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Abstract

The notion of Zero Knowledge Proofs (of knowledge) [ZKP] is central to cryptography; it provides a set
of security properties that proved indispensable in concrete protocol design. These properties are defined for
any given input and also for any auxiliary verifier private state, as they are aimed at any use of the protocol as
a subroutine in a bigger application. Many times, however, moving the theoretical notion to practical designs
has been quite problematic. This is due to the fact that the most efficient protocols fail to provide the above
ZKP properties for all possible inputs and verifier states. This situation has created various problems to protocol
designers who have often either introduced imperfect protocols with mistakes or with lack of security arguments,
or they have been forced to use much less efficient protocols in order to achieve the required properties. In
this work we address this issue by introducing the notion of “protocol portability,” a property that identifies
input and verifier state distributions under which a protocol becomes a ZKP when called as a subroutine in a
sequential execution of a larger application. We then concentrate on the very efficient and heavily employed
“Generalized Schnorr Proofs” (GSP) and identify the portability of such protocols. We also point to previous
protocol weaknesses and errors that have been made in numerous applications throughout the years, due to
employment of GSP instances while lacking the notion of portability (primarily in the case of unknown order
groups). This demonstrates that cryptographic application designers who care about efficiency need to consider
our notion carefully. We provide a compact specification language for GSP protocols that protocol designers
can employ. Our specification language is consistent with the ad-hoc notation that is currently widely used and
it offers automatic derivation of the proof protocol while dictating its portability (i.e., the proper initial state
and inputs) and its security guarantees. Finally, as a second alternative to designers wishing to use GSPs, we
present a modification of GSP protocols that is unconditionally portable (i.e., ZKP) and is still quite efficient.
Our constructions are the first such protocols proven secure in the standard model (while the previously known
efficient constructions relied on the Random Oracle model).

1 Introduction

1.1 Motivation

Zero knowledge proofs [32] [ZKP], and zero knowledge proofs and arguments of knowledge in particular, are
a central tool in cryptosystem and protocol design. These tools allow a designer to enforce parties to assure
others that they take specified actions consistent with their internal knowledge state [30]. Properties of ZKP are
defined over all inputs i.e., they provide security and correctness properties independently of input distribution.
A shortcoming of ZKP’s is that depending on the underlying language it can be hard to come up with efficient
protocols. This has lead to the design of specialized protocols for specific language classes that occur often in
applications. A celebrated example that has proven to be very useful in the design of efficient cryptographic
schemes is known as Generalized Schnorr Proofs (extending the original seminal proof [44] to various algebraic
settings like unknown order modular groups that arise in the context of the RSA cryptosystem). These protocols
are at the heart of many efficient cryptographic systems and have been employed in a great number of schemes
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including: anonymous e-cash, anonymous voting, group signatures, distributed signing, distributed decryption,
verifiable encryption, fair exchange, ring signatures, and credential systems. These schemes capitalized on the high
efficiency of Schnorr’s method and constitute, perhaps, the most extensive application of zero knowledge theory to
practice so far. Further, a shorthand notation introduced in [15, 16] for GSP has been extensively employed in the
past and contributed to the wide employment of these protocols in cryptographic design. This notation suggested
using e.g., PK(α : y = gα) to denote a proof of the discrete logarithm logg y and it appeared in many works to
describe quite complex discrete logarithm based relations, e.g., [3, 7, 9, 10, 11, 12, 14, 28, 29, 35, 37, 38, 39, 40,
46, 47, 48, 49, 50, 51]. What has been often overlooked though is the fact that Generalized Schnorr Proofs are
not zero-knowledge proofs of knowledge! This is a consequence of the fact that the security properties of such
protocols are affected by the input distribution of the involved parties. Interestingly, despite the long line of works
in the proper formalization of zero-knowledge proofs, this aspect has been largely overlooked, mainly due to the
fact that it is only critical from an application-oriented efficiency point of view rather than a theoretical feasibility
point of view. Let us illustrate the phenomenon with two examples:

Example 1. Consider the language L = {〈n, g, h, y〉 | ∃s, t : y = gsht mod n} ⊆ Lin = N4
k where Nk is all

k-bit numbers and the following variation of the standard Schnorr proof: the prover sends the value u = gs0ht0

for some random integers s0, t0; upon receiving u the verifier responds with some integer c and finally the prover
responds with s1 = s0 − c · s and t1 = t0 − c · t (calculated over the integers). The verifier returns 1 if and only
if u = ycgs1ht1 mod n. This protocol has been used numerous times (see e.g., [27, 16, 1]). However the protocol
is not a proof of knowledge: on the one hand, in the case that the factorization of n is easy, it is feasible to design
a knowledge extractor that in expected polynomial time can recover the witness to the statement when interacting
with any convincing prover. Nevertheless such extractor can only succeed for certain choices of y as the above
protocol can make the verifier accept with high probability even for “malformed” y’s that satisfy y = ζgsht where
ζ is a small order element of Z∗n. Furthermore, when the factorization of n is difficult, the knowledge extractor
cannot even take advantage of Chinese remaindering to process the values submitted by the prover; in such case
ensuring the verifier that a convincing prover is indeed in possession of a witness becomes even more elusive. In
addition, observe that the zero-knowledge property is affected by the way the protocol is executed, and in particular
the statistical zero-knowledge aspect of the above protocol depends on the relative sizes of s0, s and t0, t.
Example 2. Consider the language L = {〈n, g, y〉 | ∃s, r : y = gs

2
hr}. A way for designing an efficient

protocol for this language is to have the prover provide a commitment C = gshr
′

and then prove simultaneously
the knowledge of the commitment C as well as the commitment Cs using two instances of the protocol in example
1. Clearly, in this case we will have to deal with similar issues as in example 1, but furthermore we will have an
additional difficulty to simulate the value C as part of the zero-knowledge simulator. For choices of the values of
g, h, n where 〈h〉 happens to be a subgroup of Z∗n different than 〈g〉 it can be the case that C is not sufficiently
hiding its gs component. For example 〈h〉 can be the subgroup of quadratic residues in Z∗n and g a quadratic
non-residue; this choice would be leaking one bit about the committed value s.

The above two cases exemplify the fact that there are many efficient protocols that are not zero-knowledge
proofs but they may potentially be used as such as long as they are employed over a suitable input generation.
It follows that given the state of the art what is badly missing is a methodological, i.e, a formal way to guide
cryptographic protocol designers under what conditions (on input and verifier’s state) it is safe to deploy these
efficient protocols as subroutines in a larger application context. Identifying such safety conditions and attaching
them to a protocol is what we call “identifying the protocol’s portability.”

We say that a protocol is portable with safety conditions defined by a class of input generators, for the class over
which it retains the properties of zero-knowledge proof of knowledge. The lack of properly identifying this notion
has created a number of crucial protocol problems on previously published works. For example, the work of [27]
has been cited extensively and its results were used directly to justify the proof of knowledge properties of various
proposed schemes. This was done without realizing that some of the security arguments in [27] are incorrect, which
was finally noticed (and corrected but without providing a formal protocol framework) by Damgård and Fujisaki
[24] five years after the publication of the original paper. Further, in various cases the possibility of a biased input
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generation and reference string contribution by one of the parties was not considered (either in the model or as an
omission or as an oversight) and this led to other works pointing out actual problems in these cases. For example,
see the attack of [17] on [1] that illustrates how a malicious key generation leads to a soundness attack in the
underlying signing protocol that, in turn, enables a framing attack in the group signature scheme. Another example
is the attack of [34] on [5] that takes advantage of a malicious parameter generation to break the zero-knowledge
property of the protocol construction. In both cases the required properties can be preserved by ensuring proper
parameter generation (as it was argued in [2] and [5] respectively). These previous problem instances highlight
the need of having a proper formalism that identifies conditions for porting efficient protocols as zero-knowledge
proofs.

1.2 Our Contributions

1. We introduce the notion of portability for proofs of knowledge protocols which identifies input and initial
constraints under which a protocol can be employed and have the zero-knowledge proof properties. First,
we define the notion of an input-generator for a proof protocol and we formalize the properties of soundness
and zero-knowledge conditional on a given input generator. The portability of the protocol is defined, in turn,
by identifying classes of input generators for which the protocol is sound and zero-knowledge (thus, can be
deployed safely). Note that unconditional portability characterizes protocols that retain their properties for
any input distribution (i.e., this notion coincides with regular zero-knowledge proofs of knowledge).

2. We then identify a large class of input generation and soundness parameters over which Generalized Schnorr
Proofs (GSP) are portable. This clarifies the correct way to employ the highly popular protocol description
notation introduced in [15, 16] for GSP mentioned above. Based on our results the (frequently lacking and
often erroneous) security analysis of all these previous works is streamlined and presented in a unified way.
Indeed, the notation PK(α, . . . : y = gα, . . .) was originally suggested for a few specific protocols without
clear semantics and syntax for the notation nor with a way to derive a concrete protocol for the notation.
Subsequently, the notation was extended by many authors and was also used in different (algebraic) settings
thereby opening gaps between statement made in the notation and the security properties offered by the
protocol that the authors seemingly had in mind. Sometimes, the notation has also been used with no
particular protocol in mind but just to describe any protocol (e.g., a generic zero-knowledge proof protocol)
that proves knowledge of a witness to the statement. This leads to our next contribution.

3. We introduce a new notation PKspec for specifying GSP proofs that puts forth the soundness guarantees
provided by the protocol specified by it. Our notation can be used as a black-box in protocol design and
the respective security proofs. To illustrate our notation, as an example, consider two parties that jointly
compute the values U, V, n such that U, V ∈ Z∗n and one of them wishes to demonstrate a certain structural
relationship between them. This goal will be specified syntactically in the following way (for example):

PKspec(α1, α2 : (U = gα1 in Z∗n) ∧ (V = hα1gα2 in Z∗n) ∧ α1 ∈ [−∞ . . .+∞] ∧ α2 ∈ [L . . . R])
→ (α1, α2 : (U = ζ1 · gα1 in Z∗n) ∧ (V = ζ2 · hα1gα2 in Z∗n) ∧ α1 ∈ [−∞ . . .+∞] ∧ α2 ∈ [L′ . . . R′])

Note that the specification is divided into two parts, the one appearing in the first line is what the protocol
designer (ideally) wishes to ensure and the second is what will actually be ensured by the Schnorr protocol
(in particular, the values ζ1, ζ2 will be selected from some small subgroup and the range [L′, R′] may be
extended compared to [L,R]). Based on our work, a protocol designer may write a GSP specification as
above and then rely on our analysis for the proof of a security and soundness (which assures portability of
the GSP protocol to his/ her specific context).

