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Abstract

We use interactive hashing to achieve the most efficient OT protocol to date based solely
on the assumption that trapdoor permutations (TDP) exist. Our protocol can be seen as
the following (simple) modification of either of the two famous OT constructions: 1) In the
one by Even et al (1985), a receiver must send a random domain element to a sender through
IH; 2) In the one by Ostrovsky et al (1993), the players should use TDP instead of one-way
permutation. A similar approach is employed to achieve oblivious transfer based on the
security of the McEliece cryptosystem. In this second protocol, the receiver inputs a public
key into IH, while privately keeping the corresponding secret key. Two different versions
of IH are used: the computationally secure one in the first protocol, and the information-
theoretically secure one in the second.
Keywords: Oblivious transfer, interactive hashing, trapdoor permutation, McEliece cryp-
tosystem

1 Introduction

Oblivious Transfer. It is one of the central cryptographic primitives, since it implies secure
two- (and multi-)party computation [11]. Oblivious transfer (OT) was initially proposed in
several flavors [29, 26, 8] which all turned out to be equivalent [4]. We will focus on the
one-out-of-two (1-2) OT [8] which is a two-party primitive, where a honest sender inputs
two bits b0 and b1 and a honest receiver chooses to obtain one of them, the chosen bit bc, by
inputting his choice bit c. The cheating sender must remain ignorant of c, while the cheating
receiver – unable to learn both bits.

Several frameworks for constructing computationally secure1 OT are known, in partic-
ular, using: generic assumptions [8, 12], smooth projective hashing [17], lossy trapdoor
functions [25], dual-mode cryptosystems [24]. Each of them enjoys different advantages,
such as generality of underlying assumptions, efficiency, advanced security properties (e.g.
composability).
Interactive Hashing. This primitive has first appeared as a sub-routine in the oblivi-
ous transfer protocol with computationally unbounded party [23]. Later, interactive hash-
ing (IH) has proven to have many other applications in cryptography, for instance, in
bit commitment, zero-knowledge, and unconditional oblivious transfer protocol design (see
e.g. [27, Sec. 2.1] for a survey). IH is a two-party primitive, where a honest sender inputs
a string w ∈ {0, 1}n, and both it and a honest receiver obtain on the output (w, w′), where
w′ ∈R {0, 1}n\w. The hiding property requires that the cheating receiver cannot tell which of
(w, w′) was the input. According to the binding property, at least one of (w, w′) is effectively
beyond the control of the cheating sender. IH comes in two versions: with computational
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1That is OT based on computational assumptions, where at least one player is computationally bounded.

1



binding (initiated by [23]), we call it C-IH, and information-theoretic binding (initiated by
[2]), we call it IT-IH. Hiding is information-theoretic in both flavors.
Related Work. In fact, C-IH has already been used for implementing OT from one-way
permutations (OWP) and one-way functions (OWF) [23], but in that work, one of the honest
players had to invert OWP/OWF (i.e. to be computationally strong). In contrast, our work
admits honest players which are bounded to probabilistic polynomial time (PPT) – for the
price of strengthening the assumption to TDP.

OT from TDP is considered in a line of works [8, 12], where the protocols are designed to
be secure against passively cheating players. Protection against active attackers is achieved
using secure compilers [11, 13]. Our TDP-based protocol can be considered complementary
to [13], where a more general case of “sparse” domain encodings is considered. Our construc-
tion shows that in a particular case, when the TDP’s domain can be succinctly represented
by binary strings (i.e. all the encodings are valid),2 C-IH can substitute a secure compiler.

OT from coding based assumptions was recently constructed in [6]. This scheme is more
efficient than our coding based protocol, whose bottleneck is the (round- and communication-
)efficiency of a currently available IT-IH protocol (see Appendix A). Moreover, they do not
use any non-standard assumptions, compared to our case. On the other hand, our scheme
does not employ commitments as they do. Furthermore, up to date, there is no lower bound
on efficiency of IT-IH (in contrast to C-IH), hence any improvements to this end may apply
to our scheme as well.

