
Optimal Multicast Group Communication
Zhibin Zhou and Dijiang Huang

Arizona State University

Abstract— Many IP multicast based applications, such as Pay-
TV, Multiplayer games, require controlling the group mem-
berships of senders and receivers. One common solution is to
encrypt the data with a session key shared with all authorized
senders/receivers. To efficiently update the session key in the
event of member removal, many rooted-tree based group key
distribution schemes have been proposed. However, most of the
existing rooted-tree based schemes are not optimal. In other
words, given the O(log N) storage overhead, the communication
overhead is not minimized. On the other hand, although Flat
Table scheme [1] achieves optimality [2], it is rather dismissed
due to the vulnerability to collusion attacks.

In this paper, we propose a key distribution scheme –
EGK that attains the same optimality as Flat Table without
collusion vulnerability. EGK also support dynamic subgroup
communication initialized by each group members (imagine a
virtual chat room in the multicast group). Additionally, EGK
provides constant message size and requires O(log N) storage
overhead at the group controller, which makes EGK suitable for
applications containing a large number of multicasting group
members. Moreover, adding members in EGK requires just one
multicasting message. EGK is the first work with such features
and out-performs all existing schemes.

I. INTRODUCTION

IP multicast is used to distribute data to a group of receivers
efficiently. A Datagram addressed to the multicast group,
identified by a Class D IP address, will be delivered to all
group members. Efficiency can be achieved because datagrams
need to be transmitted once and they traverse any link between
two nodes only once, saving the cost of sender as well as
network bandwidth.

To scale to a large receivers population, IP multicast group is
open and multicast enabled receivers can freely join or leave
by sending an IGMP message to neighbor routers. The IP
multicast model has been described as ”You put packets in at
one end, and the network conspires to deliver them to anyone
who asks”. Thus, senders can not restrict receivers access to
multicast data. In the mean time, the receivers have no way to
authenticate the sender’s identity and ensure the authenticity
of multicasted data.

Many IP multicast applications require secrecy [3] and
authenticity [4], [5] of transmitted data. Pay-per-view TV
requires controlled subscriber membership and web feed of
stock information requires authentic data source. Moreover,
some applications, like multiplayer on-line games, dynamic
conference, etc., where members send and receive simultane-
ously, requires both data privacy and source authenticity.

Furthermore, membership of the multicast group may
change dynamically as members may join or leave the groups
at any time. Despite the dynamics of legitimate member set,
data senders want to preserve backward secrecy and forward
secrecy, which are defined as follows:

• Backward Secrecy: new joined group members must have
no access to past multicast communication;

• Forward Secrecy: revoked group members1 must have no
access to future multicast communication;

Multicast Group Key Distribution (MGKD) [6], [7] ad-
dresses the security problem in open network environments.
MGKD restricts the group membership by encrypting the
data with a symmetric group key (GK) shared among group
members. As the members may join or leave the group
dynamically, it is very critical to ensure only legitimated
group members have the update-to-date GKs at each point in
time, which is achieved by GK rekeying. Quite commonly, at
the event of membership changes, a centralized group server
generates a new fresh GK and distributes the rekey message
to all legitimate members. All members in the group need to
be attentive to the rekey messages to update their GK.

Particularly, removing members poses the scalability prob-
lem for rekey operation. To illustrate this problem, we can
consider a set of clients L are removed from a group G.
Rekey message should be generated and distributed to each
of G \ L remaining clients. Thus, the problem of removing
any arbitrary set of members L can be transformed to the
problem of communicating with a subgroup of any arbitrary
G \ L) members in a scalable and secure way.

A. Storage-communication-optimality

Before introducing the Storage-communication-optimality,
we denote the Encrypted Stream as encrypted messages de-
cipherable by one or a combination of secrets. For example,
in nested encryption [8], the ciphertext {M}K1,K2,K3 is can
be decrypted only if the decryptor has K1, K2 and K3 in the
same time.

To facilitate the rekey operation, auxiliary secrets need to
be pre-distributed to group members. One naive way is to set
a unique, long term key for each group member as advocated
in [9] and [10]. To revoke a set of group members L, |G \
L| messages are required to distribute a new GK. Thus, the
communication cost is O(N). In this example, each member
can decrypt 1 encrypted stream.

We can trade storage space for communication cost in
another extreme case. As there exists 2N subsets of group
members in the multicast group G of size N , group members
in the same subset are distributed a unique subset key. Hence,
every group member stores 2N−1 subset keys. When revoking
group members L, the group controller only needs to multicast
one message, i.e. a new random GK encrypted by the subset
key shared by the subset G \ L, since each group member in

1Here we mean that a revoked group member is not eligible to participate
in the group communication for a given multicasting group.

G \L already stores subset key of G \L. In this example, the
communication overhead is O(1); while the storage overhead
id O(2N). As one can see from this extreme case, each group
member can decrypt 2N−1 encrypted streams. Obviously,
O(2N) storage overhead makes this solution infeasible and
some trade-offs between storage and communication overhead
are needed.

To balance the communication and storage overhead,
rooted-tree based key distribution schemes have been pro-
posed, such as [7], [11], [3], [12], [13]. In these schemes
(illustrated in Figure 1), each member is distributed log N
secrets. In [2], the authors proved that assigning log N secrets
to each member is the information theoretical optimal storage
strategy when group size is N .

Despite the optimality in storage, most existing schemes
including [7], [11], [13] are not optimal in communication and
only improve efficiency marginally. This is because, given the
log N distributed keys, each group member can only decrypt
log N encrypted streams as explained later in Section III-C.
Intuitively, as shown in the previous two extreme cases, the
more encrypted streams each member can decrypt, the less
communication, in terms of number of messages, overhead
required for the rekey operation.

The storage-communication-optimality condition describes
the balanced optimality condition between the storage and
communication overhead incurred by group rekeying. In a
storage-communication-optimal MGKD scheme, each group
member can use their log N pre-distributed keys to decrypt
maximized number of encrypted streams, i.e. 2log N − 1 =
N − 1 encrypted streams.

Flat Table (FT) scheme [1] (illustrated in Figure 2) achieved
minimal the communication overhead [2] with O(log N) stor-
age overhead and is storage-communication-optimal.Despite
its optimal efficiency, FT scheme is vulnerable to collusion
attacks, in which multiple removed members combine their
pre-distributed secrets to decrypt updated GK to compromise
forward secrecy. In this paper, we are presenting a scheme that
is storage-communication-optimal and immune to collusion
attacks.

B. Dynamic Subgroup Communication

In existing tree based MGKD schemes, there is only one
communication group (the group protected by the session
encryption key) and group members can not initialize an
arbitrary subgroup communication in a ad hoc manner. This is
because the group key is distributed in a one-to-many manner,
i.e. only group controller has all auxiliary keys to distribute
session key to any group members. Although each group
member has some shared secrets, the auxiliary keys in Figure
1, there are still some unreachable members in the tree. For
example, in Figure 1, M1 is not able to initialize a secure
channel with M7 and M8.

Let’s consider the following example: an on-line multiplayer
game. From the system’s perspective, all subscribed players
are in the communication group and a centralized server
is in charge of the memberships. People can join or leave
the game dynamically and real time game date should only

be accessible by current subscribed players. From players’
perspective, on the other hand, it is sometimes desirable to
form subgroups in an ad hoc manner. For example, a team
of players to finish common tasks want to set up a virtual
chatting room. Unfortunately, existing Multicast Group Key
Distribution schemes can not support this application nicely.
Broadcast Encryption schemes, on the other hand, allow each
user to encrypt a message to a set of receivers. However,
Broadcast Encryption schemes are often very intensive, in
terms of communication, storage and computation overhead.
Also, there lacks mechanism to revoke a member’s capability
to broadcast encrypt messages 2.