4. To complete the tool kit for protocol designers, we introduce an efficient extension of GSP protocols that is
unconditionally portable. This construction is proven correct and secure in the standard model, whereas the
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only previously known efficient protocols — known as the class of Σ+ protocols [5] — were shown secure
in the random oracle idealization.

5. The identification of portability for Generalized Schnorr Proofs facilitates the correct and secure design of
efficient protocols. To illustrate the power of our framework in this context we consider two well-known
cryptographic constructions from different subareas. We show how the employment of our GSP framework
clarifies their design and the assumptions they depend on, and assures their security while coping with
previously presented attacks. We first consider the original scalable group signature scheme by Ateniese et al.
[1] mentioned earlier. Recently, [17] presented an attack (which is actually based on considering the extended
setting of dishonest group manager at the system’s setup phase, something not originally anticipated; see
[2] for a discussion). Employing the GSP framework, in turn, allows us to clarify the settings where the
protocol of [1] is secure and highlights the exact requirements on the joint input to the proof of knowledge.
As a side benefit our framework also shows how the scheme can be made more efficient. Next, we consider
the efficient divisible e-cash scheme of Chan et al. [18]; the security of this scheme was never analyzed
properly (and originally the scheme as published had problems). Employing our GSP framework here, we
reveal the exact cryptographic assumptions required for the modified scheme to be secure (something that
even the corrected version [19] has been lacking).

1.3 How to use the results of this paper in cryptographic protocol design

Here we comment briefly on the way our results can be used in cryptographic design. Suppose that in a certain
cryptographic system a party is required to execute a proof that involves a series of discrete-log relations expressed
in the widely used ad-hoc PK notation. Using Theorem 10 the designer can obtain the corresponding PKspec
expression and, by the same theorem also automatically get the GSP protocol implementing the proof. Then the
designer examines the input generation that preceeds the protocol which is defined by the system execution until
the moment the GSP protocol should be invoked; if the conditions of Theorem 10 are satisfied then the soundness
and the zero-knowledge property are implied immediately. If on the other hand, the conditions of Theorem 10 are
not met, then the designer may use the unconditionally portable transformations of GSP protocols presented in
section 6. For two concrete examples the reader can refer to section 7.

2 Preliminaries

Notations. A function f : N → R is called negligible if for all c ∈ R there exists ν0 ∈ N so that for all ν ≥ ν0 it
holds that f(ν) < ν−c. When a random variable x is distributed according to the probability distribution X with
support S we will write Probx←X [x = s] for the probability that x takes the value s ∈ S. Let x, y be two random
variables with the same support S(ν) distributed according to the probability distributions X(ν), Y (ν) where
ν ∈ N. We say that x, y are statistically indistinguishable if the function f(ν) := 1

2

∑
s∈S(ν) |Probx←X(ν)[x =

s] − Proby←Y (ν)[y = s]| is a negligible function. If m ∈ N we will use the notation [m] to denote the set
{0, . . . ,m − 1}. In general we will denote by L some language typically over alphabet {0, 1} unless otherwise
specified. If L is an NP language, RL will be the corresponding polynomial-time relation, i.e., L = {φ | ∃w :
(φ,w) ∈ RL}.
Interactive Protocols. Let Π = (P, V ) be a protocol where P, V are probabilistic interactive Turing machines
(ITM). The view of P in Π is a random variable that contains all messages exchanged with V as well as the contents
of all tapes of P . Two protocols Π1 = (P1, V1),Π2 = (P2, V2) can be concatenated if we execute first (P1, V1)
and then write the private outputs of P1, V1 to the input tapes of P2, V2 respectively and start the execution of
(P2, V2). We allow parties to output a special symbol ⊥ to signify that they “reject” a certain interaction. In the
context of sequentially composed protocols, producing a⊥ symbol at some intermediate stage would signify that a
party refuses to continue with the execution (and the final output of the party becomes ⊥ which may interpreted as
reject in the context of zero-knowledge proofs). For a given protocol Π = (P, V ) we will say that the two ITM’s
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V, V ′ are indistinguishable provided that in the context of the Π interaction it is impossible for any adversarial P
to distinguish whether it is communicating with V or V ′ (the notion is defined similarly for the case of the ITM’s
P, P ′).

3 Portability of Zero-Knowledge Proofs

A zero-knowledge proof protocol Σ = (P, V ) for a language L enables P to demonstrate to V that a joint input
t belongs to an NP language L provided that the prover possesses a witness w such that (t, w) ∈ RL. Soundness
and zero-knowledge of such protocols should hold for any input distribution. Here we consider the (non-limiting)
case that the prover and the verifier collaboratively construct the input t to the proof protocol by engaging in a
protocol Π (dubbed the “input-generator”); at this preamble stage we denote the two parties by Pin, Vin to highlight
their relation with the actual prover and verifier. The output of this preamble stage will be the input to the actual
prover and verifier.

Definition 1 Let Lin ∈ BPP,L ∈ NP with L ⊆ Lin. Consider Π, a two-party protocol Π = 〈Pin, Vin〉 where each
party may reject returning ⊥ while if Pin terminates successfully it returns a pair 〈t, wP 〉 and similarly Vin returns
〈t′, wV 〉 where t, t′ ∈ Lin. The protocol Π is called an input generator for L, if for all executions that neither party
returns ⊥ it holds that (t, wP ) ∈ RL and t = t′.

Next we define statistical zero-knowledge proofs of knowledge over input generators. The definition follows
the standard ZK notion with the only difference being that the input instead of being totally adversarial (i.e.,
universally quantified) is produced by an input generator protocol Π. The parties are allowed to be adversarial
during this input generation stage. In particular for soundness we allow the prover to bias the input generation and
in formalizing soundness the knowledge extractor will be interacting with the malicious prover in both stages (with
rewinding power only during the second stage, i.e., the proof system). Regarding zero-knowledge we condition
on all input generation executions that the honest prover agrees to execute the proof system and we require the
existence of a simulator that can simulate the view of any malicious verifier. Note further that to support design
flexibility we will allow the prover to show that the input belongs to a possibly extended language Lext.

Definition 2 The two party protocol Σ = 〈P, V 〉 is a zero-knowledge proof of knowledge over the input generator
Π = 〈Pin, Vin〉 for L with knowledge error parameters (Lext, κ) and zero-knowledge distance ε if these properties
are satisfied:
(1) Completeness: it holds that both Pin and Vin terminate successfully with overwhelming probability and subse-
quently V accepts the interaction with the prover P with overwhelming probability.
(2) Soundness: For any pair of (P ∗in, P

∗) we denote by πP ∗in,P ∗ the probability that P ∗ convinces V on inputs
generated by P ∗in and Vin (where πP ∗in,P ∗ is taken over the entire probability space of (P ∗in, Vin), (P ∗, V )). We say
that Σ is sound over Π, if there is some Kin, such that: (i) Kin and Vin are indistinguishable as ITM’s, (ii) for
any P ∗ there is some K for which it holds that for any P ∗in: K on input the view of Kin and the output of P ∗in,
it returns w′ such that (t, w′) ∈ RLext where t is the statement that is determined in the input generation stage
between P ∗in and Kin with probability of success at least c · πP ∗in,P ∗ where c ∈ R while running in time polynomial
in (πP ∗in,P ∗ − κ)−1.
(3) Zero-knowledge: Σ is statistical ZK over Π, if there exists an Sin, such that (i) Sin and Pin are indistinguishable
as ITMs, (ii) for any V ∗, there is a simulator S, such that for any V ∗in: the random variable that equals the view
of V ∗ when interacting with P on input generated by Pin, V

∗
in is distinguishable with distance at most ε from the

random variable that equals the output of S given as input the view of Sin and the output of V ∗in.

We next introduce the notion of portability of a protocol:

Definition 3 The two party protocol Σ = 〈P, V 〉 is said to be portable over the class of input generatorsW if for
all Π ∈ W it holds that Σ a zero-knowledge proof of knowledge over Π. IfW contains all possible protocols then
the protocol Σ is said to be unconditionally portable.
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Ensuring portability from semi-honest behavior. Suppose that a given protocol happens to be a zero-knowledge
proof of knowledge for some input-generator Π as long as the prover and the verifier are semi-honest at the input
generation stage. In such an occasion one can generically compile a protocol Σ∗ from Π and Σ so that Σ∗ becomes
a zero-knowledge proof of knowledge over Π using the transformation from semi-honest to malicious behavior put
forth in [30] (see also [31], section 7.4). Note that while this is feasible, it is not particularly efficient given that
it requires expensive steps such as coin-flipping combined with generic zero-knowledge proofs to ensure that no
party is deviating from the input distribution (recall that much of cryptographic protocol design is motivated by
avoiding generic inefficient tools). Our results will demonstrate that such generic techniques can be substituted by
much more efficient ones for the particular class of protocols we consider (i.e., generalized Schnorr proofs).
Comparison to common-reference-string/bare model ZK. Zero-knowledge proofs are sometimes modeled in
the common-reference string model, cf. [23] (or the common random string model, [43]); in this setting there is an
explicit separation between the input of parties and the reference string that is assumed to be honestly generated
and provided to the parties. A common-reference-string ZK protocol is supposed to satisfy the security properties
conditional on the distribution of the reference string that no party can bias. By comparison, in our setting there
is no unbiased reference string that is independent of the proof’s statement that can be used to assist in the proof
of soundness or zero-knowledge. While here we deal mainly with the bare model, it is worth noting that even the
availability of a common reference string does not eliminate the issues of context dependent contributed inputs.
Relaxed Knowledge Extraction. In our formulation, the knowledge extractor only ensures that the prover pos-
sesses knowledge of a witness showing that t belongs to an extended language Lext. If L = Lext the soundness
definition will ensure that the interactive input belongs to L (as in the standard definition of ZK), however we will
also consider slightly different languages Lext. The reason for this relaxation is that by extending the language one
may obtain more efficient protocols which is our primary concern. Naturally this will allow the prover to convince
the verifier to accept despite the fact that the interactive input may be in the “gray area” Lext − L. Note that in
principle we will always be able to modify the interactive input proof of knowledge so that L = Lext (if one does
not mind the additional computation overhead that will be incurred).
Sigma Protocols. Our applications will focus on protocols 〈P, V 〉 that are called Σ-protocols, i.e., a three-move
protocol in which the prover goes first, the verifier responds with a random challenge from {0, 1}k, the prover
responds, and finally the verifier either accepts or rejects based on the prover’s response. All conversations in a
Σ-protocol are of the form 〈com, c, res〉 (commitment, challenge, response). These protocols typically consider
the setting where the verifier is restricted to be “honest” during the interactive proof 〈P, V 〉 when proving the zero-
knowledge property. While we will follow this, however, we will still allow the verifier to be totally adversarial
in the input building stage. This is justified as the honest verifier setting can be transformed using numerous
techniques to the fully adversarial verifier setting (e.g. see [41, 23]) and these techniques readily apply to our
setting.
Variations of the definition. In our definition we focused on knowledge extraction following the definition of [6]
(note that in our protocols the knowledge error will be κ = 2−k where k is a parameter). Moreover we formulated
zero-knowledge in the statistical sense. It is easy to reformulate the definition by strengthening zero-knowledge
(e.g., perfect zk) or relaxing it (e.g., computational zk). Moreover, soundness can be relaxed to require only
language membership from the prover (instead of knowledge extraction), or defined with a specialized knowledge
extractor that extracts two accepting conversations with the same first move and then reconstructs the witness.
Further, in applications the protocols can be made non-interactive employing the Fiat-Shamir heuristics [25] and
then use the forking Lemma [41] for extraction in the random oracle model. These alternative definitions are well
understood in the context of building efficient zero-knowledge proofs and can be ported into our setting.
On the input generation stage. In an actual system, the input generator protocol 〈Pin, Vin〉 may abstract many
parties and involve interactions between many participants. From a ZK security point of view, Pin will comprise
the “prover side” (i.e., the side that is interested in preserving zero-knowledge) and Vin will comprise the “verifier
side” (i.e., the side of the system that is interested in in preserving soundness). In a multi-party system, we will be
interested in primarily two input generators: in the first one, Pin will include only the prover and (if it exists) any
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party the prover trusts while Vin will include all other participants. In the second one, Vin will include the verifier
and (if it exists) any party the verifier trusts, while Pin will include all other participants. If a protocol is portable
over both of these input generators then it can be safely deployed in the given system.

