mod n,CA(X))

The Chinese remainder theorem gives the following isomorphism:
k

Z,X1/(C.(X) =]]2,[X1/(C,(X))
i=1

Each factor ring R, =Z [X]/(C, (X)) is a field since each prime p; is primitive modulo r
(O{py)=p:-1) and thus the polynomial C,(X) is irreducible in Z 5 X

It therefore suffices to prove the identity
(X-1)"=X"-1 (mod p;,C,(X)) (3.1

for each p;.



By assumption n = p;" modr for some integer a;. Therefore X" = X 7" modulo X'-1 and so

modulo C.(X).
Since R; is a field {p; is prime}, the identity

(X =" =X"" ~1(mod p,,C.(X)) (3.2)
holds for the integer a;.
piis primitive modulo r, p/” =1modr and p™"’* =—1modr (since r is prime number).

(r=1)/2 1

Thus (X —1)”  =X"'—1and (X -1)"" =-X""(X —1) in the field R;. Hence the order of X-1

in R, divides 2r(p"™"'?-1). By assumption n=pfmod2r(p’™""*—-1) and thus

(X -1)'=(X -1,
Since left and right parts of identities (3.1), (3.2) coincides and identity (3.2) holds, then
identity (3.1) also holds. 0
In the case r=5 we obtain the following proposition.
Proposition 3.2. Let p;,...,pi be k pairwise distinct prime integers and let n= pj...py. Suppose that
1) kis odd
2) pimod 5€{2,3} fori=1,....k;
3)prmod 16€{3,5,11,13};
for i=2,....k: if p;=p; mod 5 then p;=p; mod 16, otherwise p, = p; mod16;
4) pi-1ln-1 for i=1,...,k;
5) pi+lin+1 fori=1,...,k.
Then (X-1)"=X"-1 (mod n,X’-1) and n’#I mod 5.
Proof. Even number of factors p; that equal to 2 or 3 modulo 5 gives 1 or -1 modulo 5. Indeed, if
pi mod 5=2 and p; mod 5=2 then p;p;mod 5=-1. If p; mod 5=2 and p; mod 5=3 then p;p;mod 5=1. If
pi mod 5=3 and p; mod 5=3 then p;p;mod 5=-1.
Odd number (>3) of factors p; that equal to 2 or 3 modulo 5 gives 2 or 3 modulo 5. Hence
n*#1 mod 5.
According to proposition 3.1 it suffices to show that for each i exists such integer a; that the
identity n= p;* mod10(p; —1) is true.
There are two different variants of 10(p} —1) factoring into 4 pairwise coprime factors depending

on the value p; mod 16:

- if p;mod 16 € {3,11} then 10(p> —1) = 5(16)(—pi2_1j(—pi4+1j



~if p; mod 16 & {5,13} then 10(p’ —1) = 5(16)(”1‘7_1)(191‘7“)

In both cases it suffices to show that exists such integer a; that the identity n = p;* mod10(p; —1) is

true modulo each factor.

Let us consider the first case.

If n=p; mod 5, then a;=1, n=p; mod 16 by assumption 3, n=p; mod (p;-1)/2 by lemma (2.1)
and assumption 4, n=p; mod (p;+1)/4 by lemma (2.1) and assumption 5.

If n#p; mod 5, then a;=3 (since 2=3% mod 5 and 3=2° mod 5), nzpfmod 5, nspi3 mod 16 by
assumption 3 (11=3° mod 16, 3=11° mod 16, 13=5" mod 16, 5=13> mod 16), n=p;" mod (p;-1)/2 by
lemma (2.1) and assumption 4, nzpi3 mod (p;+1)/4 by lemma (2.1) and assumption 5.

In the second case the proof is analogous. O

Note that in the proof of proposition 3.2 an order of element X-1 in the ring Z, [X ]/(C, (X))
divides 10(p; —1) for any prime divisor p; of n.
Remark. Proposition 3.2 is also true in the case p; mod 32€{7,9,23,25}; for i=2,....k: if
p=p1 mod 5 then p=p; mod 32, otherwise p, = p; mod32.

Proposition (H.Lenstra) from [4] is a partial case of proposition 3.2.
By proposition 3.2, we have a heuristic which suggests the existence of many

counterexamples [4] to the Agrawal conjecture. But no counterexample is yet known.
4 Chain of subgroups

Since, very likely, the Agrawal conjecture is not true it is natural to modify it slightly to obtain a
version that may still be true.

Number 7n is assumed to be primitive mod r. Note that element X-1 is a unit in the ring

Zp[ X)/(CLX)).

