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Abstract

The r-th order nonlinearity of a Boolean function is an important cryptographic
criterion in analyzing the security of stream as well as block ciphers. It is also impor-
tant in coding theory as it is related to the covering radius of the Reed-Muller code
R(r, n). In this paper we deduce the lower bounds of the second order nonlinearity
of the following two types of Boolean functions:

1. fλ(x) = Trn1 (λxd) with d = 22r + 2r + 1 and λ ∈ F2n where n = 6r.

2. f(x, y) = Trt1(xy2i+1) where x, y ∈ F2t , n = 2t, n ≥ 6 and i is an integer such
that 1 ≤ i < t, gcd(2t − 1, 2i + 1) = 1.

For some λ, the functions of the first type are bent functions whereas Boolean func-
tions of the second type are all bent functions, i.e., they possess maximum first order
nonlinearity. It is demonstrated that in some cases our bounds are better than the
previously obtained bounds.

Keywords: Boolean functions, derivative, second order nonlinearity.

1 Introduction

Boolean functions are important building blocks in the design of stream ciphers as well as
block ciphers. Let f be an n-variable Boolean function. The r-th order nonlinearity of f ,
nlr(f), is the minimum Hamming distance between f and all n-variable Boolean functions
of degree at most r. The sequence of values nlr(f) for r ranging from 1 to n−1 is said to be
the nonlinearity profile of f . Nonlinearity profile of a Boolean function is a cryptographic
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criterion that plays an important role in the security of the cipher systems in which it is
used. On the other hand, nlr(f) is exactly the distance from f to the Reed-Muller code,
R(r, n), of size 2n and order r. Therefore, the maximum value of nlr(f), while f varies
over the set of all n-variable Boolean functions, is the covering radius of R(r, n).

The first order nonlinearity of f , nl1(f), is referred to as the nonlinearity of f and
denoted by nl(f). The value nl(f) is the minimum of the Hamming distances between f
and all the n-variable affine functions. There has been extensive research on the first order
nonlinearity of Boolean functions. For results on construction of Boolean functions with
high (first order) nonlinearity we refer to [1, 11, 12, 14, 15, 16].

It is to be noted that very little is known about nlr(f) for r > 1. The best known
asymptotic upper bound on nlr(f) is found in [5] which is as follows:

nlr(f) = 2n−1 −
√

15

2
· (1 +

√
2)r−2 · 2

n
2 +O(nr−2).

Computation of the r-th order nonlinearity for r > 1 is itself a difficult problem. Efforts
are made to compute second order nonlinearity by using decoding techniques of the second
order Reed-Muller codes. The algorithms developed till date [6, 7, 10] compute second
order nonlinearity for n ≤ 11 and for n ≤ 13 for some special cases. Thus there is a
need to find out lower bounds of the second order nonlinearity of Boolean functions and
in general lower bounds for r-th order nonlinearity of Boolean functions (for r ≥ 1) which
is satisfied for all values of n. In [9] Boolean functions have been constructed whose lower
bound of the r-th order nonlinearity is 2n−r−3(r + 5).

Recently Carlet [4] has introduced a method to determine lower bound of the r-th order
nonlinearity of a function from the upper bound of the (r − 1)-th order nonlinearity of its
first derivatives. He has applied this to obtain lower bounds of some functions including
Welch function and multiplicative inverse function. These functions have very high first
order nonlinearity. In another paper, Sun and Wu [17] have obtained lower bounds of the
second order nonlinearity of some functions whose first order nonlinearities are very high.

In this paper we deduce the lower bounds of the second order nonlinearity of the
following two types of Boolean functions:

1. fλ(x) = Trn1 (λxd) with d = 22r + 2r + 1 and λ ∈ F2n where n = 6r.

2. f(x, y) = Trt1(xy
2i+1) where x, y ∈ F2t , n = 2t, n ≥ 6 and i is an integer such that

1 ≤ i < t, gcd(2t − 1, 2i + 1) = 1.