A central tool in our design is the notion of safeguard groups that we introduce next.

4 Safeguard Groups

A safeguard group is specified by a sampler algorithm Ssg that on input 1ν returns a tuple 〈G, g,M, k, ζ〉; where G
is a description of an Abelian group that contains an implementation of G’s binary operator, inverse computation,
the encoding of 1 as well as the description of a polynomial-time group membership test that, given any string,
it decides whether it is a proper encoding of a group element; g is a generator of G; M is an approximation of
the order of g in G; and k is a security parameter that is related to the length of the order of small-order group
elements. Note that we will use the same notation for the description of a group G and the group itself. Regarding
the remaining elements of the tuple we have that g ∈ G, ζ ⊆ G,M ∈ N with further properties to be specified
below.

Definition 4 A safeguard group sampler Ssg satisfies the following (where 〈G, g,M, k, ζ〉 ← Ssg(1ν)):

C1. The exponent of G is not divisible by the square of any k-bit integer.

C2. The order m of g in G has no k-bit integer divisor, and M satisfies that (M −m)/M = negl(ν).

C3. ζ contains only a polynomial (in ν) number of elements; they all have a known (say part of the subgroup
description) k-bit integer order.

C4. Small-Order Property. It is hard to find k-bit order elements of G outside ζ. Formally, it holds that for all
PPT A, Prob[(v 6∈ ζ) ∧ (v has k bit order); v ← A(1ν , τ); τ = (G, g,M, k, ζ)← Ssg(1ν)] = negl(ν).

C5. Strong-Root Property. Given z ∈ 〈g〉 it is hard to find e > 1 and u ∈ G such that ue = z. Formally, it
holds that for all PPTA, Prob[(ue = z)∧(e > 1); 〈u, e〉 ← A(1ν , τ, z); z ←R 〈g〉; τ = (G, g,M, k, ζ)←
Ssg(1ν)] = negl(ν).

We remark that properties C3-C4 are not really essential and can be dropped at the expense of loosing tightness in
some of our proof reductions and notational presentation; we opt to enforce them as they make the presentation of
the results more succinct and are easily satisfied for the known examples of safeguard groups.

4.1 Examples of Safeguard Groups

Example 1. A safeguard group distribution can be built as follows: sample n as a safe composite so that n = pq,
p = 2p′ + 1, q = 2q′ + 1, where p′, q′ are prime numbers larger than 2k, set G = Z∗n and let g be a generator of
quadratic residues modulo n. Finally set ζ = {1,−1} and M = bn4 c. Property C1 is immediate as the exponent
of Z∗n is 2p′q′. Observe also that the properties C2 and C3 are easily satisfied. Indeed, it is easy to see that M
is sufficiently close to p′q′. Next observe that a violation of property C4 would mean the recovery of any other
element that has a k-bit order outside {1,−1}; this would violate the factoring assumption (only the four square
roots of 1 are k-bit order elements in Z∗n based on our selection of n). Property C5 amounts to the Strong-RSA
assumption with the target challenge being an arbitrary element of the quadratic residues; this is a variant of the
strong RSA problem that has been utilized extensively in previous works (e.g., [22]).
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Example 2. A second safeguard group is over the group G = Z∗n2 where n is sampled as before, i.e., n = pq,
p = 2p′ + 1, q = 2q′ + 1, so that g is a generator of the subgroup of square n-th residues; as before we select p′, q′

larger than 2k and ζ = {1,−1}.
We remark that in both the above examples it is not necessary to select n as a safe composite, i.e., we may

allow p′ and q′ to be composite numbers themselves as long as they have no small divisors (of k-bits). In practical
settings where we will employ safeguard groups, the parameter k may be required to be in the range from 80 to
256 bits.

4.2 Properties of Safeguard Groups

In the first lemma below regarding safeguard groups we show that based on the properties of the safeguard group
it is hard for an adversary to produce arbitrary powers of a chosen power of a group element. This lemma is an im-
portant building block of our general proof protocol. We remark that various restricted special case incarnations of
this lemma have appeared in the literature (the most basic of which is referred to as Shamir’s trick and corresponds
to case (i) in the proof of lemma). These special incarnations are too restricted to be useful in our setting and thus
there is need for putting forth the lemma that is formulated as follows:

Lemma 5 Let τ = 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group distribution. Suppose that A is a PPT that
given τ and a random z ∈ 〈g〉 returns y ∈ G and t,m ∈ Z such that yt = zm with 1 ≤ gcd(t,m) < |t| and t is a
k-bit integer. It holds that the success probability of A is negligible in ν.

Proof. First assume w.l.o.g. that t is a positive integer (if not, set y ← y−1 mod n). We consider two cases
according to δ =df gcd(t,m). Case (i). δ = 1. In this case we can compute α, β ∈ Z such that αt + βm = 1.

From this, in turn, we obtain:
z = zαt+βm = (zα)t(zm)β = (zαyβ)t

and thus, we find the pair 〈u, e〉 = 〈zαyβ, t〉 (note that t > 1 from the theorem’s conditions). This provides a
solution to the strong root problem violating property C5 of the safeguard group.

Case (ii). Suppose that δ > 1. It follows that δ ≤ min{|t|, |m|} and if t′ = t
δ and m′ = m

δ , it holds that
(yt
′
)δ = (zm

′
)δ. If gcd(δ, order(G)) = 1 then it is immediate that yt

′
= zm

′
and given that t′ > 1 (this is the

case since δ < t by the lemma’s statement) we are reduced to case (i). In the other case we have that there is a
σ ∈ G such that σδ = 1 and σ 6= 1 such that σ · yt′ = zm

′
. Note that we can compute such a σ as σ = y−t

′
zm
′
.

Furthermore, such a σ satisfies σ ∈ ζ due to property C4 and thus the order ρ of σ in G is known from the
description of the safeguard group (property C3); (alternatively, note that given that σδ = 1 it follows that ρ | δ
and by factoring δ we can compute easily the order ρ of σ; this can be done efficiently in practice since δ is a k-bit
integer). Next we consider the following two cases regarding δ′ = gcd(ρ, t′).
Case (iia) δ′ > 1; in this case we show the following claim (utilizing property C1):

Claim. If v | order(a) then v | order(a · bv′) for element a and b from the group G, where the exponent of G
has no square k-bit integer divisors and v is a k-bit integer that divides v′.

Proof of claim. Let u be the exponent of G, ua = order(a), and ub = order(b). We know that v | ua | u and
ub | u. Since v | u and v is a k-bit integer, based on the claim’s condition we have that gcd(v, uv ) = 1. As ua | u
it follows that gcd(v, ua

v ) = 1. Now we write a = a1 · a2 where the order of a1 is v and the order of a2 is ua
v .

Consider now the element a2 · bv′ . The order of bv
′

is equal to gcd( u
gcd(v′,u) , ub) so the order of a2 · bv′ would be a

divisor of ua
v · gcd( u

gcd(v′,u) , ub); it follows that v has no common divisor with the order of a2 · bv and as a result

the order of abv
′

= a1a2b
v′ would be a multiple of v.

Based on the above claim, we have that given that the order of δ′ divides the order ρ of σ it follows that the
order of σ · yt′ is also divisible by δ′. This is a contradiction given that σ · yt′ = zm

′
and z is an element of 〈g〉

which is a cyclic group with no k-bit divisors in its order (due to property C2).
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Case (iib) δ′ = 1; in this case we can compute t′′ ∈ Z such that t′′ · t′ ≡ 1(modρ) and we can write σ · yt′ =
(σt
′′ · y)t

′
= zm

′
so we are reduced to case (i) again. ut

Our main result regarding safeguard groups is Lemma 7. We show that any adversary that is given any number
of bases from the 〈g〉 subgroup of the safeguard group is incapable of producing an entirely arbitrary discrete-log
representation of a power of his choosing within G. Before stating the main lemma, we show an auxiliary lemma.

Lemma 6 Let A,B be two integers with A > B and A = πB + v with 0 ≤ v < B and let X be a random
variable with X ←R [A]. Let Y = X mod B. The statistical distance of the distribution of Y and the uniform
distribution over ZB is at most v/A. Let Y ′ = bX/Bc. The statistical distance of the uniform distribution over
{0, . . . , π} and the distribution of Y ′ is at most 1/(π + 1).

Proof. Let π = bA/Bc and v = A mod B (thus we have A = πB + v). For the distribution Y , it holds that v
elements of ZB are assigned the probability π+1

A . On the other hand, B − v elements are assigned the probability
π
A . Observe π

A < 1
B < π+1

A . As a result 1
B − π

A = A−πv
AB = v

AB and π+1
A − 1

B = πB+B−A
AB = B−v

AB . It
follows that the statistical distance between Y and the uniform over ZB , is equal to 1

2(vB−vAB + (B − v) v
AB ) =

Bv−v2
AB ≤ min{v,B−v}

A . Now consider the distribution of Y ′. The support of Y ′ is {0, 1, . . . , π} where all elements
are assigned probability B/A except element π that is assigned probability v/A. Based on this, the statistical
distance between the distribution Y ′ and the uniform distribution over {0, 1, . . . , π} can be seen to be less than
1
2(π(B/A− 1/(π + 1)) + (1/(π + 1)− v/A) from which the statement of the lemma follows. ut

Lemma 7 Let B1, . . . , Br ←R 〈g〉, 〈G, g,M, k, ζ〉 ← Ssg(1ν) be a safeguard group distribution, and let A be a
PPT that on input G, g,M, k, ζ, B1, . . . , Br it outputs integers e1, . . . , er, t and y ∈ G such that with probability
α: |t| > 1 and

∏r
i=1B

ei
i = yt where t is a k-bit number and ∃i : t 6 | ei. Then the Strong-Root property is violated

with probability at least α/(2r + 1)− η where η is a function negligible in ν.