A construction in the spirit of our coding based scheme (Protocol 2) has been indepen-
dently discovered by Claude Crépeau and Jörn Müller Quade [20].
Our contribution. We present a novel connection between the primitives of oblivious
transfer and interactive hashing by constructing two (quite simple) protocols using the two
versions of IH and, correspondingly, two types of computational assumptions.

Our first protocol can be considered as the following (simple) modification of either of the
two famous OT constructions: 1) In [8], a receiver must send a random domain element to a
sender using C-IH; 2) In [23], the players should use TDP instead of one-way permutation.
Our protocol requires one instance of C-IH plus one additional pass. Hereby, we achieve
the round-optimal OT protocol with information-theoretic receiver-security based on TDP
in blackbox manner. Its round complexity matches the linear lower bound presented in [15]
(see also [14, Sec. 7.3]).

The second protocol extends our approach by constructing OT (with computational
security for both players) using the coding based assumptions underlying security of the
McEliece public key cryptosystem (PKC) [19]. This protocol requires one instance of IT-IH
plus one additional pass. Here, a receiver sends a public key to a sender using IT-IH, while
privately keeping the corresponding secret key. In order to simplify the proof of sender-
security, we take a non-standard coding assumption: loosely speaking, we suppose that
there are quite a few codes which (similarly to the irreducible Goppa codes) can work as
public keys for the McEliece-type encryption.

Our constructions manifest importance of the IH primitive in the following sense: if IH
is available as a blackbox, then under appropriate assumptions, OT can be achieved using
only two passes. In some sense, IH works as a “security compiler” denying certain malicious
player’s behavior.
Organization. Section 2 contains a description of basic notation and tools. The TDP-
based protocol using C-IH is presented in Sec. 3, while the coding based protocol using
IT-IH is presented in Sec. 4. Sec. 5 discusses possible extensions and open questions.

2 Preliminaries

Basic Notation. Summation is bitwise exclusive-or. By weight, we refer to the Hamming
weight. I is the unit matrix. “[M0|M1]” denotes a concatenation of matrices M0, M1 of

2Note that this assumption is implicitly present in [23, 21].
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appropriate size.
An element x uniformly distributed in the domain X is denoted by “x ∈R X”. By writing

that x is negligible in n, we mean that x is decreasing faster than any polynomial fraction
in a security parameter n. Whenever mentioning of the security parameter is omitted, we
implicitly refer to n (whatever it denotes in the given context). When the statement is
claimed to hold on the average, it holds for all but a negligible fraction of instances. We call
an algorithm efficient, if it is PPT. Computational indistinguishability is denoted by “ c=”.

A view of a player participating in an interactive protocol represents the player’s inputs,
results of all local computations and local coin tosses, and messages exchanged. The view
of a player A having input x and interacting with a player B having input y is denoted by
V iewA(A(x), B(y)).

Speaking of information-theoretic (or unconditional) security, we refer to protection
against computationally unbounded adversary. In this case, a security failure probability,
negligibly small in some security parameter, is admitted.
Adversary Model. We consider the static adversary, i.e. either a sender or a receiver gets
corrupt prior to the protocol execution. A player is called honest, if it strictly follows the
protocol. A passive attacker follows the protocol, but may use his view. Finally, an active
attacker, in addition to the above, may deviate from the protocol arbitrarily.
Linear codes. A binary linear (n, k) code of length n and dimension k is a k-dimensional
linear subspace of {0, 1}n. In particular, it can be represented by a rank-k generating matrix
G ∈ {0, 1}k×n (i.e. its rows are linearly independent). Any such G can be equivalently (up to
a column permutation) represented in the standard form: [Ik|A] for some A ∈ {0, 1}k×n−k.
Let us call A the standard part of such G. Throughout this paper, we consider representation
of (n, k) linear codes by their standard parts, denoting the set of all possible matrices A by
C.