For some λ, the functions of the first type are bent functions whereas Boolean functions of
the second type are all bent functions, i.e., they possess maximum first order nonlinearity.
It is demonstrated that in some cases our bounds are better than the previously obtained
bounds.
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2 Preliminaries

Let F2 be the prime field of characteristic 2 and F2n be the extension field of degree n
over F2. The finite field F2n can be considered as an n dimensional vector space over F2.
The set containing all invertible elements of F2n is denoted by F∗2n . Any function from F2n

into F2 is called a Boolean function on n variables. The set of all Boolean functions on n
variables is denoted by Bn. For any set S the cardinality of S is denoted by |S|. For any
two functions f, g ∈ Bn, d(f, g) = |{x : f(x) 6= g(x), x ∈ F2n}| is said to be the Hamming
distance between f and g. The trace function from F2n into F2 is defined by

Trn1 (x) = x+ x2 + x22

+ . . .+ x2n−1

for all x ∈ F2n . Given any x, y ∈ F2n , Trn1 (xy) is an inner product of x and y. Let
fλ(x) = Trn1 (λx) for all x ∈ F2n . The set of affine functions An is defined as follows:

An = {fλ + ε : λ ∈ F2n , ε ∈ F2}.

Suppose B = {b1, . . . , bn} is a basis of F2n . Then any x ∈ F2n can be written as

x = x1b1 + . . .+ xnbn where xi ∈ F2, for all i = 1, . . . , n.

Once a basis B of F2n is fixed any function f ∈ Bn can be written as a function of x1, . . . , xn
as follows

f(x1, x2, . . . , xn) =
∑

a=(a1,...,an)∈Fn
2

µa(
n∏
i=1

xai
i ), where µa ∈ F2.

The algebraic degree of f , denoted by deg(f), is the maximal value of weight of a, wt(a),
such that µa 6= 0. The weight of a, wt(a) =

∑n
i=1 ai where the sum is over integers.

Definition 1 The derivative of f with respect to a ∈ F2n, is denoted by Daf and is the
Boolean function Daf(x) = f(x) + f(x+ a) for all x ∈ F2n.

The higher order derivatives are defined as follows:

Definition 2 Let V be a m dimensional subspace of F2n generated by a1, . . . , am, that is
V = 〈a1, . . . , am〉. The m-th order derivative of f ∈ Bn is defined by

DV f(x) = Da1 . . . Damf(x) for all x ∈ F2n .

It is to be noted that the m-th order derivative of f depends only on the choice of the
m dimensional subspace V and independent of the choice of the basis of V . The Walsh
transform of f ∈ Bn at λ ∈ F2n is defined by

Wf (λ) =
∑
x∈F2n

(−1)f(x)+Trn
1 (λx).

3



Nonlinearity of f ∈ Bn is defined as nl(f) = minl∈An{d(f, l)}. The multiset [Wf (λ) : λ ∈
F2n ] is said to be the Walsh spectrum of f . Nonlinearity and Walsh spectrum of f ∈ Bn is
related as follows:

nl(f) = 2n−1 − 1

2
max
λ∈F2n

|Wf (λ)|.

Using Parseval’s identity ∑
λ∈F2n

Wf (λ)2 = 22n

it can be shown that |Wf (λ)| ≥ 2n/2 as a consequence nl(f) ≤ 2n−1 − 2
n
2
−1.

Definition 3 Suppose n is an even integer. A function f ∈ Bn is said to be a bent function
if and only if nl(f) = 2n−1 − 2

n
2
−1 (i.e., Wf (λ) ∈ {2n

2 ,−2
n
2 } for all λ ∈ F2n).

Clearly for even n the bent functions are Boolean functions with maximum nonlinearity
and therefore optimally resistant to best affine approximation attacks. Next we introduce
a generalization of the notion of nonlinearity.

Definition 4 Suppose f is a Boolean function on n variables. For every non-negative
integer r ≤ n, we denote by nlr(f) the r-th order nonlinearity of f , which is the minimum
Hamming distance of f and all functions of algebraic degree at most r.