Proposition 4.1 If (X-1)"=X"-1 (mod n, X'-1), then (X)X+1)(X-1) is a strictly ascending chain
of subgroups of the group (Z,[X]/(C«(X)) )" for any prime divisor p of n.
Proof. As (X-1)"=X"-1 (mod n, X'-1), then (X-1)"=X"-1 (mod p, C,(X)). Since n is primitive mod r
there exist such integer a that n‘=2 (mod r). Then (X —1)"a =X’-1=(X-D(X+1). So
X +1=(X-D" € (X -1) and (X+1)c(X-1).

As X+1e(X-1) and (X-1)"=X"-1 (mod p, C(X)), then (X+1)"=X"+1 (mod p, C(X)).

Since n is primitive mod r there exist such integer ¢ that n‘=r-1 (mod r). Then



X+D" =X" +1=X"+1=X"+1=X""(X +1). Recall that X'=1. Hence,
(X+D""'=X"(mod p, C(X)). So (X Hc(X+1). As groups (X') and (X) coincide then

X)c(X+1).

Since (X)={1, X...., X"l} it is clear that element X+1¢ (X) and (X)c(X+1).

To prove that (X+1)c(X-1) let us consider an automorphism ¢ of the ring Z,[X]/(C/(X))
sending X to X ! Assume (X+1)"=X-1 (mod p, C«(X)) for some integer V.

Recall that X+1 and X-1 are units and so [cs(X+1)]'1 and [G(X—l)]'1 exist. Consider
X+D)[oX+D)]"'=( X+D[X ' (1+X)]'=X and (X-D[c(X-1)]"'=( X-1)[-X'(X-1)]'=-X. Then X"=-X — a
contradiction.

So, the chain of groups (X)c(X+1)c(X-1) is strictly ascending. 0

Hence, if (X-1)"=X"-1 (mod n, X'-1) then an order of element X-1 in the group (Z,[X]/ (CAX))
is a product of three numbers: an order of group (X) that equals to r, an index of subgroup (X) in
group (X+1) and an index of subgroup (X+1) in group (X-1).

Proposition 4.2. If p is prime and a# 0,-1,1 mod p, then element X+ag(X-1) in the group
(Zo[X]/(CAX)))".

Proof. Assume that (X—l)V:X+a (mod p, X'-1). Again let us consider an automorphism ¢ of the ring
Z,[X/(CAX)) sending X to X' Then we have (X+a) [o(X+a)]'=(X-1)"[o((X-D)")]",
X+a)[X '+a]'=(-X)", X+a=(-1)"X""'+(-1)"aXx". Since (-1)"#a then X=(-1)"X""', V-1=1 mod r,
V=2 mod r. From the other hand a:(—l)VaXV, V=0 mod r — a contradiction. 0

Hence, we have the following strictly ascending chain of  groups
X)c(X+D(X-1)c(X-1, X+2).

Moreover, for r=5 we have the following proposition.

Proposition 4.3. If prime number p is not equal to 2,3,5,11,19 and p°#1 mod 5, then an order of
element X+2 in the field Z,[X]/(Cs(X)) does not divide IO(pZ—I).

Proof. It is easy to verify that (X+2)(X3—X2+3X—5)=—11 (mod p,Cs(X)), so element -1 1'1(X3—X2+3X—5)
is a multiplicative inverse of X+2 in the field Z,[X]/(Cs5(X))= Z,,[X]/(X4 +X3+X2+X+1). We have

(X+2)”2 =X"'4+2=X"(2X +1) (as p is prime) and

(X+2)" =11 XX +1)(X* =X +3X =5)=—11"" X "(=3X>+3X*-9X —7)

10(p2-1)

Therefore (X +2) =11"(-3X’ +3X*-9X-7)" =
=-117"(19486165920X * +26683280040X * +22802637960X +29275201379)

Factorization of polynomial coefficients of non-zero powers of X is as follows:
19486165920=2-2-2-2-2-3-5-13-19-164357; 26683280040=2-2-2-3-5-19-167-70079;
22802637960=2-2-2-3-3:5-19-67-49757.



Since p does not divide the greatest common divisor of the coefficients (equals to 2-2-2-3-5-19) then

0(p2-1

the coefficients are not simultaneously equal to 0 modulo p. Hence, the polynomial (X +2) is

not equal to 1. O
5 Conclusion

In this paper we generalize H.Lenstra proposition which indicates that the set {X-1} very likely
does not generate big enough subgroup in the group (Z,[X]/(CA(X))) .

At the same time we obtain a strictly ascending chain of subgroups
X)c(X+1)c(X-1)c(X-1, X+2) of this group and state the modified conjecture that the set
{X-1, X+2} generate big subgroup.

These arguments suggest that the following variant of the Agrawal conjecture may be
true:

Modified conjecture. If r is a prime number that does not divide n,
if (X-1)"=X"-1 (mod X'-1, n) and if (X+2)"=X"+2 (mod X'-1, n),

then either n is prime or n’=l (mod r).
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