For further information on linear codes, we refer the reader to [18].

2.1 Generic Cryptographic Functions

The following definition has been adapted from [9, Def. 2.4.4].

Definition 1. A collection of functions {fi : {0, 1}n → {0, 1}n}i∈I is called a collection
of trapdoor permutations (TDP) if there exist four efficient algorithms Ind, Dom, Func,
Func−1, such that the following three conditions hold:

1. Easy to sample and compute: The output distribution of algorithm Ind on input 1N is
a random variable assigned values in the set (I × T ) ∩ ({0, 1}N × {0, 1}N ); I is called
a set of indices and T a set of trapdoors. The output distribution of algorithm Dom
on input i ∈ I is a random variable assigned values in {0, 1}n. On input i ∈ I and
x ∈ {0, 1}n, algorithm Func always outputs fi(x).

2. Hard to invert: There exists no efficient algorithm which on input (IN , fIN
(XN ))

returns f−1
IN

(fIN
(XN )), except with probability negligible in N , where IN is a random

variable describing the distribution of the first element in the output of Ind on input
1N , and XN is a random variable describing the output of algorithm Dom on input
(random variable) IN .

3. Easy to invert with trapdoor: There exists a deterministic efficient algorithm Func−1,
such that for every (i, t) in the range of Ind and for every x ∈ {0, 1}n, it holds that
Func−1(t, fi(x)) = x.

A collection of oneway permutations (OWP) is defined analogously to the above, except
that no trapdoor is specified (i.e. the algorithm Ind outputs only I) and no easy inversion
is required (i.e. the third property is absent).

A collection of trapdoor functions (TDF) is defined analogously to Def. 1, except that the
set of functions is {fi : {0, 1}n → {0, 1}∗}i∈I . In other words, the range may not coincide
with the domain.

The following encryption function is a TDF candidate.
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2.2 McEliece Public Key Cryptosystem

Technically speaking, we assume more than just a secure McEliece encryption. Instead, we
take two assumptions which together imply its security [28] (while the opposite implication
is not known to hold).

For the sake of completeness, let us briefly describe this PKC [19]. Define the space of

public keys PK
def
= SGP , where S ∈R {0, 1}k×k non-singular; G ∈ {0, 1}k×n a generating

matrix of an irreducible Goppa code correcting t errors, k ≥ n − t · log2 n; P ∈ {0, 1}n×n

random permutation matrix. The secret key is the decoding algorithm of the code G (loosely
speaking, the knowledge of (S, G, P ) is enough). Note that each pk ∈ PK represents a linear
(n, k) code.

Encryption of a message m ∈ {0, 1}k proceeds by choosing a random weight-t vector
e ∈ {0, 1}n and computing the ciphertext s = m(SGP ) + e. Decryption proceeds by first
applying P−1 to s and then decoding according to G.

The problems underlying the following two assumptions are discussed in details in [28,
Sec. 6], so we limit our presentation to a brief sketch. Let us denote by Goppa-IND the
problem of distinguishing a randomly sampled McEliece public key from a random linear
code (with the same parameters). The security parameter is n, the code length.

Assumption 1. Goppa-IND is hard on the average.

Goppa-IND is not known to reduce to any hard problem.
Let Goppa Bounded Decoding (GBD) be the problem of syndrome decoding with the

following promise: the number of errors is guaranteed to be up to t, as in the definition of
the Goppa code.

Assumption 2. GBD is hard on the average.

In other words, without knowing a structure of the code (as the previous assumption
suggests), it is hard to decode errors in the corresponding codeword (and hence, to invert
the McEliece encryption). The underlying problem is not known to be NP-complete, but it
is related to the Bounded Distance Decoding problem conjectured to be NP-hard, and, in
turn, the later is connected to NP-complete Syndrome Decoding problem.