C. Our Contribution

In this paper, we propose an Efficient Group keying (EGK)
scheme to achieve non-colluding, storage-communication-
optimal group key management. Moreover, EGK supports
dynamic subgroup communication and each member can setup
a secure conference with other members in an ad hoc way.

In EGK, a group controller (GC) is responsible for key
generation and distribution and the group data are encrypted
by a GK. Each group member (GM) is assigned a unique n-
bit ID. For each GM, GC also generates and distributes a set
of n = log N secrets, which are one-to-one mapped to the
bits in the GM’s ID. Note that, although different GMs may
share common bits in their IDs, the pre-distributed secrets are
different generated by using different random numbers. As a
result, different GMs cannot combine their secrets that are
masked by different random numbers. We denote the set of
pre-distributed secrets as a GM’s private key.

Whenever GMs are removed from the group, GC will mul-
ticast an encrypted key-update message. Only the remaining
GMs are able to recover the message and update GK as
well as their private keys. To achieve storage-communication-
optimality, we use the similar method of Flat Table scheme.
A minimized boolean function in the form of sum-of-product-
expression (SOPE) is calculated based on the IDs of remaining
GMs, in order to minimize the number of encrypted key-
update messages. A remaining GM can combine n pre-
distributed secret shares in his/her private key to decrypt a
key-update message.

EGK is the first work that achieves storage-communication-
optimality with constant message size and immune to collusion
attack. It outperforms existing group key management schemes
in terms of communication and storage efficiency. We must
note that in [14], the authors utilized the ciphertext policy
attributed based encryption (CP-ABE [15]) scheme to imple-
ment FT so that it is secure against collusion attack. Although
their solution is similar to EGK, we adopt a different approach
to improve the communication efficiency in comparison with
using CP-ABE directly. As mentioned in [14], the size of each
message is very large and grows linearly on the number of

2In the original introduction of Broadcast Encryption, only one centralized
trusted server can perform encryption. Thus, the revocation is simple. Recent
researches greatly elevate Broadcast Encryption by allowing all users to
perform encryption such that any subset of users can decrypt the message.
But, there is no centralized authority that controls user memberships.

attributes in the access policy [14], [15]. In EGK, the message
is substantially reduced to a constant size.

Based on the storage-communication-optimality, EGK also
supports dynamic subgroup communication efficiently. In ex-
isting MGKD, group members can only participate in the over-
all group communication protected GK, which is distributed
in one-to-many manner. EGK allows each GM to initialize a
subgroup communication with any subset of GMs in many-to-
many manner. The number of required messages is minimized.
Only GMs within this subgroup can securely communicate
with each other.

Overall, the main contributions of EGK are presented as
follows:
• With any number of removing GMs, the number of en-

crypted key-update messages is information theoretically
minimized to O(log N).

• The size of each message in encrypted key-update mes-
sage is constant.

• The communication overhead of adding GMs is O(1),
i.e., only one multicast message is required.

• The storage overhead of GC and GM is O(log N) even
if GC does not store IDs of GMs.

• EGK is collusion resistant and provides forward and
backward group key secrecy.

• EGK supports dynamic subgroup communication effi-
ciently.

D. Paper Organization

The rest of this paper is organized as follows. We describe
related works in Section II. Section III presents system models
used in this paper. We present detailed EGK construction in
Section IV. In Section V, we discuss the performance of EGK
scheme and the comparison of several existing group key
management schemes. We also analyzed the security of EGK
in Section VI. Then, we discussed the scalability issue of EGK
and further reduction of computation overhead in Section VII.
Finally, we conclude our work in Section VIII.

II. RELATED WORKS

Multicast key distribution schemes have been investigated
intensively in past two decades. Some of the works include
but not limited to [16], [12], [17], [18], [19], [20], [7], [21],
[22], [23], [24], [25]. Due to the richness of related research,
we cannot list all the related work in this area. We refer to
[26], [27] as two excellent surveys.

The rooted-tree structure (see Figure 1 and Figure 2) is
constructed such that each group member is assigned as a
unique leaf node in the tree. Every node in the tree, including
leaf and non-leaf nodes, is assigned a unique auxiliary key.
Each group member is predistributed a set of auxiliary keys
that are along the path from the leaf to the root, in which
the root associated auxiliary key can be used for the entire
group. Using rooted-tree based solutions, an auxiliary key can
be shared among a partition of members, and a member can
be involved in multiple partitions. Typically, the a-ary rooted-
tree based solutions require O(loga N) storage overhead for
each member [12], where N is the group size. The rooted-tree

Fig. 1. Illustration of two kinds of tree structures. Tree (a) is used in non-flat
table schemes and tree (b) is used in flat table scheme.

Fig. 2. Illustration of two kinds of tree structures. Tree (a) is used in non-flat
table schemes and tree (b) is used in flat table scheme.

based multicast group key distribution scheme can be divided
into two categories: Non-Flat-Table schemes (Figure 1) and
Flat-Table schemes (Figure 2).

Non-Flat-Table include most famous rooted-tree based
schemes, such at OFT [11], LKH [7], and ELK [13]). One
important feature of these schemes is there are ai distinct
secrets at level i in the key distribution tree as illustrated
in Figure 1. In other words, each subtree in the level i is
distributed a unique secrets. We note that the secrets there
are not necessarily just predistributed keys [7]. They may be
generated using one-way hash function [11] or pseudo random
number generator [13].

Non-Flat-Table schemes only improves the efficiency
marginally. This is because, in these solutions, based on the
loga N pre-distributed auxiliary keys, each group member can
merely participate in log N partitions, as illustrated in Figure
1. We will explain this point later in Section III-C.

Flat-Table schemes [1], [28] adopt a slightly different con-
struction of balanced key trees, as illustrated in Figure 2. In
Flat-Table schemes, each group member is issued a unique
binary ID b0b1 . . . bn−2bn−1 of length n. In addition to the
GK, group server generates 2n auxiliary key encryption keys
(KEK) {Ki,b|i ∈ Zn, b ∈ {0, 1}}. A group member with ID
b0b1 . . . bn−2bn−1 holds KEKs {Ki,bi |i ∈ Zn}. The KEKs are
organized in the key distribution tree in Figure 2, where each

level corresponding to one bit position in a user’s ID. Thus, at
each level in the Flat-Table key distribution tree, there are exact
2 distinct pre-distributed keys, which map to a bit positions in
a group member’s ID. For example, in the Figure 2, member
with ID 011 is predistributed {K11,K22,K32}. In Flat-Table,
the number of partitions each group member can participate
is maximized to 2log N − 1 = N − 1.

Despite its efficiency, Flat-Table schemes are vulnerable
to collusion attacks since FT solutions simply adopt the
symmetric key solutions. For example, GMs 001 and 010
can decrypt ciphertexts destined to other GMs, e.g., 011, 000,
by combining their symmetric keys that are mapped to their
bit positions. To prevent the collusion attacks, Cheung et al.
[14] proposed CP-ABE-FT to implement the FT using CP-
ABE. CP-ABE-FT utilizes a periodic refreshment mechanism
to ensure forward secrecy. The periodic refreshment methond
has several drawbacks: 1) if the ID of a revoked GM is re-
assigned to another GM before the refreshment, the revoked
GM can regain the access to group data and then the group
forward secrecy is compromised; 2) outsiders can impersonate
GC to disturb the rekey process by sending CP-ABE [15]
ciphertext. More importantly, message size of CP-ABE-FT is
linearly growing [14] and, thus, the communication overhead
is actually log2 N . The strategy of EGK reducing communica-
tion overhead for GM leaving is similar to that of FT scheme,
which is optimal. As a contrast, EGK features collusion
resistance and a constant message size and communication
overhead is log N .