The following two propositions are due to Carlet [4].

Proposition 1 ([4], Proposition 2) Let f be any n-variable Boolean function and r be
a positive integer smaller than n, we have

nlr(f) ≥ 1

2
max
a∈F2n

nlr−1(Daf)

In particular for r = 2, we have

nl2(f) ≥ 1

2
max
a∈F2n

nl(Daf).

Proposition 2 ([4], Proposition 3) Let f be any n-variable boolean function and r be
a positive integer smaller than n. We have

nlr(f) ≥ 2n−1 − 1

2

√
22n − 2

∑
a∈F2n

nlr−1(Daf)

In [4], Carlet remarked that in general, the lower bound given in Proposition 2 is better
than that given in Proposition 1. If one does not know the exact values of nlr−1(Daf) for
all a, but some lower bound is known, then we have the following corollary.

Corollary 1 ([4], Corollary 2) Let f be any n-variable function and r be a positive in-
teger smaller than n. Assume that for some nonnegative integers M and m, we have
nlr−1(Daf) ≥ 2n−1 −M2m for every nonzero a ∈ F2n, then
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nlr(f) ≥ 2n−1 − 1
2

√
(2n − 1)M2m+1 + 2n

≈ 2n−1 −
√
M2

n+m−1
2

In this paper we use these results to obtain lower bounds of second order nonlinearities
of some cubic bent functions. The derivative of any cubic function has algebraic degree
at most 2. It is to be noted that the Walsh spectrum of a quadratic Boolean function
(degree 2 Boolean function) is completely characterized by the dimension of the kernel of
the bilinear form associated to it. We refer to [13, 3] for details. Below we state only the
results which we use in this paper. Suppose f ∈ Bn is a quadratic function. The bilinear
form associated to f is defined by B(x, y) = f(0) + f(x) + f(y) + f(x+ y). The kernel [3]
of B(x, y) is the subspace defined by

Ef = {x ∈ F2n : B(x, y) = 0 for all y ∈ F2n}.

Following lemma is obtained from the definitions.

Lemma 1 ([3], Lemma 1) Let f be any quadratic boolean function. The kernel, Ef , is
the subspace of Fn2 consisting of those a such that the derivative Daf is constant. That is

Ef = {a ∈ Fn2 |Daf = constant}

The Walsh spectrum of any quadratic function f ∈ Bn is given below

Lemma 2 ([3], page 224) If f : F2n → F2 is a quadratic Boolean function and B(x, y)
is the quadratic form associated to it, then the Walsh Spectrum of f depends only on the
dimension, k, of the kernel, Ef , of B(x, y) . The weight distribution of the Walsh spectrum
of f is:

Wf (α) number of α

0 2n − 2n−k

2(n+k)/2 2n−k−1 + (−1)f(0)2(n−k−2)/2

−2(n+k)/2 2n−k−1 − (−1)f(0)2(n−k−2)/2

3 Lower bound of second order nonlinearity

First we consider a class of cubic Boolean function studied by Canteaut, Charpin and
Kyureghyan [3] of the form fλ(x) = Trn1 (λxd) with d = 22r + 2r + 1 and λ ∈ F2n where
n = 6r. Canteaut, Charpin and Kyureghyan [3] have characterized those λ for which fλ is
bent.

Theorem 1 Let fλ(x) = Trn1 (λxd) with d = 22r + 2r + 1 and λ ∈ F2n where n = 6r. Then
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nl2(fλ) ≥ 2n−1 − 1
2

√
(2n − 1)2

n
2
+2r + 2n

≈ 2n−1 − 2
3n+4r−4

4 .

Proof : It is known ([3], Proposition 3) that Dafλ is always quadratic for all nonzero
a ∈ F2n . It is also proved that the dimension of the kernel of the bilinear form associated
to Dafλ is either 2r or 4r ([3], Proposition 4). Therefore, by Lemma 2 we get, nl(Da(fλ))

is either 2n−1 − 1
2
2

n+2r
2 or 2n−1 − 1

2
2

n+4r
2 . Therefore,

max
a∈F2n

(nl(Da(fλ))) = 2n−1 − 1

2
2

n+2r
2 .