Remark 1. Assumption 1 implies that one can perform the McEliece encryption on [Ik|M ],
M ∈R C without noticing (except with negligible probability) that the encryption key does not
belong to PK. Indeed, otherwise a (trivial) distinguisher for the McEliece public keys could
use the encryption algorithm.

Note that the aforementioned cryptographic function is hard-to-invert by Assumption 2.

For our proofs, we need an additional ad-hoc assumption. We call a subset of (n, k) linear
codes (denoted by Ct) trapdoor Goppa-Bound decodable (trapdoor-GBD), if the following
holds on the average for all the codes in this subset:

• GBD problem is hard given a particular representation of the code.

• GBD problem is easy given the code’s representation and some auxiliary input of size
polynomial in the security parameter n.

In the above definition, we intend to cover all linear codes with the properties similar to
that of the irreducible Goppa codes.3

Assumption 3. |Ct|/|C| is negligible in the security parameter n.

Let us now provide two evidences in support of this assumption. First, it is easy to
check given the bound on the number of the McEliece public keys [28, Sec. 2.2.2] that the
following claim is true.

Claim 1. |PK|/|C| is negligible in n.

3Indeed, it is hard to decode its permuted version (and hence to invert the McEliece encryption) just knowing
the public key. While the secret key (the trapdoor) allows such the decoding.
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Moreover, to our best knowledge, any family of good codes (known so far) represents a
negligibly small (in n) fraction of C.

Secondly, any substantially large (i.e. of size at least superpolynomial in n) family in
the subset Ct is a potential candidate to be used in a coding based PKC. Search for such
the candidates has not been very successful so far [7, Sec. 1.1].

2.3 Interactive hashing

IH is a two-party cryptographic primitive. It takes as input a string w ∈ {0, 1}n from a
sender S, and produces as output two n-bit strings, one of which is w and the other w′ 6= w
(let us call w and w′ the first and the second output, respectively). The output strings are
available to both S and a receiver R, such that, loosely speaking, a dishonest sender S̃ cannot
control both of them, while a dishonest receiver R̃ cannot tell which one was the input.

The (dis)honest sender/receiver in a two-party protocol will be denoted henceforth in
this paper as above.

For the following definitions, we borrow notation from [16, Sec. 3.1]. Let H : {0, 1}n →
{0, 1}n−1 be a family of two-to-one Boolean hash functions and g : {0, 1}n → {0, 1}n be an
OWP. Both players receive the security parameter 1n as an input and S gets as a private
input y ∈ {0, 1}n. At the end, S locally outputs y and, in addition, both S and R output
(h, z) ∈ H × {0, 1}n−1.

Definition 2 (Adapted from [27], Def. 2.1). Information-theoretic interactive hashing sat-
isfies the following three properties.

1. Correctness: For all n, all y ∈ {0, 1}n, and every pair (y, (h, z)) that may be output by
(S(1n, y), R(1n)), it is the case that h(y) = z.

2. Hiding: There exists a polynomial-time simulator Sim such that for every y ∈ {0, 1}n
and h ∈ H the distributions V iewR(S(y), R)(1n) and Sim(1n, h, h(y)) are identical.

3. Binding: Let T ⊂ {0, 1}n. No S̃ succeeds in the following game with probability more
than O(|T |/2n). On security parameter 1n, S̃ interacts with R and R outputs pairs
(y0, y1) such that y0, y1 ∈ T and h(y0) = h(y1) = z.

The following definition (focusing on a particular scenario of [21]) for the computational
flavor of IH is adapted from [16, Sec. 3.1].

Definition 3. Computational interactive hashing satisfies the following three properties.

1. Correctness: Identical to that of Def. 2.

2. Hiding: Identical to that of Def. 2.

3. Binding: No PPT S̃ succeeds in the following game with more than negligible probabil-
ity. On security parameter 1n, S̃ interacts with R and R outputs pairs (x0, y0), (x1, y1)
such that y0 = g(x0), y1 = g(x1) and h(y0) = h(y1) = z.