Broadcast Encryption (BE) was introduced by Fiat and Naor
et al. in [38] and then followed by [29], [30], [31], [32], [33],
[34], [35], [36]. In BE a broadcaster encrypts a message for
some set of users who are listening to a broadcasting channel
and use their private keys to decrypt the message. Compared
with traditional one-to-one encryption schemes, BE features
superior efficiency. Instead of sending messages encrypted
with each individual recipient’s public key, the broadcast
encrypter broadcast one encrypted message to be decrypted
by multiple recipients with their own private keys.

Although existing BE schemes [29] always features small
or constant ciphertext, the number of public key or private key
each user needs to perform encryption or decryption are linear
on the max number of non-colluding users in the system. In the
case of the BE scheme is fully collusion-resistant, the number
of public/private key each user needs to store equals to the
number of users in the system.

In the existing BE system with N users, each user i ∈
{1, . . . , N} is generated a public key PKi and a private key
SKi. To encrypt a message to a set of users S ⊆ {1, . . . , N},
the encrypting algorithm takes input of the set of public keys
for all recipients {PKi|∀i ∈ S} and output the ciphertext.
To decrypt a message, the decrypting algorithm takes input of
the private key SKi of user i and the set of all public keys
{PKi|∀i ∈ S} to recover original message.

III. SYSTEM MODELS AND BACKGROUND

A. Notations

the notations used in this paper is listed below:

Symbols Descriptions
G the Broadcasting Group Includes All GMs
L a Subset of GMs
u a GM
B Bit-Assignment
S Set of Bit-Assignments

GC Group Controller
GM Group Member

B. Communication Model

The communication model of EGK is based on IP multicast.
All Group Members (GM) belong to a multicast group G =
{u1, u2, . . . , u|G|}. Each GM u can send or receive diagrams
encrypted by GK. The multicast group is associated with a
trusted server,referred as Group Controller (GC), responsible
for managing the membership. When one or more GMs
are removed from the group, GC multicast the key update
message and only remaining GMs can decrypt the message and
update their keys. Each GM can initialize a secure subgroup
communication with any subset of GMs. The subgroup traffic
is also multicasted to whole group while only a designated
subset of GMs can decrypt the data.

C. Storage-communication Optimality Condition

To better illustrate storage-communication optimality, we
present a simple example of existing solutions under the con-
siderations storage-communication-optimality condition. The
rooted-tree structure (see Figure 1 and Figure 2) is constructed
such that each group member is assigned as a leaf node in the
tree.

Non-Flat-Table key distribution tree is shown in Figure 1.
Three auxiliary non-root keys are assigned to group member
u2: K11, K21, and K32. Note that combining multiple keys
does not create a new encrypted stream as members holds K21

is true subset of members holds K11 and members holds K32

is true subset of members holds K21. Using these auxiliary
keys, u2 can decrypt 3 encrypted streams:

Encrypted Stream (Key) Accessible Members
K11 {u1, u2, u3, u4}
K21 {u1, u2}
K32 {u2}

As for Flat-Table case in Figure 2, 3 non-root keys are
distributed to the group member u2: K11, K21, and K32. Using
these auxiliary keys, u2 can decrypt in 7 encrypted streams:

Encrypted Stream (Key) Accessible Members
K11 {u1, u2, u3, u4}
K21 {u1, u2, u5, u6}
K32 {u2, u4, u6, u8}

K11 and K21 {u1, u2}
K11 and K32 {u2, u4}
K21 and K32 {u2, u6}

K11 and K21 and K32 {u2}
Note that u2 needs to combine (such as using XOR or nested

encryption) the presented keys for each subgroup to secure the
enumerated subgroup communications. In FT schemes, based

on the O(log N) pre-distributed secrets, each group member
can participate in 2log N −1 = N−1 subgroups by using their
predistributed auxiliary keys.

The authors in [2] showed that the assignment of O(log N)
keys per group member is the best strategy for group commu-
nication schemes.

It can be proved that the communication overhead can
be reduced by increasing the number of encrypted stream
that each group member belongs to. We can also observe
that, given the log N predistributed secrets, a group key
management scheme attains optimality only if the number of
subgroups each group member can participate is maximized
to 2log N − 1 = N − 1. One example of optimal group key
rekeying scheme is Flat Table (FT).

With maximized number of supporting encrypted streams,
the GC or a GM can communicate with an arbitrary subgroup
of GMs with minimized messages. For example, using Figure
1, to create a subgroup containing {u2, u4}, a group controller
can encrypt the subgroup key SK24 using key encrypting keys
(KEKs, a.k.a, auxiliary keys) K32 and K34 in parallel and
multicasted two encrypted messages. However, using Figure 2,
the group controller can encrypt the subgroup key SK24 using
a combined KEK K11⊕K32, which are only known to group
members u2 and u4. In [2], the authors showed that using FT
schemes presented in Figure 2 provides the optimal solution
in terms of reducing communication overhead for group key
management. However, FT suffers collusion problems, which
prevent it from being used for secure group key management.

An MGKD scheme that is optimal on both storage and
communication if and only if the following condition is
satisfied:

Definition 1: Storage-communication-optimality condition:
given the log N pre-distributed secrets for a group size of N ,
each group member can combine any of the log N secrets to
decrypt 2log N − 1 = N − 1 different encrypted streams.

D. Attack Models

Firstly, we assume that the symmetric encryption algorithm
and one-way hash function used in this paper is secure. Also,
we assume that the Discrete Logarithm Problem (DLP) on
both group G0 and G1 is intractable. Finally, the GC is well
guarded and trustable. In addition, our security analysis will
focus on collusion resistance, forward secrecy, and backward
secrecy.

The attackers’ goal is to reveal broadcasted data without
authorizations from GC. In particular, we can consider the
attacking scenarios in the following cases:

1) Collusion Attacks: Multiple GMs combine their pre-
distributed secrets to decrypt the ciphertext not intended
to them. No particular example of this attack is that
when multiple GMs are revoked from the group, they
try to collude to recover the secrets of some valid GMs
to continue reveal group data. Another example is that
when a secure conference is held among a subgroup of
GMs, some GMs excluded from the conference try to
recover the secrets of an GM in the conference so that
they can listen to the conference.

2) Breaking Backward Secrecy: GMs try to reveal any
group data that were transmitted before they joined the
group.

3) Breaking Forward Secrecy: GMs try to continue reveal
the group data that are transmitted after they left the
group.

4) Breaking the Group Secrecy: Non Group Members try
to reveal the group data transmitted over the open
networks.

In all of these scenarios, we assume that attackers can
receive and stores all transmitted messages. But, there is no
such a compromised insider GM that works as a decryption
proxy for attackers.

E. Bilinear Pairing

Pairing is a bilinear map function e : G0 × G0 → G1,
where G0 and G1 are two multiplicative cyclic groups with
large prime order p. The discrete Logarithm Problem on both
G0 and G1 are hard. Pairing has the following properties:
• Bilinearity:

e(aP, bQ) = e(P, Q)ab, ∀P, Q ∈ G0,∀a, b ∈ Z∗p.
• Nondegeneracy:

e(g, g) 6= 1 where g is the generator of G0.
• Computability:

There exist an efficient algorithm to compute the pairing.

IV. CONSTRUCTIONS OF EGK
A. ID and Bit-Assignment

In EGK, each GM is associated with a unique binary ID:
b0b1 . . . bn−2bn−1, where n = log N . The ID is issued by the
GC when a GM joins the group. Once the GM left the group,
his/her ID can be re-assigned to other joining GMs.