Proof. First observe we may assume without loss of generality that t is positive since we can always set y = y−1

as the output of A. The sample space over which the probability α is taken is identified to the coin tosses of A
and the random choices of B1, . . . , Br from 〈g〉. Suppose that m is the order of g within G and M is the (public)
approximation on m such that (M − m)/M is a negligible function. Observe that the random variable gx with
x←R [M ] is statistically indistinguishable from the uniform distribution over 〈g〉; in particular the distance of the
two distributions is bounded by (M −m)/M .

Consider now the following experiment denoted by E . Select bi ←R [M2], and simulateA on input gb1 , . . . , gbr .
From Lemma 6 and the observation above it follows that bi mod m is statistically indistinguishable from the uni-
form over Zm and thus the elements Bi = gbi for i = 1, . . . , r are statistically indistinguishable from the uniform
distribution over 〈g〉r. Observe that the relation

∏r
i=1B

ei
i = yt can be written as yt = ge1b1+...+erbr .

Let δ = gcd(e1b1 + . . . + erbr, t). The sample space for the experiment E corresponds to the choices for
b1, . . . , br as well as the coin tosses for the simulation of A. We can split the sample space of E to the following
events (i) Efail: the output of A fails to meet the output specifications (either, t = 1, or g

Pr
i=1 eibi 6= yt). (ii)

Ediv: the output of A meets the specifications except that it holds that for all i = 1, . . . , r, t | ei. (iii) Elt: all the
specifications are met and δ < t. (iv) Eeq: all the specifications are met and δ = t. Based on the assumption of
the lemma we have that Prob[Elt] + Prob[Eeq] = α (for simplicity we omit the negligible statistical distance η
that exists between the executions ofA and the experiment E and is bounded by r(M −m)/M ). Observe first that
if the event Elt happens the result of the theorem will follow directly from Lemma 5 (by repeating the above with
some value z instead of g above and using e1b1 + . . .+ erbr as the exponent of z).

Next, let us consider the event Eeq. The event Eeq implies t | e1b1 + . . .+ erbr. Observe that we can view the
space where the eventEeq belongs to as being comprised of tuples of the form (π1, . . . , πr, ρ) where πj = b bjmc and
ρ is a sequence of coin tosses that fixes the randomness of A as well as the choice of bj(modm) for j = 1, . . . , r.
Moreover, note that the output of A depends only on ρ and is independent of the choice of π1, . . . , πr. Consider
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the subset Ω of Eeq for which it holds (π1, . . . , πr, ρ) ∈ Ω iff there exists j such that both tuples of the form
(π1, . . . , πj−1, πj ± 1, πj+1, . . . , πr, ρ) do not belong in Eeq.

Claim 1. Eeq = Ω.
Proof of Claim 1. Let (π1, . . . , πr, ρ) ∈ Eeq −Ω. Executing the experiment based on this sequence of random

choices, we obtain e1, . . . , er and t such that t | e1b1 + . . . + erbr and ∃i : t 6 | ei. Suppose without loss of
generality that i = 1. Based on this we obtain that t | e1(π1m + b1 mod m) + e2b2 + . . . erbr with t 6 | e1. Due
to the fact that (π1, . . . , πr, ρ) ∈ Eeq − Ω it follows that some tuple of the form (π1 ± 1, π2, . . . , πr, ρ) ∈ Eeq.
Because the behavior of A only depends on ρ it follows that for the same t, e1, . . . , er it will hold t | e1((π1 ±
1)m+ b1 mod m) + e2b2 + . . . erbr. By combining the above two divisibility relationships we obtain that t | e1m,
and since t 6 | e1 we have that gcd(t,m) > 1, something that is impossible since t is a k-bit number and m has no
divisor of k-bits (due to property C2 of the definition of a safeguard group).

Claim 2. if Prob[Ω] ≥ ε then Prob[Eeq] ≤ α− ε/2r.
Proof of Claim 2. Observe that the fact (π1, . . . , πr, ρ) ∈ Ω excludes at least one tuple of the form (π1, . . . ,

πj−1, πj ± 1, πj+1, . . . πr, ρ) from belonging in Eeq. Nevertheless this tuple has the same ρ component to a
tuple that belongs to Eeq and thus it cannot belong to either Efail or Ediv. It follows that a tuple of the form
(π1, . . . , πj−1, πj ± 1, πj+1, . . . πr, ρ) belongs to Elt, i.e., each tuple of Ω implies the existence of a tuple in Elt;
we call such tuple a witness. A single tuple of Elt can be the witness simultaneously of at most 2r elements of
Ω. This implies that 2r|Elt| ≥ |Ω| and as a result if Prob[Ω] ≥ ε it holds that Prob[Elt] ≥ ε/2r and as a result
Prob[Eeq] ≤ α− ε/2r.

Based on the above claims we obtain that Prob[Eeq] ≤ α(1 + 1/2r)−1 which implies Prob[Elt] ≥ α(2r +
1)−1 which means that property C5 is violated with probability at least α/(2r+ 1)− η where η ≤ r(M −m)/M
a negligible function in ν. ut

5 The Portability of Generalized Schnorr Proofs

In this section we discuss the portability of Generalized Schnorr Proofs. In particular we will identify a wide class
of input generators so that under the right conditions these protocols are portable.

GSP-specs. A generalized Schnorr proof (GSP) operates on a statement t that involves a number of groups
and group elements (“bases”) with public and secret exponents. To any such statement t we will associate the
following:

i. A set of symbolic variables denoted by X = {α1, . . . , αr} with |X | = r.

ii. A sequence of group descriptions G1, . . . ,Gz as well as the descriptions of z subgroups ζ1, . . . , ζz of
G1, . . . ,Gz respectively, so that the exponent of each ζi is (at most) a k-bit integer. The description of
the subgroup ζi will be typically given as a list of elements (i.e., these subgroups are small). It may be the
case that ζi = {1}.

iii. The group elements Ai,j ∈ Gi for j = 0, . . . , r where Ai,j will be the base for the variable αj in group Gi.

iv. The range limits Lj , Rj , Lext
j , Rext

j ∈ Z ∪ {−∞,∞} such that Lj < Rj , and Lext
j ≤ Lj , Rj ≤ Rext

j for
j = 1, . . . , r.

Next we give an explicit syntax notation and semantics for specifying the language L that the prover wishes to
convince the verifier the statement t belongs to. We define two languages L and Lext:

L =
{
t ∈ Lin | ∃ x1, . . . , xr ∈ Z :

z∧
i=1

( r∏
j=0

A
xj

i,j = Ai,0

)
∧

r∧
j=1

(
xj ∈ [Lj , Rj ]

)}
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Lext =
{
t ∈ Lin | ∃ x1, . . . , xr ∈ Z :

z∧
i=1

( r∏
j=0

A
xj

i,j = ζi ·Ai,0
)
∧

r∧
j=1

(
xj ∈ [Lext

j , Rext
j ]
)}

We will use the following syntax to refer to a proof of knowledge for the language L whose soundness is only
ensured in the extended language Lext; we call this notation a GSP-spec τ .

PKspec
(
X :

r∏
j=1

A
αj

1,j = A1,0(in G1)∧ . . .∧
r∏
j=1

A
αj

z,j = Az,0(in Gz) ∧ α1 ∈ [L1, R1]∧ . . .∧ αr ∈ [Lr, Rr]
)

→
(
X :

r∏
j=1

A
αj

1,j = ζ1·A1,0(in G1)∧. . .∧
r∏
j=1

A
αj

z,j = ζz·Az,0(in Gz)∧α1 ∈ [Lext
1 , Rext

1 ]∧. . .∧αr ∈ [Lext
r , Rext

r ]
)

Note that left-hand side of the above notation (i.e., the first line) is the statement of the proof whereas the
right-hand side (namely, the second line) is the actual (extended) statement that will be guaranteed to hold (recall
Definition 2). Note that in the extended statement the ranges [Lj , Rj ] will be extended to [Lext

j , Rext
j ] and the unit

element of the group is extended to be any element in the (small) subgroup ζi for the i-th equation.
The specification allows for a wide range of proofs including polynomial relations among the secret and in-

equality statements of secrets. We refer to section 8 for a discussion on what is covered by this specification and
how it can be extended, in particular to include also ∨-connectives or tighter ranges.

GSP input generators. A GSP input generator Π = 〈Pin, Vin〉 that is consistent with a GSP-spec τ is a two
party protocol that determines the parameters: z (the number of groups), r (the number of symbolic variables),
k (a parameter related to group selection and the soundness property) and whose public output t includes the
description of all groups, bases and ranges of the GSP-spec as described in the items (i)-(iv) above.

The Generalized Schnorr Protocol ΣGSP
τ . For any GSP-spec τ one can design a Sigma protocol based on

Schnorr’s proof by introducing appropriate range checking and compensating for the fact that groups of unknown
order are used with computations over the integers.

The protocol is based on two parameters k, l for free variables α1, . . . , αr such that αj takes values in the
range [Lj , Rj ]. Below we set mj = Rj − Lj . Suppose the prover is in possession of the witnesses x1, . . . , xr; the
prover selects first the random values tj ∈R [−2k+lmj , 2k+lmj ] and computes the values Bi =

∏r
j=1A

tj
i,j . The

prover terminates the first stage of computation by transmitting B1, . . . , Bz . The verifier selects c ∈R {0, 1}k and
responds by sending c to the prover. The prover, in response computes the integers sj = tj−c ·(xj−Lj) and sends
them to the verifier. The verifier returns 1 if and only if for all j ∈ {1, . . . , r} it holds that sj ∈ [−2k+lmj − (2k −
1)mj , 2k+lmj ] as well as for all i ∈ {1, . . . , z} it holds that Bi ∈ Gi and

∏r
j=1A

sj

i,j =Gi Bi(A
−1
i,0 ·

∏r
j=1A

Lj

i,j )
c.

The reader can also refer to figure 1 for the full description of the ΣGSP
τ protocol given above.