In our work, we abstract the implementation details as much as possible and use IH
as a blackbox. Any IH protocol which satisfies one of the above definitions fits one of our
constructions.

Concrete protocols realizing C-IH and IT-IH can be found, e.g., in [21, Section 3.1]
(appears as a part of the committing stage) and [27, Protocol 2.1], respectively. These
protocols are very similar, the main difference between them is in construction of receiver’s
queries (refer to Appendix A for description and some details). The main disadvantage of
these protocols is their round and communication complexity: for n-bit input, they require
n− 1 rounds and O(n2) bits of communication.4

4There exists a constant-round (information-theoretic) IH protocol [5, Sec. 5] with roughly the same commu-
nication cost. However, its security requirements are somewhat stricter compared to ours, so that we cannot use
it in our schemes. On the bright side, this result shows us that improvements for IT-IH are possible in principle.
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2.4 Oblivious transfer

We focus on 1-out-of-2 bit oblivious transfer [8]: The honest sender S transmits two input
bits b0, b1 such that one of them bc is obtained by the honest receiver R according to his
input - the choice bit c. The dishonest sender S̃ cannot learn c, while the dishonest receiver
R̃ cannot learn both b0 and b1.

In our schemes, c is chosen independently of an honest receiver, in the course of the
protocol execution. Thus, in order to achieve 1-2 OT, the players must take the following
two-step procedure. First, they execute one instance of our protocol with uniformly random
inputs, which results in “pre-computing” oblivious transfer. Second, they transform this
“pre-computed” OT into the 1-2 OT (where they actually choose their inputs) using the
(very efficient) reduction of [1, Sec. 3.2].5 Therefore, in the security argument for our
protocols, we will disregard attacks, where R̃ tries to bias the choice of c. Indeed, the honest
receiver will achieve the same using the aforementioned reduction.

Our protocols involve the sender transmitting two encryptions of his corresponding in-
puts. One standard sender’s attack is to render one of the encryptions invalid, hoping that R
encounters a decrypting error, complains and hereby reveals his choice. Clearly, this attack
is fruitless in our scenario, where the choice bit is random.

Definition 4 (Adapted from [6], Def. 1). A protocol [S, R](b0, b1) is said to securely im-
plement randomized oblivious transfer, if at the end of its execution by the sender S and
the receiver R which are represented by PPT algorithms having as their input a security
parameter N , such that the following properties hold:

• Correctness: when the players honestly follow the protocol, R outputs (c, bc) for c ∈R

{0, 1} while S has no output.

• Sender-security: For every PPT adversary R̃, every input z, a (sufficiently long) ran-
dom tape RS, there exists a choice bit c such that for bc ∈ {0, 1} the distribution (taken
over S’s randomness) of runs of R̃(z) using randomness RS with S having input bc

and b1−c = 0 is computationally indistinguishable from the distribution of runs with S
having input bc and b1−c = 1.

• Receiver-security: For any PPT adversary S̃, any security parameter n and any in-
put z of size polynomial in N , the view that S̃(z) obtains when c = 0 is computa-
tionally indistinguishable from that of when c = 1, denoted: {V iewS̃(S̃(z), R)}z

c=
{V iewS̃(S̃(z), R)}z.

2.5 Hardcore Bit Encryption

Let x and r be bit vectors of appropriate length and denote the scalar product by “·”. It
follows from [10] that for any TDF f , the product x · r is a hardcore bit, i.e. it cannot be
guessed substantially better than at random, given (f, f(x), r).

Then, the hardcore bit encryption of a plaintext bit b given a trapdoor function f proceeds
by generating (x, r) at random and computing a ciphertext as the triple (b + (x · r), f(x), r),
where “+” is an exclusive-or. Decryption is performed in a straight forward way, inverting
f using its trapdoor. Clearly, without the trapdoor, b is as hard to guess as the hardcore
bit of f .