We can use a logic literal, which we call bit-assignment, Bi

or Bi to indicate the binary value at position i in a particular
ID. Bi indicates the i’th bit of an ID is 1; Bi indicates the i’th
bit of an ID is 0. For a group with N GMs, the length of an ID
is n = log N and the total number of bit-assignments is 2n;
that is, two binary values are mapped to one bit position(one
for value 0 and one for value 1). We call the set of all possible
bit-assignments to be Universe U , which contains 2n bit-
assignments.

A GM u is uniquely identified by the set of bit-assignments
Su associated with u’s ID. Also, multiple GMs may have a
common subset of bit-assignments. For example, in Figure
3, a GM u1’s ID is 000 and a GM u2’s ID is 001, Su1 =
{B0, B1, B2} and Su2 = {B0, B1, B2} and Su1

⋂
Su2 =

{B0, B1}.
In EGK, the GMs can be organized as leafs in a binary tree

with each non-root node marked with a bit-assignment (Figure
3). Note that there are only 2n different non-root nodes in the
tree and each level contains 2 nodes. This is fundamentally
different from existing tree-based schemes in [11], [7], [13],
where there are 2d distinct nodes at level d. The ID of a
GM can be represented by links from the root down to the
leaf. Thus, any two GMs will have at least one bit-assignment
different.

Fig. 3. An illustration of bit-assignments for a 3-bit ID space.

B. Group Setup

We describe how the GC sets up the multicast group.
First, GC chooses a bilinear group G0 of prime order p with
generator g. Also, GC chooses a publicly known one-way
function H . Then, it chooses two non-trivial random numbers
α, β ∈ Z∗p. For simplicity, we can map the universe of bit-
assignments U to the first |U | members of Z∗p, i.e., the integers
1, 2, . . . , |U |. For each bit-assignment B ∈ U , GC chooses a
non-trivial random number yB ∈ Zp. We denote this set of 2n
random numbers as

YB = {yB0 , yB0
, . . . , yBn−1 , yBn−1

}
For each yB ∈ YB , GC also generates the tuple <

e(g, g)αyB , gβyB >. We denote the set of 2n tuples as:

EB = {< e(g, g)αyB , gβyB > |∀yB ∈ YB}
GC publishes the group public parameter:

GP = {G0, e, g,H, EB}
On the other hand, GC protect the group master key:

MK = {β, gα, gβ , e(g, g)α, YB}

C. GM Joining and Key Generation

When a new GM u joins the group, u needs to set up a
secure channel with the GC using either a pre-shared key
or public key certificates. GC then checks whether the GM
is authorized to join in the group. Once the checking is
passed, GC assigns a unique ID bu

n−1b
u
n−2...b

u
0 and a set of

bit assignments Su to u.
Once u is admitted to the group, GC runs key generation

algorithm KeyGen(MK,Su) (Algorithm 1) to generate pri-
vate key SKu for u, where MK is the group master key
and Su is the set of bit-assignments in u’ ID. The algorithm
first chooses a non-trivial random number r ∈ Z∗p. Then, it
computes g

α+r
β . Finally, for each bit-assignment B ∈ Su, the

KeyGen algorithm calculates a blinded secret share gryB . The
outputted private key

SKu : {D = g
α+r

β ,∀B ∈ Su : DB = gryB}
If u is the first GM in the group, GC will generate an

initial GK and sends the private key {SKu, GK} to the new

Algorithm 1 KeyGen(MK,Su)
Randomly select r ∈ Zp;
Compute g

α+r
β ;

for each B ∈ Su do
Compute gryB ;

end for
return
SKu : {D = g

α+r
β ,∀B ∈ Su : DB = gryB};

GM u through a secure channel. If u is not the first joining
GM, to preserve backward secrecy, GC generates another
random key GK ′ and multicast {GK ′}GK . Each GM other
than u can decrypt the message and replace GK with GK ′.
Finally, GC sends {SKu, GK ′} to the new GM u through a
secure unicast channel. In the join process, besides the unicast
communication, GC only needs to multicast one message, i.e.,
{GK ′}GK . Thus, the communication overhead for GMs join
is O(1).

One important observation is that GC does not need to store
the ID or private keys of any GMs. Thus, the storage overhead
of GC can be significantly reduced to O(log N), since GC is
only required to store the system parameters and master key.

D. Encryption and Decryption

As we have mentioned, EGK allows GC and GMs to
securely communicate with any subset of GMs. Whenever,
GMs are removed from the group, GC needs to multicast a
key update message to all remaining GMs, who will update
their GK as well as private keys. On the other hand, GMs can
initialize a secure subgroup communications with any subset
of GMs.

In this section, we present how a GC or GM can encrypt
a message with a set of bit-assignment S, so that only GMs
whose IDs satisfy S can decrypt the message. For example,
in a three-bit-ID group, if a ciphertext is encrypted by using
bit-assignment S = {B0, B1}, GMs with IDs 010 and 011
can decrypt the ciphertext.

1) Encryption: ENC(GP, S, M) encryption algorithm
takes inputs of the group parameter GP , a set of bit-
assignment S, the message M , and returns the ciphertext CT .
Given the set of bit-assignment S, it is easy to calculate the
following terms:

e(g, g)αYS = e(g, g)α
∑

B∈S yB

=
∏

B∈S

e(g, g)αyB

gβYS = gβ
∑

B∈S yB

=
∏

B∈S

gβyB

For example, if S = {B0, B1, B2}, e(g, g)αYS =
e(g, g)α(yB0

+yB1+yB2).
After calculating e(g, g)αYS and gβYS , the ENC algorithm

2 generates a non-trivial random number t ∈ Z∗p. Then, the

algorithm computes C0 = Me(g, g)αtYS , C1 = gβtYS , C2 =
gt. Thus, the ciphertext is as:

CT : {S,C0 = Me(g, g)αtYS , C1 = gβtYS , C2 = gt}

Algorithm 2 Enc(MK, S, M)

Compute e(g, g)αYS =
∏

B∈S e(g, g)αyB ;
Compute gβYS =

∏
B∈S gβyB ;

Randomly select t ∈ Zp;
Compute C0 = Me(g, g)αtYS ;
Compute C1 = gβtYS ;
Compute C2 = gt;
return
CT : {S,C0 = Me(g, g)αtYS , C1 = gβtYS , C2 = gt};

2) Decryption: On receiving the CT, GMs whose ID sat-
isfied the bit-assignment S associated with the ciphertext,
can decrypt the CT by performing decryption algorithm
DEC(GP, SK,CT).

The DEC algorithm 3 first checks whether the GM u is el-
igible to decrypt the message by testing whether Su ⊆ CT.S,
where CT.S represents the bit assignments associated with
the ciphertext CT . Then, for each bit assignment B ∈ CT.S,
the algorithm use u’s pre-distributed secret shares DB = gryB

to compute:

F =
∏

B∈CT.S

gryB

= gr
∑

B∈CT.S yB

= grYCT.S

Next, the algorithm computes:

A1 = e(C1, D)

= e(g, g)(α+r)tYCT.S

and

A2 = e(C2, F)

= e(g, g)rtYCT.S

Then the algorithm divides A1 by A2 and get

A3 = A1/A2

= e(g, g)αtYCT.S

which blinds the plaintext in ciphertext. Finally, the algorithm
unblinds the ciphertext by calculating C0/A3 = M .

E. Encryption for Subgroups of GMs

In this subsection, we present how GC or GMs can securely
communicate with arbitrary subgroup of members in an op-
timal manner. We first define some of the terms used in the
following presentations:
• Literal: A variable or its complement, e.g., B1, B1, etc.
• Product Term: Literals connected by AND, e.g., B2B1B0.
• Sum-of-Product Expression (SOPE): Product terms con-

nected by OR, e.g., B2B1B0 + B2.