Hence using Proposition 1 we get

nl2(fλ) ≥
1

2
(2n−1 − 1

2
2

n+2r
2 ).

For all nonzero a ∈ F2n , we also have

nl(Dafλ) ≥ 2n−1 − 1

2
2

n+4r
2

= 2n−1 − 2
n
2
+2r−1. (1)

Therefore, we have a scope to get better bound by using Corollary 1. Comparing the
inequality (1) and Corollary 1, we get M = 1 and m = n

2
+ 2r − 1. So,

nl2(fλ) ≥ 2n−1 − 1

2

√
(2n − 1)2

n
2
+2r + 2n

≈ 2n−1 − 2
3n+4r−4

4 . (2)

It is quite obvious that for large n, the bound given in (2) is better than that of (1).
Therefore we conclude that

nl2(fλ) ≥ 2n−1 − 1
2

√
(2n − 1)2

n
2
+2r + 2n

≈ 2n−1 − 2
3n+4r−4

4 .

Next we consider the functions of the form

f(x, y) = Trt1(xy
2i+1)

where x, y ∈ F2t , n = 2t, n ≥ 6 and i is an integer such that 1 ≤ i < t, gcd(2t−1, 2i+1) = 1.
It is to be noted that y → y2i+1 where gcd(2t−1, 2i+1) = 1 is a quadratic permutation over
F2t . The function f is a Maiorana-MacFarland type bent function of algebraic degree 3.
Canteaut and Charpin [2] proved that functions of this form do not have affine derivatives.
We determine the lower bound of the second order nonlinearity of these functions.
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Theorem 2 If f(x, y)= Trt1(xy
2i+1), where x, y ∈ F2t , n = 2t, n ≥ 6 and i is an integer

such that 1 ≤ i < t, gcd(2t − 1, 2i + 1) = 1 and gcd(i, t) = e then

nl2(f) ≥ 2n−1 − 1

2

√
2( 3n

2
+e) − 2( 3n

4
+ e

2
) + 2n(2(n

4
+ e

2
) − 2e + 1).

Proof : The derivative of f at (a, b) ∈ F2t × F2t , D(a,b)f , is a quadratic function ([2],
Lemma 1).

Let the dimension of the kernel of the bilinear form associated to D(a,b)f , that is the
subspace ED(a,b)f , be denoted by k(a, b). By Lemma 1

ED(a,b)f = {(c, d) ∈ F2t × F2t|D(c,d)D(a,b)f = constant}.

Consider a 2-dimensional subspace V generated by two vectors (a, b) and (c, d).The second
derivative of f at V is as follows:

DV f(x, y) = D(c,d)D(a,b)f(x, y)

= Trt1(((ad+ cb) + (ad2i

+ cb2
i

)2i

)y2i

) + Trt1((bd
2i

+ b2
i

d)x)

+Trt1(ad
2i+1 + cb2

i+1) + Trt1((a+ c)(bd2i

+ b2
i

d)).

Case 1: Consider the case b = 0.
Subcase 1: b = 0, d 6= 0. The second derivative of f at V = 〈(a, b), (c, d)〉 is

DV f(x, y) = D(c,d)D(a,0)f(x, y)

= Trt1((ad+ (ad2i

)2i

)y2i

) + Trt1(ad
2i+1)).

DV f(x, y) is constant if and only if
ad+ (ad2i

)2i
= 0

i.e., ad+ a2i
d22i

= 0
i.e., a2i−1d22i−1 = 1
i.e., (ad2i+1)2i−1 = 1
i.e., ad2i+1 ∈ F∗2e , since (ad2i+1)2t−1 = 1 and gcd(i, t) = e
i.e., d2i+1 ∈ a−1F∗2e

Thus given any a ∈ F∗2t and b = 0, it is possible to choose d in 2e− 1 ways and for each
choice of d, c in 2t ways so that D(c,d)D(a,b)f is constant. Therefore, the total number of
ways in which (c, d) can be chosen so that D(c,d)D(a,0)f is constant is (2e − 1)2t.
Subcase 2: b = 0, d = 0. In this case the second derivative of f , D(c,0)D(a,0) = 0 for
all c ∈ F2t . Therefore, the total number of ways in which (c, 0) can be chosen so that
D(c,0)D(a,0)f is constant is 2t.