Note that TDP, as a particular case of TDF, fits this construction as well.

3 Efficiently Reducing OT to Trapdoor Permutations

Let us assume a secure (according to Def. 3) implementation of C-IH (in this section, we
refer to it as “IH” for short) to be available as a blackbox. Let {fi : {0, 1}n → {0, 1}n}i∈I

5Due to space limitations, we omit further explanation. The reader may consult [6, Sec. 4.2] for detailed
description.
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be a TDP collection according to Def. 1. Let us define by fh
i (x, b) a hardcore bit encryption

(as described in the previous section) of a bit b using a permutation fi as trapdoor function
and some x ∈ {0, 1}n.

S has inputs b0, b1 ∈R {0, 1}, R has no input.

Protocol 1.

1. S generates i ∈R I and the corresponding trapdoor t, then sends i to R.

2. R generates x ∈R {0, 1}n, computes y = fi(x), then inputs y to IH, such that both S
and R obtain (y0, y1) as output.
The outputs are assigned to yj according to lexicographic order.

3. a) For j = 0, 1 : S uses t to compute xj = f−1
i (yj) and sends fh

i (xj , bj) to R.
b) R computes c = {j|yj = y}, decrypts bc and outputs (c, bc).

Proposition 1. Protocol 1 is a secure implementation of 1-2 OT according to Definition 4
with information-theoretic receiver-security, assuming that trapdoor permutations exist.

sketch. Correctness. When both players are honest, one of the outputs of IH is indeed R’s
input y by the IH-correctness property. Then in Step 3, R correctly identifies yc, computes
c and successfully decrypts the corresponding S’s input bc.
Sender-security. Due to the use of hardcore bit encryption, R̃ must invert fi on both y0

and y1, in order to learn both b0 and b1. However, the binding property of Def. 3 denies it
under assumption that TDP exist.
Receiver-security. Computationally unbounded S̃ must tell y among (y0, y1) to success-
fully learn c. However, fi is a permutation and hence, if x is uniformly distributed in
{0, 1}n, then so is fi(x) = y. Now, the hiding property of Definition 3 denies S̃’s successful
attack.

3.1 Extension to Trapdoor Functions

A natural question is whether in the above protocol, one can substitute TDP with trapdoor
functions. An immediate problem here is that their range does not coincide with their
domain. Hence, encryption of a uniformly sampled domain element does not produce a
uniform range element. Moreover, when the range is larger than the domain (which is
typical for TDF candidates), IH may produce a (recognizable) invalid encryption on the
output, hence revealing R’s choice.

Next, we very informally describe an approach which may allow us to build OT using
TDF with some special properties. Let {fi : {0, 1}n → {0, 1}∗}i∈I be a collection of TDF.
Let R choose i ∈R I and input it into IH such that both S and R obtain (i0, i1). Now, S
encrypts his inputs b0 and b1 using hardcore bit encryption with fi0 and fi1 , respectively
(the corresponding x will be generated by S at random). Note that as long as I can be
succinctly represented by binary strings (i.e. for some integer l, there exists a one-to-one
correspondence between I and {0, 1}l), information-theoretic receiver-security would hold
similarly to Protocol 1. Unfortunately, the sender-security proof of Protocol 1 does not
apply directly, and we could not construct a convincing argument to replace it.6

Taking a way around this problem, we introduce the following OT protocol which is
based on the assumptions underlying the McEliece cryptosystem (a TDF candidate) and
information-theoretic version of IH.

6On the other hand, it is quite intuitive that inversion of some function from the TDF collection must be
hard, if adversary has little control over the choice of this function. “Little control” is in the sense of interactively
hashing the function’s index.
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4 OT from the McEliece Assumptions

In this section, we restrict our consideration to the range of (n, k), which is relevant to the
secure McEliece PKC with parameters (n, t) as described in Sec. 2.2.