Algorithm 3 DEC(GP, SK,CT)
if Su! ⊆ CT.S then

return ⊥;
end if
Compute F =

∏
B∈CT.S gryB = grYCT.S ;

Compute A1 = e(C1, D) = e(g, g)(α+r)tYCT.S

Compute A2 = e(C2, F) = e(g, g)rtYCT.S

Compute A1/A2 = A3 = e(g, g)αtYCT.S

Compute C0/A3 = M
return M ;

Given the subgroup of GMs L, the boolean membership
functions M(B0, B1, . . . , Bn−2, Bn−1), which is in the form
of SOPE, can determine the membership of the subgroup. That
is, only if GM u belongs to the subgroup, M(IDu) = 1.
Formally, the following properties of membership functions
hold:

M(bu
0 , bu

1 , . . . , bu
n−2, b

u
n−1) =

{
0 iff u ∈ G \ L,
1 iff u ∈ L.

For example, if the subgroup L = {000, 001, 011, 111}, then
M = B0B1B2 + B0B1B2 + B0B1B2 + B0B1B2.

The GC or a GM runs the Quine-McCluskey algorithm
[37] to reduce M to minimal SOPE Mmin. The reduction
can consider do not care values on those IDs that are not
currently assigned to any GM to further reduce the size of
Mmin. Since Mmin is in the form of SOPE, encryption is
performed on each product term. That is, for each product
term E in Mmin, ENC algorithm encrypt the message with
the set of bit-assignment S that contains all literals in E. The
total number of encrypted message equals to the number of
product terms in Mmin.

For example, if L = {000, 001, 011, 111}, Mmin =
B0B1 + B1B2. We can find that Mmin contains 2 product
terms. the message M for L can be encrypted as M{B0,B1}
and M{B1,B2} respectively.

F. GM Leaving

1) Key Update: When several GMs (denoted by set L) are
removed from the multicasting group, GC needs to update the
{MK,GK} as well as the private key for each remaining GM
u ∈ G\L. We present how this process can be done efficiently.

GC first changes MK ′ = {β, gα′ , e(g, g)α′}, where α′ is
randomly selected in Zp. Then, GC multicasts an encrypted

key-update factor kuf = g
α′−α

β . Note that kuf is encrypted,
and it cannot be decrypted by any u ∈ L.

Each GM u ∈ G \ L updates its private key SKu based
on the key updating factor g

α′−α
β . This process only updates

the component D in SKu. The new D can be updated by the
following method: D · g α′−α

β = g
α+r

β · g α′−α
β = g

α+r+α′−α
β =

g
α′+r

β . Also, each u ∈ G \ L updates their GK simply by
computing GK ′ = H(g

α′−α
β).

2) Single or Multiple Leave: We first consider that only
one GM leaves the group. For example, if the leaving GM
u’s ID is 101 with bit-assignment Su = {B0, B1, B2}. The

key updating message is encrypted as {kuf}{B0}, {kuf}{B1},
{kuf}{B2} and is multicasted to the entire group. If ID 100 is
not assigned, {kuf}{B2} is not needed. Although the leaving
member may intercept the transmitted messages, it cannot
decrypt them since every message is encrypted with a bit
assignment that the leaving member does not possess. Each
of remaining GMs can decrypt at least one of the multicasted
messages.

We now focus on the case when multiple GMs leave the
multicast group. Given the set of leaving GMs L, GC can
easily derive the set of remaining GMs G \ L as well as
the set of unassigned IDs if GC stores all assigned IDs. If
GC does not store assigned ID, GC can assume all IDs are
assigned. Then, the GC runs the Quine-McCluskey algorithm
[37] to reduce the membership function M() to minimal
SOPE. Then, GC can encrypt the key updating factor for each
product term. The total number of encrypted key updating
factors equals to the number of product terms in Mmin. For
example, we assume that two GMs {000, 010} leave, five GMS
{001, 011, 100, 101, 110} remain, and {111} is not assigned
to any GM (i.e., the ID bit assignments are do not care).
With the considerations do not care values, M can be reduced
to Mmin = B0 + B2. GC need to multicast two messages
{kuf}{B0} and {kuf}{B2}.

V. PERFORMANCE ASSESSMENTS

In this section, we analyze the performance of EGK scheme
and compare it with several previous solutions: Flat Table
scheme (FT) [1], FT implemented using CP-ABE (FT-ABE)
[14], subset-difference broadcast encryption scheme (Subset-
Diff) [38], BGW broadcasting encryption [39], access control
polynomial (ACP) scheme [40], and Non-Flat-Table tree-based
schemes (e.g., OFT [11], LKH [7], ELK [13], etc.). The
performance is assessed in terms of communication overhead
(number and size of messages incurred by join and leave
operations), storage overhead (group data stored on the GC
and GM), and computation overhead (number of cryptographic
operations needed in encryption and decryption operations).
We denote the group size be N , the number of leaving GMs to
be l. Also, for the Subset-Diff scheme, t denotes the maximum
number of colluding users to compromise the ciphertext. The
summary of comparative results is presented in Table I.

A. Communication Overhead

As a comprehensive comparison, we first discuss the
communication overhead of several broadcasting encryption
schemes. In Subset-Diff scheme, the communication overhead
grows linearly with the maximum number of colluding users
to compromise the ciphertext. For BGW scheme, the message
size is O(N

1
2) as reported in [39]. In ACP scheme, the size of

message depends on the degree of access control polynomial,
which equals to the number of current GMs plus the number of
joining GMs or the number of current GMs minus the number
leaving GMs. Thus, the message size is O(N).

When removing multiple GMs from EGK group, the num-
ber of messages depends on the number of product terms
in the Mmin. In [41], the authors derived an upper bound

and lower bound on the average number of products in a
minimized SOPE. For example, {000, 010} are leaving GMs,
and {001, 011, 100, 101, 110} are remaining GMs, and {111}
is not assigned (i.e., do not care). In this example, EGK
requires 2 messages while tree-based schemes needs at least
3 messages. Now, we prove that EGK achieves storage-
communication-optimal:

Lemma 1 (Optimality of EGK): EGK achieves storage-
communication-optimal.

Proof Sketch 1: In EGK, each GM is distributed a private
key with log N secret shares and a factor D = g

α+r
β with

constant size. Thus, the storage overhead of EGK is O(log N).
With the log N secret shares, a GM can combine them to
calculate N − 1 distinct F factors in the DEC Algorithm 3.
Thus, each GM can decrypt N−1 encrypted streams and EGK
is storage-communication-optimal. ¤

For tree-based multicast key distribution schemes such as
OFT [11], LKH [7], ELK [13], etc., the communication
overhead for a GM leaving depends on the number of keys in
the tree that need to be updated [42], [13]. Some tree-based
schemes tried to optimize the number of messages to update
all the affected keys in the case of multiple leaves. In ELK
[13], which is known to be one of the most efficient tree-based
schemes, the communication overhead for multiple leaves is
O(a− l), where a is the number of affected keys and l is the
number of leaving GMs. Since there are log N nodes on the
path from root to leaf in the tree structure, the total number
of affected keys when l GMs leave the group is O(l · log N).

In the worst cases, EGK out-performs all the tree-based
schemes except Flat-Table. Since EGK requires same number
of messages as Flat-Table when removing a set of GMs, we
utilize some of the performance results from [1].

Lemma 2 (Worst case of removing 2 GMs [1]): When re-
moving 2 GMs from a group with N = 2n GMs, the number
of key updating messages is at most n. The worst case is
achieved when the Hamming distance between 2 GMs is n.

Proof Sketch 2: Please refer to [1]. ¤
As a comparison, in the same scenario, the number of keys
to be updated is 2n− 1, thus ELK requires 2n− 3 messages
while EGK requires n messages.