Portability of ΣGSP
τ . We will next identify a class of input generators Π for a given GSP-spec τ over which ΣGSP

τ

is portable as a zero-knowledge proof of knowledge. Recall that Π defines the respective inputs (t, w) for the
prover and t for the verifier. We first describe the setting where some special care needs to be paid when arguing
the security of ΣGSP

τ . These settings involve variables that are “unsafe”:

Definition 8 (Unsafe Variables) For a GSP-spec τ , a symbolic variable αj ∈ X is called unsafe if it satisfies at
least one of the following three conditions: (1) it is involved in an equation over a group Gi over a base element
that is of unknown order to the verifier (i.e., the order of the base is not included in the group’s description); (2) the
range [Lj , Rj ] is non-trivial (i.e., it is not the range (−∞,+∞) ); (3) the variable appears across various bases
that have known but different order.

The presence of unsafe variables may introduce problems in the knowledge extraction argument and make the
protocol fail the soundness property. Still, unsafe variables can be tolerated provided they appear in conjunction
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Protocol for a GSP-spec τ
with free variables X = {α1, . . . , αr}. Security parameters: k, l ∈ N,
Each variable αj takes values in the range [Lj , Rj ]; set mj = Rj − Lj
P proves knowledge of the witness ~x = 〈x1, . . . , xr〉 with xj ∈ [Lj , Rj ].

P V
for j ∈ {1, . . . , r} select tj ∈R [−2k+lmj , 2k+lmj ]

for i ∈ {1, . . . , z} set Bi =
∏r
j=1A

tj
i,j

B1,...,Bz−→ c ∈R {0, 1}k
c←−

for j ∈ {1, . . . , r} set sj = tj − c · (xj − Lj) [over Z]
set ~s = 〈s1, . . . , sr〉 and ~L = 〈L1, . . . , Lr〉 s1,...,sr−→ Verification

for j ∈ {1, . . . , r} test:

sj
?∈ [−2k+lmj − (2k − 1)mj , 2k+lmj ]
for i ∈ {1, . . . , z} test:(

Bi
?∈ Gi

)
∧
(∏r

j=1A
sj

i,j
?=Gi Bi(A

−1
i,0 ·

∏r
j=1A

Lj

i,j )
c
)

Figure 1: Protocol for a GSP-spec.

to safeguard groups (cf. Definition 4). The following definition defines input-generators that are suitable for the
Σext
τ protocol in the presence of unsafe variables. In a nutshell it says that for a GSP-input generator protocol Π,

a certain group will be called a safeguard group for Π as long as there exists a simulator that playing the role of
the verifier, it can “plug-in” a safeguard group generated by Ssg in black-box fashion in the interaction with Pin

without Pin noticing, even if Pin is acting adversarially.

Definition 9 For any GSP-input-generator protocol Π = 〈Pin, Vin〉, a group Gi and the bases Ai,j1 , . . . , Ai,jv ∈
Gi will be called respectively a safeguard group for Π and its safeguard bases there exists a polynomial-time
simulator SV s.t. for any adversarial party P ∗in in the protocol Π, SV receives as input 〈G, g,M, k, ζ, g1, . . . , gv〉
where 〈G, g,M, k, ζ〉 ← Ssg(1ν) and g` = gs` with s`

¢← [M ], and satisfies the property that the input t produced
by the interaction of P ∗in and SV contains a group Gi and bases Ai,j1 , . . . , Ai,jv that satisfy Gi = G and Ai,j1 =
g1, . . . , Ai,jv = gv and the view of P ∗in when interacting with Vin is indistinguishable from the view of P ∗in when
interacting with SV .

An equation
∏r
j=1A

αj

i,j = Ai,0 over a safeguard group for Π will be called a “safeguarding equation.” Armed
with the above we next identify a class of input generators for which the generalized Schnorr proof ΣGSP

τ is
portable.

Theorem 10 (Portability of Generalized Schnorr Proofs) Let τ be a GSP-spec. The protocol ΣGSP
τ is portable

for honest verifiers, for all input generators Π consistent with τ provided that (I) the generated input t ∈ Lin

has no unsafe variable, or (II) the five following conditions hold: (i) Each unsafe variable appears at least once
as an exponent over a safeguard base. (ii) There is an ordering i1, . . . , iz of all the equations so that (1) i1 is
a safeguarding equation with all its free variables over safeguard bases, and (2) in safeguarding equation iw for
w > 1 it holds that all free variables of equation iw appear over safeguard bases or have appeared at least once
in a previous safeguarding equation. (iii) If Gi is a safeguard group then it has description 〈Gi, gi,Mi, k, ζi〉 (i.e.,
all safeguard groups share the same k). (iv) Lext

j = Lj−2k+l+2(Rj−Lj) and Rext
j = Rj + 2k+l+2(Rj−Lj). (v)

The knowledge error κ is c · (2−k +r ·Advroot) for a suitable c ∈ R and the zero-knowledge distance is ε = r ·2−l.
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Proof. Without loss of generality we will focus on the case where all variables α1, . . . , αr are unsafe; the case
where variables are mixed is a straightforward extension. We first prove completeness. Observe that given that
c ∈ {0, 1}k and xj ∈ [Lj , Rj ] we have that tj−c(xj−Lj) ∈ [−2k+lmj−(2k−1)mj , 2k+lmj ] always. Moreover,
recall that sj = tj − c · (xj − Lj). Based on this we have for all i = 1, . . . , z,

Bi · (A−1
i,0 ·

r∏
j=1

A
Lj

i,j )
c =

r∏
j=1

A
tj
i,j(A

−1
i,0 ·

r∏
j=1

A
Lj

i,j )
c = A−ci,0

r∏
j=1

A
tj+cLj

i,j =
r∏
j=1

A
−c·xj

i,j ·
r∏
j=1

A
tj+cLj

i,j =
r∏
j=1

A
sj

i,j

Regarding soundness, we first determine Kin: the knowledge extractor at the input generation stage is the
simulator SV that can play the role of the verifier and “plug-in” the safeguard groups that are required in the
statement of the theorem. Then, based on Definition 9, the knowledge extractor can induce the proper safeguard
distribution in the input generation stage for any adversarial prover P ∗in. After this step, we need to construct the
knowledge extractor K that will be based on the given adversarial prover P ∗ and should operate in polynomial-
time in (πP ∗in,P ∗ − κ)−1 with success at least linear in πP ∗in,P ∗ . We construct K as follows: it simulates P ∗ and V
and rewinds P ∗ to the point prior to the selection of the challenge (giving a new challenge each time) a number
of 2ν · (πP ∗in,P ∗ − 2−k − (2r + 1)(Advroot + η))−1 times until it obtains two accepting interactions, denoted as
〈B1, . . . , Bz, c, s1, . . . , sr〉, 〈B1, . . . , Bz, c

∗, s∗1, . . . , s
∗
r〉, between the P ∗ and the honest verifier that have the same

first move B1, . . . , Bz . If no such interactions are determined K terminates with failure. We next show how based
on such two interactions we can reconstruct the witnesses.

Let us consider the i-th relation of the GSP. Due to the fact that both conversations are accepting we have

r∏
j=1

A
sj−s∗j
i,j = (A−1

i,0 ·
r∏
j=1

A
Lj

i,j )
c−c∗ .

Which can be rewritten as

A∆s1
i,1 . . . A∆sr

i,r = (Ai,0 ·
r∏
j=1

A
−Lj

i,j )∆c ,

where ∆c = c∗ − c, ∆sj = sj − s∗j . Recall that it holds that Ai,j = 1 whenever αj does not appear in the i-th
equation.

Based on a standard lemma (cf. Lemma 15), we know that there is a fraction πP ∗in,π∗/2 of accepting conver-
sations for which it is possible to rewind and to obtain a second accepting conversation with the same first move
with probability πP ∗in,π∗/2 (in the conditional space). Each time K performs a rewinding and obtains an accepting
second conversation we can distinguish three events in the conditional space: (i) The event EQ that corresponds to
∆c = 0 (we note that this happens with probability 2−k); (ii) The event NDIV that corresponds to the case there is
some j ∈ {1, . . . , r} so that αj is an unsafe variable for which it is not true that ∆c | ∆sj : (iii) The event SUCC
that hits a second accepting conversation that satisfies ∆c | ∆sj for all j = 1, . . . , r. The event SUCC happens
with probability at least πP ∗in,π∗/2− 2−k − γ where γ is an upper bound on the probability of the event NDIV. We
proceed next to bound γ.

Given that there are j ∈ {1, . . . , r} for which it holds that ∆c does not divide ∆sj let us order all such j
following the order they appear in the safeguarding equations according to their ordering suggested by property
II(ii) of the theorem i1, . . . , iz . Without loss of generality let j be the first index in this ordering and let i` be the
safeguarding equation for which αj appears over a safeguard base. If it holds that i` = 1 then we know that αj
appears over a safeguard base and all other variables present in the equation also appear over safeguard bases. On
the other hand if i` > 1 it holds that any variable αj′ of i` which does not appear over a safeguard base has already
appeared in the equations i1, . . . , i` − 1 and thus it must be the case that ∆c divides ∆sj′ (otherwise we would
have selected j′ instead of j). These arguments suggest that no matter what, we can isolate a single safeguarding
equation for which all unsafe variables that have not appeared before appear over safeguard bases and for one of
them, denoted αj , it holds that ∆c does not divide ∆sj . This setting enables us to utilize Lemma 7 to show that
the strong root property is violated. This will provide a bound for the probability γ. We proceed as follows.
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Suppose that γ ≥ (2r + 1)(Advroot + η)(1 − ε)−1, where ε is a negligible function in ν. We can turn the
entire prover - verifier simulation into an algorithm A that solves the problem stated in Lemma 7 as follows: we
restart the prover - verifier interaction (from the input generation stage) plugging on behalf of the verifier (using
Kin) the safeguard group distribution. We repeat the first stage a number of Ω(π−1

P ∗in,π
∗ · ν) times to obtain an

accepting conversation with overwhelming probability in ν. Then we perform a single rewinding to obtain a
second accepting conversation with probability γ. It follows that with probability (1 − ε)γ we obtain the result
postulated in the statement of Lemma 7 where α = (1− ε)γ. Based on this we have that (1− ε)γ/(2r+ 1)− η ≤
Advroot which is a contradiction to the lower bound of γ postulated in the beginning of the paragraph. Therefore
γ ≤ (Advroot + η)(2r + 1)(1− ε)−1 which implies that γ ≤ (Advroot + η)(2r + 1)(1 + ε′) where ε′ is negligible
in ν.

Based on the above we derive that with probability (πP ∗in,π∗/2 − 2−k − (Advroot + η)(2r + 1)(1 + ε′)) the
second conversation will be successful and satisfy that for all j ∈ {1, . . . , r} : ∆c | ∆sj . In such case it follows
that we can set xj = ∆sj

∆c +Lj (calculated over Z) as the witness value for the variable αj . Indeed observe that for
those values it holds that

r∏
j=1

A
xj

i,j = σi ·Ai,0

where σi is an at most k-bit order element of the safeguard group Gi, since σ∆c
i =Gi 1 where ∆c is a k-bit number.