Let us assume a secure (according to Def. 2) implementation of IT-IH (in this section,
we call it “IH” for short) to be available as a blackbox. When a binary matrix is input into
IH, it is represented as a bit string by concatenating the rows.

Denote the standard part of a generating k× n matrix M by St(M) ∈ {0, 1}k×n−k. Let
Encpk(b) be a hardcore bit encryption (according to Sec. 2.5) of a bit b where trapdoor
function is the McEliece encryption having a public key pk ∈ PK. The string x is generated
uniformly at random by the encrypting player, its mentioning is omitted for the sake of
notation simplicity.

The sender S has inputs b0, b1 ∈R {0, 1}, the receiver R has no input.

Protocol 2.

1. a) R generates a random pk ∈ PK, computes St(pk) and inputs the latter into IH, then
both S and R obtain outputs which are assigned to (w0, w1) according to lexicographic
order.
b) For i = 0, 1: Both players parse wi as an element of {0, 1}k×n−k and compute
Ki = [Ik|wi].

2. For i = 0, 1: S sends EncKi
(bi) to R.

R computes c = {i|Ki = pk}, decrypts bc and outputs (c, bc).

Remark 2. We believe, but do not prove formally, that the Niederreiter PKC [22] can be
used in the above protocol in a similar manner.

Proposition 2. Protocol 2 is a secure implementation of 1-2 OT according to Definition 4
under Assumptions 1-3.

sketch. Correctness. When both players are honest, one of the outputs of IH is indeed
(an equivalent representation of) pk by the correctness property of Def. 2. Then in Step 2,
R (knowing both K0 and K1) correctly identifies Kc, computes c and successfully decrypts
bc.

For the following discussion, it is worth noting that the set of linear code representations
(by standard parts) C is exactly {0, 1}k×n−k, hence the input to IH is of length k(n − k)
bits. Therefore for this section, the parameter n in Def. 2 must be replaced with k(n− k).
Sender-security. Due to the use of hardcore bit encryption, R̃ succeeds in learning some-
thing about both b0 and b1 (in the computational sense), only if it can invert encryption on
both K0 and K1. Hence, it is sufficient to show that R̃ is unable to steer both K0 and K1 into
a “bad” subset (denote it by Cb) of codes which are efficiently Goppa-bounded decodable.
By the binding property of Def. 2, R̃ has negligible probability of success as long as |Cb|/|C|
is negligible in n.

Let us observe that Cb consists of two non-intersecting subsets: 1) All codes which are
efficiently GBD-decodable given only their description (denote them by Ce) and 2) Trapdoor-
GBD codes Ct (as defined in Sec. 2.2). We argue next that either subset’s size is a negligible
(in n) fraction of |C|.

Lemma 1. Under Assumption 2, |Ce|/|C| is negligible in n.

sketch. The opposite suggests that with non-negligible probability, the standard part of a
(n, k) code, which is chosen uniformly at random, is in Ce. In other words, such the code is
efficiently decodable, a contradiction.

As for Ct, it’s fraction is negligible by Assumption 3.

Remark 3. Here, it is in order to clarify why the constant-round IH of [5] cannot be directly
used in our protocol. Their security proof requires a priori knowledge of the upper bound on
the “bad” subset size. Such an upper bound seems to be hard to obtain for linear codes.
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Receiver-security. The only way for S̃ to distinguish his views for different value of c (with
non-negligible bias) is to tell the McEliece public key among (K0, K1). In the following, we
show this attack to be impossible.

First of all, note that a passive S̃ cannot succeed in distinguishing K0 and K1. This is be-
cause the McEliece public key Ki (for some i ∈ {0, 1}) is indistinguishable by Assumption 1,
while K1−i will be uniform in C \Ki by the correctness property of Def. 2.

Thus, the IH protocol execution must complete with S̃ steering the second input into
some efficiently recognizable subset ER ⊂ C. Note that ER substantially (for more than a
negligible fraction) intersecting with PK contradicts to Assumption 1.