Lemma 3 (worst case of removing multiple GMs [1]):
The worst case of removal multiple GMs happens when both
of following conditions hold: 1) there are N/2 GMs to be
removed; 2) the Hamming distance between IDs of any two
remaining GMs is at least 2. In the worst case, the number
of key updating messages is N/2.

Proof Sketch 3: Please refer to [1]. ¤
In this case, the number of keys to be updated is N −N/2 =
N/2 for ELK, since there are N non-leaf keys to be updated
and the number of leaving GMs is N/2. We can see that, in
this particular worst case, EGK’s performance is same as ELK
approach.

In this paper, we simulated EGK along with LKH in groups
with 1024 GMs and 4096 GMs, and the number of messages
required are shown in Figure 4 and Figure 5 respectively. In
the simulation, we consider the cases of 5%, 25%, 50% IDs are
not assigned (i.e., do not care value). For each case, different
percentages of leaving GMs are randomly selected from the

TABLE I
COMPARISON OF COMMUNICATION OVERHEAD AND STORAGE OVERHEAD IN DIFFERENT GROUP KEY MANAGEMENT SCHEMES.

Scheme Communication Overhead Storage Overhead
join single leave multiple leaves GC GM

EGK O(1) O(log N) ≈ O(log N) O(log N)/O(N) O(log N)
Flat-Table O(log N) O(log N) ≈ O(log N) O(log N)/O(N) O(log N)

Flat-Table-ABE O(1) O(log N) ≈ O(log2 N) O(log N)/O(N) O(log N)
Subset-Diff N/A O(t · log2(t) · log m) O(t · log2(t) · log N) O(N) O(log2(N))

BGW N/A O(N
1
2) O(N

1
2) O(N

1
2) O(N

1
2)

ACP O(N) O(N) O(N) O(N) O(1)
Non-Flat-Table-Tree O(1) O(log N) O(l · log N) O(N) O(log N)
N : the number of group members; l: the number of leaving members; t: maximum number of colluding users to compromise the ciphertext.

Fig. 4. Number of messages of multiple leave for a group with 1024 GMs.

Fig. 5. Number of messages of multiple leave for a group with 4096 GMs.

group. We repeat 100 times to average the results. As a
comparison, the message number curve of LKH is also plotted.
From the result, we can see that EGK performs better than
LKH and is achieves roughly O(log N) complexity, where the
constant factor is about 20 for the 1024-member group and 50
for the 4096-member group.

Finally, we look into the message size of EGK, FT-CP-
ABE[14], and symmetric key tree-based schemes. As men-
tioned in [14], in FT-CP-ABE, the size of ciphertext grows

Fig. 6. Size of total messages of multiple leave for a group with 1024 GMs.

Fig. 7. Size of total messages of multiple leave for a group with 4096 GMs.

linearly based on the increase of the number of attributes in
the access policy [14], [15]. Experimentally, the message size
in FT-CP-ABE starts at about 650 bytes, and each additional
attribute adds about 300 bytes. In a system with 10-bit ID
or 1024 GMs, the number of attributes using FT-CP-ABE
ciphertext is at most 10 and the message size may be as
large as 650+9*300=3350 bytes. Since the number of attributes
in the access policy is bounded by log N , we can conclude
that the communication overhead of FT-CP-ABE is in the

order of O(log2 N). In EGK, every ciphertext contains exactly
one group member on G0 and two group members on G1.
Empirically, the value on G0 or G1 can be about 128 bytes.
Thus, the ciphertext in EGK is bounded by 400 bytes, which
is significantly smaller than the ciphertext size reported in
FT-CP-ABE [14]. Moreover, since the component C2 in the
ciphertext can be shared by multiple messages, we can further
reduce the message size of EGK. Existing tree-based schemes
using symmetric encryption algorithms, such as AES, enjoys
the advantage of small ciphertext. To encrypt a 32-byte GK,
those schemes require as low as 32-byte ciphertext. However,
based on our evaluation results in Figure 6 and 7, the total
message size of EGK will be smaller than symmetric key
based schemes when the size of a group is large, thanks
to much fewer numbers of transmitted messages. It can be
expected in large scale systems, where the size of a multicast
group is larger than 4096, EGK will be much more efficient
than other schemes.

B. Storage Overhead

In EGK, the storage overhead for GC is O(log N) if GC
does not store IDs of GMs. In this case, GC or GMs can not
utilize do not care values to further reduce the membership
function in SOPE form. Thus, the communication overhead
might be higher. The storage overhead is O(log N) for a GM,
since GM stores a private key component for each bit in its
ID.

C. Computation Overhead

In this section, we compare the computation overhead of
those asymmetric key based schemes. In ACP scheme, the
author reports that the encryption needs O(N2) finite field
operations when the sub-group size if N ; in the BGW scheme,
the encryption and decryption require O(N) operations on the
bilinear group, which are heavier than finite field operations
[43], [44]. In EGK, each encryption requires log N operations
on the bilinear groups, and the decryption requires 2 pair-
ings. Thus, the complexities of encryption and decryption are
bounded by O(log N) and O(1) respectively. Although the
problem of minimizing SOPE is NP-hard, efficient approxi-
mations are widely known. Thus, EGK is much more efficient
than ACP and BGW when group size is large.

VI. SECURITY ANALYSIS OF EGK

In this section, we analyze the security of EGK. Firstly, we
note that YS =

∑
B∈S yB should be different from YS′ =∑

B∈S′ yB , where S 6= S′. If there exist S and S′ (S 6= S′)
such that YS = YS′ , a GM with bit-assignments S′ will be
able to decrypt the ciphertext encrypted with bit-assignments
S. Remark that the assumption holds with overwhelming
possibility p(p−1)···(p−N−1)

P N > (p−N−1)N

pN = (1 − N−1
p) >

1 − N(N−1)
p > 1 − N2

p , where N = 2n and n is the number
of bits in the ID.

Lemma 4: The ENC and DEC algorithms are secure
given the hardness Discrete Logarithm Problem on G0 and
G1.

Intuitively, we prove the security of ENC and DEC
algorithms by showing that there is no attacker who can
reveal the ciphertext with non-negligible possibilities, given
the intractability of the DLP.

Firstly, we prove that for a non-GM attacker without any
predistributed secrets, the possibility that the attacker can
recover the ciphertext is 1/p, where p is the order of large
cyclic group G0 and G1. Given the public group parameter,
it is trivial to derive g and e(g, g). With this information,
the possibility that the attacker correctly guesses αtYS and
recovers M from M · e(g, g)αtYS equals to 1/p, since the
order of G1 is p and DLP is hard on G1.

Secondly, given a GM u with a set of bit-assignments Su

and a ciphertext CT , the possibility that u can decrypt the
ciphertext equals to 1/p, if the CT.S * Su. The possibility
that the attacker can guess correct grYCT.S with is at most N2

p ,
when YCT.S = YS′ for some S′ 6= CT.S.

Thirdly, if an attacker possesses private keys generated by
a system master key MK, the possibility that the attacker
can decrypt the message encrypted under different system
master key MK ′ is 1/p. Suppose the private key of attacker
is generated with α1 and one M is encrypted by α2, we have
Me(g, g)α2tYS . Now, if the GM tries to decrypt the message,
the result he/she derived is M · e(g, g)(α2−α1)tYS . Given the
randomness of α, the possibility that α1 = α2 equals to 1/p.