Moreover observe that because s`, s∗` ∈ [−2k+lm` − (2k − 1)m`, 2k+lm`] it follows that

∆s` ∈ [−2k+l+1m` − (2k − 1)m`, 2k+l+1m` + (2k − 1)m`]

and, as a result, ∆s`
∆c ∈ [−2k+l+2m`, 2k+l+2m`] (in fact it can be argued that with high probability the range would

be much tighter but the above is enough for the result as stated). Therefore x`, as reconstructed above, will belong
to [L` − 2k+l+2m`, L` + 2k+l+2m`] and the reconstructed witnesses satisfies the stated range constraint.

Given that we repeat the rewinding 2ν(πP ∗in,π∗/2 − 2−k − (2r + 1)(Advroot + η)(1 + ε′))−1 times we have
that with overwhelming probability in ν we will derive a second accepting conversation in the conditional space
where the first conversation is accepting and suitable (per Lemma 15). Given that a suitable initial accepting
conversation is derived with probability πP ∗in,π∗/2 the soundness of the protocol follows assuming knowledge error
κ = 2(2−k + (2r + 1)(Advroot + η)(1 + ε′)) (where both η and ε′ are negligible functions in ν). This completes
the proof of soundness.

Regarding statistical zero-knowledge for honest verifiers, the simulator at the input generation stage Sin simply
simulates the prover Pin. Subsequently after the input generation stage, for the honest verifier case (i.e., V ∗

simulates V and returns all tapes including the view of V ∗in) we define the simulator S that operates as follows: it
selects c ∈R {0, 1}k and for ` = 1, . . . , r, ŝw ←R [−2k+lm, 2k+lm] and it computes for i = 1, . . . , z the values

B̂i = Aci,0

r∏
j=1

A
ŝj−cLj

i,j

The simulator outputs the transcript 〈B̂1, . . . , B̂z, c, ŝ1, . . . , ŝr〉. Then we need to show that the simulated tran-
scripts are statistically indistinguishable from transcripts that are generated in conversations between the honest
prover and the honest verifier. This boils down to calculating the statistical distance between the random variable
s computed as t− c(x− L`) for a fixed x ∈ [L`, R`] and t ∈R [−2k+lm, 2k+lm] and c ∈R {0, 1}k to the random
variable ŝ ∈R [−2k+lm, 2k+lm]. We prove the following claim:

Claim. Consider a fixed x ∈ [L,R] with m = R − L and the random variables t ∈R [−2k+lm, 2k+lm],
c ∈R {0, 1}k. The statistical distance of the random variable ŝ = t − c(x − L) from the random variable
s ∈R [−2k+lm, 2k+lm] is less than 2−l.

Proof of Claim. We will denote by Da the distribution of the random variable s and by Db the distribution of
ŝ = t− c(x− L). Assume that the support of the two random variables is Z.
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• Regarding Da observe that a certain s0 in [−2k+lm, 2k+lm] has probability of being selected equal to
1

1+2k+l+1m
(uniform probability distribution). Any s0 6∈ [−2k+lm, 2k+lm] has probability 0.

• Regarding Db observe that a certain s0 has the following probabilities of being selected:

1. For each s0 ∈ [−2k+lm, 2k+lm− (2k− 1)m] and for each of the 2k different c0 ∈ {0, 1}k we can find
a unique t0 such that s0 = t0 − c0x, as a result the probability of obtaining the given s0 according to
Db is 2k

2k(1+2k+l+1m)
= 1

1+2k+l+1m
.

2. For s0 ∈ [−2k+lm− (2k−1)m,−2k+lm−1] or s0 ∈ [2k+lm− (2k−1)m+1, 2k+lm] the probability
of obtaining s0 according to Db lies in the real interval [0, 1

2k+l+1m+1
].

3. For the remaining s0 < −2k+lm − (2k − 1)m and s0 > 2k+lm the probability of selecting them
according to Db is equal to 0.

It is clear from the above that the absolute difference between the probability of a certain s0 according to Db and
Da is 0 for the integer ranges of cases 1 and 3 above. The distributions Da and Db will accumulate some statistical
distance though due to their different behavior for values s0 that belong to the integer range specified in item 2.
In this case, for a specific s0, distribution Da assigns probability either 0 or 1

2k+l+1m+1
whereas distribution Db

assigns probability that belongs in the real interval [0, 1
2k+l+1m+1

]. Clearly, in the worst case for each specific s0 the
absolute difference will be 1

2k+l+1m+1
. The number of elements s0 of case 2, are 2·(2k−1)m thus it follows that the

statistical distance of the distributionsDa andDb cannot be greater than (2k−1)m/(2k+l+1m+1) < 2−l−1 < 2−l.
This completes the proof of the claim.

With a standard application of the triangular inequality we conclude that the statistical distance of our simulator
is r2−l. ut
Example. Suppose that Vin selects an RSA-modulus n which is a multiple of two safe primes, a quadratic residue
base g ∈ Z∗n as well as h ¢← 〈g〉. Vin transmits n, g, h to Pin. In turn, Pin sends y = guhv mod n where u ¢← [dn4 e]
and v ∈ [2e] for some e ∈ N. The input1 t generated by Pin, Vin in this case is the vector 〈n, g, h, y〉. Suppose
now that the prover P wishes to demonstrate to the verifier V that she knows u, v in their respective ranges such
that y = guhv mod n. It is easy to see that Z∗n can play the role of a safeguard group for the input generator
described above with ζ = {−1,+1} and that the conditions of Theorem 10 are satisfied, thus the protocol ΣGSP

τ

can be used to ensure to V that y = ±guhv mod n and u ∈ [−Eu, dn4 e + Eu], v ∈ [−Ev, 2e + Ev] where
Eu = 2k+l+2 · dn4 e, Ev = 2k+l+2+e.

6 Unconditionally Portable Protocols for GSP-specs

Theorem 10 of the previous section describes a class of input-generators for which the generalized Schnorr proof
protocol can be used in a safe way. Nevertheless, it may be very well the case that we would like to use a proof for
a GSP-spec outside this class of input generators. In the remaining of the section we describe an efficient protocol
enhancement to the basic generalized Schnorr protocol that is unconditionally portable.

The Σext,+
τ protocol. Consider any input generator Π for which Theorem 10 does not apply, i.e., (Π,Σext

τ ) is not
a zero-knowledge proof over Π. We next show one modification of Σext

τ into a protocol Σext+
τ so that Σext+

τ is a
protocol that is universally portable as a zero-knowledge proof.

The protocol Σext+
τ operates as follows: The verifier first selects a safeguard group 〈Z∗n, g,M = bn/4c, k,V =

{−1, 1}〉 where 〈g〉 = QR(n) together with a number of safeguard bases g1, . . . , gu ∈ 〈g〉 where u is the number

1In this simple example, it could be that y leaks some information about u, v to Vin (which recall it may be an entity that includes more
parties beyond the verifier); this does not affect the zero-knowledge property over this input generator which — as it is the case with regular
ZK proofs — is concerned only with information leaks during the P, V interaction.
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V
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1 . . . gxu
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Pin Vin

P : x1, . . . , xr

Pin Vin

n, g, g1, . . . , gu

Π,Σext
τ Π+,Σext+

τ

Com(·)
validateCom(·)

ψ = Com(C,B0)

safeguard group
and bases

commitment

V

c

s0, s1, . . . , sr

log(g1), . . . , log(gu)

open ψ

resψ

B1, . . . , Bz

ψ, comψ

P : x1, . . . , xr

V

Figure 2: Illustration of the transformation of Σext
τ over input generator Π to the Σext+

τ .

of variables that are unsafe. We will denote the discrete-logarithm values of g` base g as ρ`. The verifier also selects
a prime P such that (P−1)/2 is also prime and satisfies (P−1)/2 > n as well as two elements of order (P−1)/2
in Z∗P denoted by G,H where H is randomly selected from 〈G〉. When these elements are received the prover will
check that P, (P−1)/2 ∈ Prime, (P−1)/2 > n and thatG,H ∈ QR(P ) (i.e., thatH ∈ 〈G〉). We denote AdvDLOG
an upper bound on the probability that any polynomial-time bounded algorithm has in returning logG(H) given
G,H,P . Next, the prover computes a commitment of the form C = grgx1

1 . . . gxu
u (modn) (which is an extended

Pedersen commitment over the safeguard group); note that r ¢← [2l+3M ] where l is the security parameter related
to the zero-knowledge distance and x1, . . . , xu are the witnesses of P . Intuitively, what will happen next can
be interpreted as follows: the prover and the verifier will include in the GSP-spec τ the safeguarding equation
(C = grgx1

1 . . . gxu
u ( in Z∗n)) as one of the equations that are needed to be shown (we call the extended GSP-spec

τ+) but the prover will not reveal C. This is because the parameters of the safeguard group were selected by the
verifier and thus the prover is at risk of revealing some information about the witnesses.

Instead, the (P, V ) protocol interaction for τ+ will be modified as follows: the prover P will make a commit-
ment ψ1 to the value C denoted by ψ1 = Gr

∗
HC mod P . Similarly, the prover P will not submit the value B0

(that corresponds to the commitment equation (C = grgx1
1 . . . gxu

u ( in Z∗n))); instead it will submit a commitment
ψ2 = Gr

∗
0HB0 mod P . We call ψ = (ψ1, ψ2). Next, the prover P will need to show that ψ is well-formed;

this is easy as ψ1, ψ2 are Pedersen commitments, so it suffices to prove knowledge of r∗ and C in ψ1 and prove
knowledge of r∗0 and B0 in ψ2. We denote the Σ proof for the ψ commitment as comψ, c, resψ. These additional
proofs can be composed in parallel AND composition with the GSP protocol ΣGSP

τ and do not incur any additional
round complexity. After the verifier receives all values and accepts the proofs (except for the equation over the
safeguard group), it submits to the prover the values ρ1, . . . , ρu who in turn checks whether g` = gρ` . In this case,
the prover opens the commitments ψ1, ψ2, and now the verifier is able to complete the verification as described in
the Σext

τ protocol. We illustrate the transformation in figure 2.
Remark. This transformation generalizes and improves the setting of the Σ+ proof method introduced in [5]; it
obviates the need of random oracles (their soundness argument was in the random oracle model). We note that if
the number of rounds is at premium then it is possible to reduce them to 3 by giving up on other aspects of the
protocol in terms of security or efficiency. Specifically, one can either have the verifier demonstrate to the prover
that the safeguard group is properly selected in an “offline” stage (that will not be counting towards the rounds of
the actual protocol) or assuming the existence of an auxiliary input that is honestly distributed (an approach shown
in [4]).