Let us show, for two possible cases, that existence of such EC contradicts to our as-
sumptions.

Case 1: |ER|/|C| is non-negligible in n. It contradicts to Assumption 1, since a uniformly
chosen linear code has a non-negligible probability to hit EC \ PK. At the same, it has
a negligible probability to hit the public key (see Claim 1). This implies distinguishing of
public keys from random codes.

Case 2: |ER|/|C| is negligible in n. This implies that there must necessarily exist an
efficient algorithm Alg which, by playing for a receiver in IH, can steer the second output
to EC (with non-negligible probability), whenever the input is in PK. Let us construct a
distinguisher D which given two matrices (Mi ∈R PK, Mi−1 ∈R C) for some i ∈R {0, 1} will
output i (with non-negligible probability). D runs two copies of the IH protocol, having Alg
to play for a receiver in both and simulating an honest sender who, respectively, inputs Mj

in the j-th copy, for some j ∈ {0, 1}. We emphasize that D keeps Alg completely ignorant
of what is input into either IH instance. D outputs i for the i-th copy of IH, such that
on input Mi, at least one of the IH outputs is in EC. Let us briefly argue correctness of
D. For Mi ∈R PK, Alg is likely to succeeds in steering the second output into EC. On
the other hand, for Mi ∈R C, Alg will most likely fail due to the hiding property of Def. 2.
We conclude that D correctly distinguishes the McEliece public key, hence contradicting to
Assumption 1.

Remark 4. In fact, we cannot exclude that some proof similar to that of [21] will work for
our protocol as well. However, in this work, we are mostly after the proof of concept. Thus,
we chose to take a shortcut by admitting Assumption 3, rather than constructing the whole
proof in the computational IH scenario.

5 Suggestions for Future Work

String Oblivious Transfer. Note that up to log n hardcore bits (for the security parameter
n) are available in the hardcore bit encryption [10, Cor. 1] (see also [9, Sec. 2.5.3]). Hence,
it is easy to generalize our constructions to oblivious transfer of (short) strings instead of
bits.
Interactive Hashing. In general, it is interesting to look for new natural applications of
IH in cryptography. Another important question is efficiency of IH protocols. Although it
was shown in [15] that based on OWP in blackbox manner, C-IH must have at least linear
(in the input size) number of rounds, this question remains open for specific computational
assumptions on the one hand, and for IT-IH on the other.
Relaxing Security Assumptions for TDP-based Protocol. Can one (efficiently) em-
ploy standard TDF there? If not, then what are minimal assumptions for TDF to be
applicable?
Generalizing Coding Based Protocol. It is interesting to generalize Protocol 2 for the
case of any PKC with the public key indistinguishable from random (e.g., lattice based
PKC’s).
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Appendix A Interactive Hashing Protocol

Let w be a n-bit string that a sender S wishes to transmit to a receiver R. All operations
take place in the binary field F2.

Protocol 3. Interactive hashing ([23])

1. R uniformly chooses a rank-(n− 1) matrix Q ∈ {0, 1}(n−1)×n.
Let qi be the i-th query, consisting of the i-th row of Q.

2. For 1 ≤ i ≤ n− 1 do:

(a) R sends query qi to S.
(b) S responds with ci = qi · w.

3. Given Q and c (the vector of R’s responses), both parties compute the two values of
w consistent with the linear system Q · w = c. These solutions are labeled w0, w1

according to lexicographic order.

A proof that the above protocol is IT-IH (i.e. satisfies Definition 2) can be found in [27,
Sec. 2.3]. A slight modification of Protocol 3 is shown to satisfy Definition 3 (i.e. to be C-IH)
in [21], with a tighter security proof presented in [16] (along with several generalizations).
The modification (compared to Protocol 3) consists of choosing the matrix Q in a canonical
way.
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