In summary, given the hardness of DLP on G0 and G1,
we can prove the possibility that an attacker can break the
ENC/DEC algorithms with 1/p or N2

p possibilities, where
p is a very large integer and it produces a negligible probability
1/p. ¤

Lemma 5: EGK provides backward secrecy.
When new GMs join the group, a new random GK ′ is
encrypted ({GK ′}GK) and multicasted. Also, the private key
of joining GMs are generated under a random system master
key α1. We note that all the previous key updating factors
are encrypted using different random α’s. Suppose one of
the key-update factors M are encrypted by α2, we have
Me(g, g)α2tYS . Now, if the GM tries to decrypt the message,
the result he/she derived is Me(g, g)(α2−α1)tYS .

Given 1) randomness of GK ′; 2) the randomness of α′s; 3)
security of symmetric encryption and 4) Discrete Logarithm
(DL) [45] problem on G0 and G1, the new joining group mem-
ber cannot derive any previous GKs or key-update factors.
Thus, the group backward secrecy is guaranteed. ¤

Lemma 6: EGK provides group forward secrecy.
When GMs leave the group, the GC updates the system
parameters to MK ′ using a new random α′ and multicasted
the encrypted g

α′−α
β to all the GMs in G \ L. All remaining

GMs will update their private keys and GK using the key
updating factor g

α′−α
β . Based on Lemma 1, the leaving GMs

can not decrypt the key update factor. Thus, the leaving GMs
cannot decrypt future encrypted messages since GK has been
changed.

Even if a leaving GM stores all encrypted key-updating
messages and join the group again, he or she cannot decrypt
a previous key updating message, since these messages are
encrypted under different master keys, which is intractable to

the joining GM based on Lemma 1. Moreover, using the key
updating factor g

α′−α
β to derive gα and β is hard due to the

DL problem. ¤
Lemma 7: Leaving GMs cannot collude to decrypt multi-

casted messages targeted to other GMs.
We refer to the collusion attack as any combinations of GMs
attempting to derive other GM’s private key by combining
their private keys. We first show that any two GMs cannot
collude using their private keys. Given the private keys of two
attackers a1 and a2, SKa1 = {D = g

α+ra1
β ,∀B ∈ Sa1 :

DB = gra1yB}, SKa2 = {D = g
α+ra2

β , ∀B ∈ Sa2 : DB =
gra2yB}, the problem of deriving SKv = {D = g

α+rv
β ,∀k ∈

SAv : DA = grvyk}, where Sv ⊆ Sa1

⋃
Sa2 and Sv 6= Sa1

Sv 6= Sa2 , can be reduced to the Discrete Logarithm problem
on G0. Furthermore, adding more colluding attackers will not
help due to the hardness of DL problem. ¤

VII. DISCUSSION

A. Clustering for Scalability

In the previous sections, we introduce the basic construction
of EGK, where the size of max group members is limited
by the size of ID space. If the ID space is restricted by n
bits, the size of the overall group is limited to 2n. Moreover,
since the problem of boolean function minimization is NP-
hard and the run time of QuineMcCluskey algorithm grows
exponentially with the number of variables, the number of bits
in ID cannot be very large. To accommodate potentially much
larger member population, we can divide the multicast group
into several clusters and each cluster has a cluster controller
(CC). The dynamic membership of CC is managed by GC;
GC and CCs will setup a shared key Kg , which is only
shared among GC and CCs. On the other hand, each cluster
is managed by its CC and dynamic membership is handled
locally. GMs and CC in the cluster ci will share a cluster key
Kci

. The multicast group including GMs, GC, and CCs share
a unique GK to protect multicast data. In Fig. 8, we depict
the clustering of EGK and the allocation of shared keys.

Fig. 8. Illustration of clustering in EGK to accommodate a large member
population.

Add/Delete GMs: When a GM joins the group, it will be
assigned to a cluster ci and its CC will perform the group
member addition operations described in IV-C to issue the
GM a unique ID within this cluster and private keys. GK and
Kci

are updated correspondingly as in IV-C. A new GK’ is

generated and encrypted by current GK while a new K ′
ci

is
generated and encrypted by current Kci .

Note that each cluster’s master key can be independent. In
this way, the GMs’ private keys are local effective. Thus, in the
event of removing GMs from a cluster, key update operation
is only performed locally. The deletion of GMs is identical to
the section IV-F, except that the new Kci needs to be updated
by each cluster ci.
Add/Delete Clusters: Dynamically adding and deleting a
cluster is performed identical to the addition and deletion
of GMs. When adding a cluster, a cluster controller (CC) is
selected and assigned a unique cluster ID, a cluster private key
and the Kg shared with the GC. When deleting a cluster, GC
communicate will all remaining CCs to update their private
keys and the GK for all group members. Note that the deletion
of CC means all the GMs in the cluster is excluded from the
multicast group.

B. Further Improvement of Efficiency

If we further investigate into the ciphertext, we can reduce
the total multicast data size by combining common C2 com-
ponents in different encrypted messages targeted for different
product terms in the same membership function. For example,
if L = {000, 001, 011, 111}, Mmin = B0B1 +B1B2. We can
find that Mmin contains 2 product terms. the message M for
L can be encrypted as M{B0,B1} and M{B1,B2}. As presented
in Section IV-D, the 2 encrypted messages are constructed as

{S1 = {B0, B1}, C0 = Me(g, g)αtYS1 , C1 = gβtYS1 , C2 = gt}

and

{S2 = {B1, B2}, C0 = Me(g, g)αtYS2 , C1 = gβtYS2 , C2 = gt}

Note that the C2 component in the these 2 messages are
identical for the same random t. By combining the C2, up to
33% of total multicast data can be reduced safely.

VIII. CONCLUSION

In this paper, we propose a key distribution scheme –
EGK that attains the same optimality as Flat Table without
collusion vulnerability. EGK also support dynamic subgroup
communication initialized by each group members (imagine a
virtual chat room in the multicast group). Additionally, EGK
provides constant message size and requires O(log N) storage
overhead at the group controller, which makes EGK suitable
for applications containing a large number of multicasting
group members. Moreover, adding members in EGK requires
just one multicasting message. EGK is the first work with such
features.

According to the theoretical and experimental analysis,
EGK out-performs all existing solutions in the musticast and
broadcast application domain. We also discussed expanding
scalability of EGK by clustering the multiscast group and
further reducing the communication overhead by combining
common components in the ciphertext.

REFERENCES

[1] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, D. Saha, I. Center,
and Y. Heights, “Key management for secure lnternet multicast using
Boolean functionminimization techniques,” INFOCOM’99. Eighteenth
Annual Joint Conference of the IEEE Computer and Communications
Societies. Proceedings. IEEE, vol. 2, 1999.

[2] R. Poovendran and J. Baras, “An information-theoretic approach for
design and analysis ofrooted-tree-based multicast key management
schemes,” IEEE Transactions on Information Theory, vol. 47, no. 7,
pp. 2824–2834, 2001.

[3] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas, I. Cen-
ter, and Y. Heights, “Multicast security: a taxonomy and some efficient
constructions,” INFOCOM’99. Eighteenth Annual Joint Conference of
the IEEE Computer and Communications Societies. Proceedings. IEEE,
vol. 2, 1999.

[4] D. Boneh, G. Durfee, and M. Franklin, “Lower bounds for multicast
message authentication,” Lecture Notes in Computer Science, pp. 437–
452, 2001.

[5] A. Perrig, R. Canetti, D. Song, and J. Tygar, “Efficient and secure
source authentication for multicast,” in Network and Distributed System
Security Symposium, NDSS, vol. 1. Citeseer, 2001, pp. 35–46.

[6] D. Wallner, E. Harder, and R. Agee, “Key Management for Multicast:
Issues and Architectures RFC 2627,” IETF, June, 1999.

[7] C. Wong, M. Gouda, and S. Lam, “Secure group communications using
key graphs,” Networking, IEEE/ACM Transactions on, vol. 8, no. 1, pp.
16–30, 2000.