We next prove our protocol secure for a type of “partly honest” verifiers that may operate maliciously in the
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safeguard group selection (i.e., the first move of the Σext+
τ protocol) but still select the challenge honestly (in the

third move of the protocol). We choose to do this for ease of presentation as there are standard techniques that
can be applied to port the protocol to the entirely malicious verifier setting (much like how an honest verifier
zero-knowledge protocol can be ported to the zero-knowledge setting).

Theorem 11 For any GSP-spec τ and any consistent input generator Π, the protocol Σext,+
τ is an (unconditionally

portable) zero-knowledge proof of knowledge over Π against partly honest verifiers for the same Lext
` , Rext

` param-
eters as Theorem 10, knowledge error κ = c(2−k + AdvDLOG + r · Advroot) for some c ∈ R and zero-knowledge
distance (r + 1)2−l.

Proof. It is easy to see that the Σext+
τ protoocol satisfies completeness: this stems from the completeness of the

underlying Σext
τ protocol and the fact that the AND-composition with the proof of knowledge of the Pedersen

commitment preserves completeness.
Next we consider soundness. We will follow a similar approach to the one in Theorem 10. The major hurdle is

to show that given two accepting conversations of the Σext+
τ protocol distributed according to the way the simulator

produces them using rewinding, we can derive two accepting conversations of the underlying Σext
τ+ protocol and

thus utilize the proof of Theorem 10.
Observe the following: the two accepting conversations can be parsed to obtain the values: 〈ψ1, ψ2, B1, . . . , Bz,

c, s0, s1, . . . , sr, ρ1, . . . , ρu, C,B0〉 and 〈ψ1, ψ2, B1, . . . , Bz, c
∗, s∗0, s

∗
1, . . . , s

∗
r , ρ1, . . . , ρu, C

∗, B∗0〉. Note that in
both cases it holds that the commitment was successfully opened by the malicious prover. From these two con-
versations we can derive the two accepting conversations for τ+ (that includes in the statement the commitment
C) as long as C = C∗ and B0 = B∗0 . Denote by NEG the event that B0 6= B∗0 or C 6= C∗ holds. If this is the
case it holds that the binding property of the underlying commitment is broken: it follows that in such case we
may turn the prover and the knowledge extractor into an algorithm that solves the discrete-logarithm problem over
the group Z∗P . This is so, as we can employ an instance of discrete-log problem as the parameters of the Pedersen
commitment scheme and subsequently use the fact that the commitment is opened in two different ways to solve
the discrete-logarithm problem.

Regarding the zero-knowledge property we prove the following: first, during the input generation stage V ∗in
may operate malicious. Then, we consider a partly honest verifier that operates in two distinct stages V ∗1 and V ∗2 .
The verifier first stage V ∗1 produces the distribution of the safeguard group as well as some auxiliary input for V ∗2 .
Then, V ∗2 operates as the honest verifier in the Σext+

τ : it receives the ψ, comψ, B1, . . . , Bz values, selects c and then
assuming that the auxiliary input by V ∗1 equals the discrete logarithms of g1, . . . , gu base g, it transmits these values
to the prover, otherwise it terminates failing. We show that we can simulate the view of such verifier without access
to the witness information possessed by the prover. In the proof we will utilize the honest verifier zero-knowledge
simulator that was described in Theorem 10. Nevertheless, we also have to simulate the commitments ψ1, ψ2

which is a delicate part of the zero-knowledge argument: indeed given that the safeguard group is selected by the
verifier, these values can leak information about the witnesses. Here we utilize the perfect hiding property of the
Pedersen commitment and the ψ1, ψ2 values are selected at random over Z∗P . Then we need to show that we can
simulate the value C. We note that the value C is revealed only when the discrete-logarithms ρ1, . . . , ρu have been
revealed by the verifier. This suggests that all g1, . . . , gu belong to 〈g〉. To finish the proof we need to show that for
any a ∈ 〈g〉, the random variable gr · a mod n is statistically indistinguishable from the uniform over 〈g〉. Recall
that the choice of the safeguard group is assumed to be adversarial. Moreover, the value M = bn/4c is claimed
to be an upper bound to the order m of g within Z∗n with the property (M −m)/M is a negligible function. Note
that if n is selected honestly it holds that m = p′q′ with n = (2p′ + 1)(2q′ + 1). Given that a ∈ 〈g〉 it holds
that a = gα and we have that gr · a = gr+α mod m. It remains to show that r + α mod m is indistinguishable
from the uniform distribution over Zm. From Lemma 6 we have that the distance is at most v/(2l+3M) where
v = 2lM mod m < m. Given that m ≤ n necessarily, the highest possible value for the statistical distance is
n/(2l+3M) ≤ 2−l−1. Based on this it follows that we can simulate C by simply selecting it at random from 〈g〉
which in turn can be simulated by selecting gr

′
with r′ ¢← [2l+3M ]. The remaining of the proof follows easily

from the proof of Theorem 10. ut
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7 Demonstrative Applications

Application #1. Our first application deals with the group-signature/identity-escrow protocol of Ateniese et al. [1]
whose main zero-knowledge protocol was recently shown by Cao to have a problem in a setting where the setup
of the system is not trusted (cf. [17] where this was presented as an attack against the group signature). Putting
the proof system of [1] into our framework highlights the exact circumstances that may permit an attack to be
mounted, as well as the conditions under which the attack is not relevant; it should be noted that the original paper
[1] anticipated issues of the kind of [17] (but without elaborating on them, see [2] for a rebutal of Cao’s attack).

In a group signature there are three basic entities: the user, the group manager GM, and the verifier. The
GM produces the values n, a, a0, g, h, y where a, a0, g, h, y ∈ Z∗n; note that Z∗n is selected in a way consistent
with a safeguard group (cf. Definition 4). Subsequently the user interacts with the GM to obtain values A, e, x
such that Ae = a0a

x(modn) where e ∈ Γ, x ∈ Λ and Γ,Λ are appropriately selected disjoint integral ranges.
Subsequently, the user selects T1 = Ayw, T2 = gw, T3 = gehw and issues a signature based on a proof protocol
w.r.t. T1, T2, T3. Viewing the protocol of [1] in our context, the user acts as a prover on a GSP-spec of the
following form:

PKspec
[
e, x, w,w0 : (T2 = gw in Z∗n) ∧ (T e2 = gw0 in Z∗n) ∧ (T e1 = a0a

xyw0 in Z∗n) ∧ (T3 = gehw in Z∗n)

∧ (e ∈ Γ) ∧ (x ∈ Λ) ∧ (w,w0 ∈ (−∞,+∞))
]

→
[
e, x, w,w0 : (T2 = ζ1g

w in Z∗n) ∧ (T e2 = ζ2g
w0 in Z∗n) ∧ (T e1 = ζ3a0a

xyw0 in Z∗n) ∧ (T3 = ζ4g
ehw in Z∗n)

∧ (e ∈ Γext) ∧ (x ∈ Λext) ∧ (w,w0 ∈ (−∞,+∞))
]

The ranges Γext,Λext are extended integral ranges based on Γ,Λ as defined in Theorem 10 and the ζi are elements
of small order. Note that the GSP-spec makes explicit the fact that the values T1, T2, T3 are not guaranteed to
be perfectly proper (e.g., as they may be multiplied by an element of small order such as −1 without the verifier
necessarily catching this).

In order to pair the above with the GSP protocol one should specify how the joint input to the proof n, a, a0, g, h, y
is generated with respect to the prover and verifier. Note that the GSP-spec contains unsafe variables (as all vari-
ables e, x, w,w0 are over a hidden order group). In order to obtain a suitable protocol we have to determine whether
the GSP-input is safe or not (and then apply the results of the previous section accordingly). We note that the proof
protocol presented in [1] is consistent with the protocol of Theorem 10 and thus their effective assumption is that
the conditions of Theorem 10 hold. The conditions are indeed true in the setting where the prover does not collab-
orate with the GM (i.e., the values n, g, h, a, y are selected appropriately: n defines a safeguard group and g, h, a, y
are safeguard bases, and ζi = ±1 as n is chosen to be a safe prime product) and we can thus use Theorem 10 to
argue the security of the signature protocol of [1]. The basis for the attack of Cao [17] is exactly the setting where
the prover is allowed to select the safeguard bases and is clear that this would be beyond what the setting of [1]
anticipates. As long as the prover does not collaborate with the GM the GSP-input is properly generated and the
protocol of [1] is a zero-knowledge proof. Note that this does not mean that the proof protocol P, V stemming
from theorem 10 ceases to be useful when the there is collaboration between the prover and the GM2.

The above discussion illustrates how our framework clarifies the exact security properties preserved in the [1].

Application #2. Chan et al. presented in [18] an off-line divisible e-cash scheme. There are three active parties
in an e-cash scheme: the user, the bank and the merchant. In [18], for parameters g1, g2 ∈ Z∗P where P ∈ Prime,
in two different stages of the system the user reveals to the bank the value I = gp1 and to the merchant the values

2In fact this is exactly what happens in a framing attack, [33]. In this setting we cannot take advantage of Theorem 10 (or similar types
of arguments) to infer that the proof protocol implies soundness; the protocol can be analyzed directly though as done in [33], and it was
shown that the above protocol remains a zero-knowledge proof of knowledge assuming a correct public-key generation.
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A = (Ig2)q, N = pq, and Y = gq2. For the security proof of [18] to go through the user should be restricted so that
logg1(I) · logg2(Y ) = N (over Z) (among other requirements, here we focus only on aspects of the paper related
to zero-knowledge proofs).

If one employs standard discrete logarithm zero-knowledge proofs, the difficulty is that the relation is only
ensured over ZQ (where Q is the order g1, g2). Note that the merchant can check that N < Q nevertheless for the
modular relation to imply the relation over the integers, it should hold that logg1(I) < T and logg2(Y ) < T where
T is an integer such that 2T < Q. In a nutshell in [18] the following GSP-spec needs to be implemented for some
properly selected integers T0, T1:

PKspec[ w : (I = gw1 in Z∗P ) ∧ (w ∈ [T0, T1])→ [w : (I = gw1 in Z∗P ) ∧ (w ∈ [T ′0, T
′
1])]

(this spec applies to the value I , a similar GSP-spec is required for Y ). Note that there is no need that the integral
ranges satisfy [T ′0, T

′
1] = [T0, T1]; the only requirements are that 0 < T ′0, 2T

′
1 < Q and the selection of prime

numbers p, q from the range [T0, T1] results in a hard to factor modulus n. Given the above setting, it is clear
that the variable w is unsafe in the given GSP-spec (cf. Definition 8). This fact went unnoticed originally in
[18] (the mistake was pointed out later in the full version of the paper and a possible sketch for a solution was
presented without a proof of security). Using our framework it follows easily that the security analysis of [18] can
be completed by applying the Σ+ transformation of the previous section.

8 Extensions

Let us conclude with a number of extensions that we will discuss here only briefly; we refer to future version of
this paper for more information.

In the description of the protocols derived from GSP-specs, the verifier chooses the challenge c from the set
{0, 1}k, where k is a security parameter. Now, there is a couple of modes in which the protocol can be executed
that influence the actual choice of k. For instance, if the protocol is run as described and the running time of the
knowledge extractor shall be polynomial in some security parameter k′, then k = Θ(k′) and the protocol needs
to be repeated O(k′) times if the soundness error should be negligible in k′. In fact, the situation is the same
as for the well-known Σ protocols [20], of which the Schnorr identification protocol is an example. That is, all
modes applicable to Σ-protocols are also applicable to our protocols. In particular, all the standard techniques
to transform a Σ-protocol, e.g., into one where k can be linear in the security parameter and allow for so-called
on-line knowledge extractors (e.g., [23, 26]).

Another extension of our GSP-spec syntax language is w.r.t. to the logical statements of operators. At present
our GSP-specs consider the combination of terms with the ∧ operator only. However, using known techniques [21,
42], different instances of our protocols can be combined in such a way that the prover can show that (only) one
of the instances holds while not revealing which one, i.e., one can combine the instances with the ∨ operator.
Basically, the current GSP-specs are considered atomic protocols which, e.g., using [21] can be connected by
∧-and ∨-connectives.

Our syntax specification already allows one to specify protocols that prove for instance that logg y = logh z
even in case g and h generate different groups (but have the same order), polynomial relations among secrets,
and negations, e.g., logg y 6= logh z. Indeed, there exist different possibilities of doing this which vary in their
efficiency. the basic idea here is to build (additional) bases Ai,j according to the polynomial equations that are
going to be proved. In the current specification it is necessary to formulate these protocols explicitly, e.g., using
the known mechanisms provided in [16, 15, 8]).

We note that for proving that a (safeguarded) secret logg y lies in some interval, say [L,R], there are also
various ways one can do this. In this paper we employ a “natural” way which does not incur any additional
computations for the verifier or the prover. The drawback of this approach is that it is not tight: the proof only
guarantees that logg y lies in a somewhat larger interval, i.e., [Lext, Rext]. While this is sufficient in many settings,
our GSP-specs allow for the specification of protocols that achieve tight interval proofs. One often employed
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method was proposed by Boudot in his conference talk [7] and described by Lipmaa [36]: The idea here is to
reduce such a proof to polynomial equations (i.e., to a proof that logg y − L and R − logg y are both the sum
of four squares and therefore positive). For unsafe variables, Camenisch, Chaabouni, and Shelat [13] propose to
have the verifier (or some trusted) parties to publish signatures on all values in the interval and then the prover to
show that she possesses a signature on her secret — hence it must lie in the interval. An alternative interval proof
method is to commit to all the bits of the secret and then 1) prove that the commitments are indeed bits and 2) they
are the bits of the secret (but of course this technique incurs a linear length expansion in the length of the proof).
Schoenmakers [45] generalizes this method from binary digits to u-ary digits that are committed to by the prover.
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Problem. PhD thesis, ETH Zürich, 1998. Diss. ETH No. 12520, Hartung Gorre Verlag, Konstanz.

[17] Zhengjun Cao. Analysis of one popular group signature scheme. In Xuejia Lai and Kefei Chen, editors,
Advances in Cryptology - ASIACRYPT 2006, 12th International Conference on the Theory and Application
of Cryptology and Information Security, Shanghai, China, December 3-7, 2006, Proceedings, volume 4284
of Lecture Notes in Computer Science, pages 460–466. Springer, 2006.

[18] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy go divisible cash. In Kaisa Nyberg,
editor, Advances in Cryptology - EUROCRYPT ’98, International Conference on the Theory and Application
of Cryptographic Techniques, Espoo, Finland, May 31 - June 4, 1998, volume 1403 of Lecture Notes in
Computer Science, pages 561–575. Springer, 1998.

[19] Agnes Hui Chan, Yair Frankel, and Yiannis Tsiounis. Easy come - easy go divisible cash. GTE Technical
Report, http://www.ccs.neu.edu/home/yiannis/pubs.html, 1998.

[20] Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocol. PhD thesis, University of
Amsterdam, 1997.
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[29] Matthieu Gaud and Jacques Traoré. On the anonymity of fair offline e-cash systems. In Rebecca N. Wright,
editor, Financial Cryptography, volume 2742 of Lecture Notes in Computer Science, pages 34–50. Springer,
2003.

[30] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In STOC ’87: Proceedings of
the nineteenth annual ACM conference on Theory of computing, pages 218–229, New York, NY, USA, 1987.
ACM Press.

[31] Oded Goldreich. The Foundations of Cryptography, Vol. 2. Cambridge University Press, 1999.

[32] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof systems. SIAM
Journal on Computing, 18(1):186–208, February 1989.

[33] Aggelos Kiayias and Moti Yung. Secure scalable group signature with dynamic joins and separable authori-
ties. International Journal of Security and Networks (IJSN), 1(1/2):24–45, 2006.
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A Some Auxiliary Lemmas

Lemma 12 Let n be a composite modulus n = pq with gcd(p−1, q−1) = 2. Suppose b ∈ Z∗n and b2 6= 1( mod n)
but bc = 1(modn) where c ∈ Z − {±1, 0}. Then, given the factorization of c, it is possible to factor n in
polynomial-time.

Proof. Since we are given the factorization of c we can find a prime number s 6= 2 such that (bc/s)s = 1; this is
because if no such number exists it follows that s = 2l i.e., b2

l ≡n 1 from which we obtain that b2 ≡n 1 something
that contradicts the theorem’s hypothesis. Now given s, we set b̃ = b∆c/s. By assumption gcd(p − 1, q − 1) = 2
which implies that s cannot divide both p− 1 and q − 1, i.e., it divides one of the two, say w.l.o.g. s | p− 1. Now
b = b̃s ≡p 1; on the other hand it cannot be that b = b̃s ≡q 1 (as in this case b = 1, contradicting that b2 6= 1). It
follows that b− 1 has a non-trivial common divisor with n and the factorization of n follows. ut

Lemma 13 Let X × Y be two finite sets respectively and A ⊆ X × Y of size at least α ·#X ·#Y where α ∈ R.
We call elements of the set A “good.” On the other hand, “interesting” (with parameter u ∈ (0, α) ) are elements
of the following set

B =
{
〈x, y〉 | 〈x, y〉 ∈ A ∧#{y′ ∈ Y | 〈x, y′〉 ∈ A} > u ·#Y }

}
It holds that #B ≥ α−u

1−u ·#X ·#Y .
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Proof. Observe that interesting elements have the property that if 〈x, y〉 ∈ B then also 〈x, y∗〉 ∈ B for any other
y∗ ∈ Y . It follows that the size of B is a multiple of #Y . Let BX = {x ∈ X | ∃y : 〈x, y〉 ∈ B}; it follows that
#B = #BX ·#Y . Next we want to estimate a lower bound on the number of interesting elements. Observe that
any upper bound b on the size of B will enforce an upper bound on the size of A as follows : Suppose #B ≤ b
from which we obtain that #BX ≤ b/#Y . Each element of #BX may contribute many elements to A but no
more than #Y of course. On the other hand each element of X −BX can contribute at most u ·#Y elements into
A. It follows that

#A ≤ #BX ·#Y + (#X −#BX) · u ·#Y = #BX(1− u)#Y + u ·#X ·#Y ≤ b(1− u) + u#X ·#Y

=⇒ #A
#X ·#Y ≤ (1− u)

b

#X ·#Y + u =⇒ b

#X ·#Y ≥
α− u
1− u

This completes the proof. ut

Lemma 14 Let X × Y be two finite sets respectively and A ⊆ X × Y of size at least α ·#X ·#Y . As before, we
call elements of the set A “good.” On the other hand, “super-good” (with parameter u ∈ (0, α) ) are elements of
the following set

B∗ =
{
〈x, y〉 | 〈x, y〉 ∈ A ∧#{y′ ∈ Y | 〈x, y′〉 ∈ A} > u ·#Y }

}
It holds that #B∗ ≥ (α− u) ·#X ·#Y .

Proof. Let #B∗ ≤ b. Observe the following regarding the set A − B∗: for each different x that appears in a
pair of A − B∗ there can be at most u · #Y different pairs in A that share the same x. From this we have that
#A = #B∗ + #(A−B∗) ≤ b+ #X · (u ·#Y ). Finally, we obtain that,

#A ≤ b+ u(#X ·#Y ) =⇒ b

#X ·#Y ≥ α− u
This completes the proof. ut

Lemma 15 Suppose that X = {0, 1}l0 and Y = {0, 1}k × {0, 1}l1 . Consider any subset A ⊆ X × Y with
Prob[A] ≥ α and consider the experiment: select 〈ρ0, c, ρ1〉 at random from X × Y and then select 〈c′, ρ′1〉 at
random from Y . The experiment space is X × Y × Y . Define the event A∗ as 〈ρ0, c, ρ1〉 ∈ A and 〈ρ0, c

′, ρ′1〉 ∈ A
and let F be some event over X×Y ×Y such that Prob[¬F | 〈ρ0, c, ρ1〉] ≤ f always. It holds that Prob[A∗] ≥
α
2 · (α2 − f).

Proof. Consider A as the good elements of X × Y and B∗ as the super-good elements following the terminology
of Lemma 14. We have the following:

Prob[A∗] ≥ Prob[〈ρ0, c, ρ1〉 ∈ B∗ ∧ 〈ρ0, c
′, ρ′1〉 ∈ A ∧ F ] =

= Prob[〈ρ0, c, ρ1〉 ∈ B∗] ·Prob[〈ρ0, c
′, ρ′1〉 ∈ A ∧ F | 〈ρ0, c, ρ1〉 ∈ B∗] ≥

≥ α

2
·Prob[〈ρ0, c

′, ρ′1〉 ∈ A | 〈ρ0, c, ρ1〉 ∈ B∗] ·Prob[F | 〈ρ0, c
′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗]

≥ α2

4
·Prob[F | 〈ρ0, c

′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗]
Now recall that Prob[〈ρ0, c

′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗] ≥ α2/4,

Prob[¬F | 〈ρ0, c
′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗] =

Prob[¬F ∧ 〈ρ0, c
′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗]

Prob[〈ρ0, c′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗]

≤
α
2 · f
α2/4

=⇒ Prob[F | 〈ρ0, c
′, ρ′1〉 ∈ A ∧ 〈ρ0, c, ρ1〉 ∈ B∗] ≥ 1− f

α/2
From this we obtain that Prob[A∗] ≥ α

2 (α2 − f). ut
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