[8] L. Dondeti, S. Mukherjee, and A. Samal, “Scalable secure one-to-many
group communication using dual encryption,” Computer Communica-
tions, vol. 23, no. 17, pp. 1681–1701, 2000.

[9] H. Harney, C. Muckenhirn, and T. Rivers, “Group key management
protocol (GKMP) architecture,” RFC 2094, July 1997, Tech. Rep., 1997.

[10] ——, “Group key management protocol (GKMP) specification,” Tech.
Rep., 1997.

[11] A. Sherman and D. McGrew, “Key Establishment in Large Dynamic
Groups Using One-Way Function Trees,” IEEE TRANSACTIONS ON
SOFTWARE ENGINEERING, pp. 444–458, 2003.

[12] R. Canetti, T. Malkin, and K. Nissim, “Efficient Communication-
Storage Tradeoffs for Multicast Encryption, Advances in Cryptology-
Eurocrypt99,” Lecture Notes in Computer Science, vol. 1592, pp. 459–
474, 1999.

[13] A. Perrig, D. Song, and J. Tygar, “ELK, A New Protocol for Efficient
Large-Group Key Distribution,” IEEE SYMPOSIUM ON SECURITY
AND PRIVACY, pp. 247–262, 2001.

[14] L. Cheung, J. Cooley, R. Khazan, and C. Newport, “Collusion-Resistant
Group Key Management Using Attribute-Based Encryption,” Cryptology
ePrint Archive Report 2007/161, 2007. http://eprint. iacr. org, Tech. Rep.

[15] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-Policy Attribute-
Based Encryption,” Proceedings of the 28th IEEE Symposium on Secu-
rity and Privacy (Oakland), 2007.

[16] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, “Efficient security
for large and dynamic multicast groups,” Proceedings of the IEEE 7th
International Workshop on Enabling Technologies: Infrastructure for
Collaborative Enterprises (WET ICE98), 1998.

[17] X. Li, Y. Yang, M. Gouda, and S. Lam, “Batch rekeying for secure group
communications,” Proceedings of the 10th international conference on
World Wide Web, pp. 525–534, 2001.

[18] D. Liu, P. Ning, and K. Sun, “Efficient self-healing group key dis-
tribution with revocation capability,” Proceedings of the 10th ACM
conference on Computer and communications security, pp. 231–240,
2003.

[19] W. H. D. Ng, M. Howarth, Z. Sun, and H. Cruickshank, “Dynamic
balanced key tree management for secure multicast communications,”
IEEE Transactions on Computers, vol. 56, no. 5, pp. 590–605, 2007.

[20] A. Perrig and J. Tygar, Secure Broadcast Communication in Wired and
Wireless Networks. Springer, 2003.

[21] J. Fan, P. Judge, and M. Ammar, “Hysor: Group key management with
collusion-scalability tradeoffs using a hybrid structuring of receivers,”
in Proceedings of the IEEE International Conference on Computer
Communications Networks, 2002.

[22] D. McGrew and A. Sherman, “Key establishment in large dynamic
groups using one-way function trees,” Manuscript submitted to IEEE
Transactions on Software Engineering. A full version of the paper ap-
pears in http://download. nai. com/products/media/nai/misc/oft052098.
ps, 1998.

[23] S. Mittra, “Iolus: A framework for scalable secure multicasting,” ACM
SIGCOMM Computer Communication Review, vol. 27, no. 4, pp. 277–
288, 1997.

[24] R. Safavi-Naini and H. Wang, “New constructions for multicast re-
keying schemes using perfect hash families,” in Proceedings of the 7th
ACM conference on Computer and communications security. ACM
New York, NY, USA, 2000, pp. 228–234.

[25] Y. Yang, X. Li, X. Zhang, and S. Lam, “Reliable group rekeying:
a performance analysis,” in Proceedings of the 2001 conference on
Applications, technologies, architectures, and protocols for computer
communications. ACM New York, NY, USA, 2001, pp. 27–38.

[26] M. Moyer, J. Rao, and P. Rohatgi, “A survey of security issues in
multicast communications,” Network, IEEE, vol. 13, no. 6, pp. 12–23,
1999.

[27] S. Rafaeli and D. Hutchison, “A survey of key management for secure
group communication,” ACM Computing Surveys (CSUR), vol. 35, no. 3,
pp. 309–329, 2003.

[28] G. Caronni, M. Waldvogel, D. Sun, and B. Plattner, “Efficient security
for large and dynamic multicast groups,” in Proceedings of the IEEE
7th International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WET ICE98), 1998.

[29] D. Boneh and B. Waters, “A fully collusion resistant broadcast, trace,
and revoke system,” Proceedings of the 13th ACM conference on
Computer and communications security, pp. 211–220, 2006.

[30] E. Gafni, J. Staddon, and Y. Yin, “Efficient methods for integrating
traceability and broadcast encryption,” Lecture Notes in Computer
Science, pp. 372–387, 1999.

[31] D. Boneh and B. Waters, “A fully collusion resistant broadcast, trace,
and revoke system,” in Proceedings of the 13th ACM conference on
Computer and communications security. ACM, 2006, p. 220.

[32] J. Garay, J. Staddon, and A. Wool, “Long-lived broadcast encryption,”
Lecture Notes in Computer Science, pp. 333–352, 2000.

[33] M. Goodrich, J. Sun, and R. Tamassia, “Efficient tree-based revocation
in groups of low-state devices,” Lecture Notes in Computer Science, pp.
511–527, 2004.

[34] D. Halevy and A. Shamir, “The LSD broadcast encryption scheme,”
Lecture Notes in Computer Science, pp. 47–60, 2002.

[35] D. Naor, M. Naor, and J. Lotspiech, “Revocation and tracing schemes
for stateless receivers,” Lecture Notes in Computer Science, pp. 41–62,
2001.

[36] M. Naor and B. Pinkas, “Efficient trace and revoke schemes,” in Fi-
nancial cryptography: 4th international conference, FC 2000, Anguilla,
British West Indies, February 20-24, 2000: proceedings. Springer
Verlag, 2001, p. 1.

[37] E. McCluskey, “Minimization of Boolean functions,” Bell System Tech-
nical Journal, vol. 35, no. 5, pp. 1417–1444, 1956.

[38] A. Fiat and M. Naor, “Broadcast Encryption, Advances in Cryptology-
Crypto93,” Lecture Notes in Computer Science, vol. 773, pp. 480–491,
1994.

[39] D. Boneh, A. Sahai, and B. Waters, “Fully collusion resistant traitor
tracing with short ciphertexts and private keys,” pp. 573–592, 2006.

[40] X. Zou, Y. Dai, and E. Bertino, “A Practical and Flexible Key Man-
agement Mechanism For Trusted Collaborative Computing,” INFOCOM
2008. The 27th Conference on Computer Communications. IEEE, pp.
538–546, 2008.

[41] T. Sasao, “Bounds on the average number of products in the minimum
sum-of-products expressions for multiple-value input two-valued output
functions,” Computers, IEEE Transactions on, vol. 40, no. 5, pp. 645–
651, May 1991.

[42] J. Snoeyink, S. Suri, and G. Varghese, “A lower bound for multicast key
distribution,” Computer Networks, vol. 47, no. 3, pp. 429–441, 2005.

[43] D. Hankerson, S. Vanstone, and A. Menezes, Guide to Elliptic Curve
Cryptography. Springer, 2004.

[44] A. Ramachandran, Z. Zhou, and D. Huang, “Computing Cryptographic
Algorithms in Portable and Embedded Devices,” Portable Information
Devices, 2007. PORTABLE07. IEEE International Conference on, vol.
25-29, pp. 1–7, 2007.

[45] A. Menezes, Handbook of Applied Cryptography. CRC Press, 1997.