We conclude the Case 1 by observing that if b = 0 the total number of ways in which
(c, d) can be chosen such that D(c,d)D(a,b)f = constant is (2e− 1)2t + 2t = 2e+t. Therefore,
ED(a,0)f contains exactly 2e+t elements which implies that k(a, 0) = e+ t.
Case 2: b 6= 0.
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Subcase 1: b 6= 0 and d = 0. In this case we obtain

D(c,0)D(a,b)f(x, y) = Trt1((cb+ (cb2
i

)2i

)y2i

) + Trt1(cb
2i+1)).

D(c,0)D(a,b)f is constant if and only if

cb+ (cb2
i
)2i

= 0
i.e., cb+ c2

i
b2

2i
= 0

i.e., c2
i−1b2

2i−1 = 1 assuming that c 6= 0.
i.e., (cb2

i+1)2i−1 = 1
i.e., cb2

i+1 ∈ F∗2e , since (cb2
i+1)2i−1 = 1 and gcd(i, t) = e

i.e., c ∈ (b2
i+1)−1F∗2e .

Thus the total number of ways in which (c, 0) can be chosen is so that D(c,0)D(a,b)f is
constant is 2e (including the case c = 0).
Subcase 2: b 6= 0 and d 6= 0. In this case we have

D(c,d)D(a,b)f(x, y) = Trt1(((ad+ cb) + (ad2i

+ cb2
i

)2i

)y2i

)

+Trt1((bd
2i

+ b2
i

d)x) + Trt1((ad
2i+1 + cb2

i+1)

+Trt1((a+ c)(bd2i

+ b2
i

d))

D(c,d)D(a,b)f is constant if and only if

(ad+ cb) + (ad2i
+ cb2

i
)2i

= 0
and bd2i

+ b2
i
d = 0.

From the second condition we obtain (b−1d)2i−1 = 1. We have
(b−1d)2t−1 = 1

therefore,
(b−1d)2e−1 = 1, since gcd(i, t) = e

i.e., b−1d ∈ F∗2e or d ∈ bF∗2e

d = γb, γ ∈ F∗2e .
Substituting d = γb in first condition, we get b(aγ + c) + (b2

i
(aγ + c))2i

= 0
i.e., b2

2i
(aγ + c)2i

= b(aγ + c)
i.e., b2

2i−1(aγ + c)2i−1 = 1 assuming aγ + c 6= 0
i.e., (b2

i+1(aγ + c))2i−1 = 1 which implies b2
i+1(aγ + c) ∈ F2i . Since (b2

i+1(aγ + c))2t−1 = 1
and gcd(i, t) = e we have

(b2
i+1(aγ + c))2e−1 = 1.

i.e., b2
i+1(aγ + c) ∈ F∗2e .

Suppose (a, b) is fixed. Since 0 6= d = γb and γ ∈ F∗2e , it is possible to choose γ in 2e − 1
ways. For each choice of d that is γ the second derivative D(c,d)D(a,b)f is constant if and
only if c is such that

b(aγ + c) + (b2
i
(aγ + c))2i

= 0.
This is possible if either c = aγ or c = aγ + α where 0 6= α ∈ b−(2i+1)F∗2e . Thus for each
choice of γ there exists 2e choice of c such that D(c,d)D(a,b)f is constant.
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Combining the two subcases of Case 2 we infer that the total number of ways in which
(c, d) can be chosen for so that D(c,d)D(a,bf is constant for any given (a, b) such that b 6= 0
is (2e − 1)2e + 2e = 22e, therefore, k(a, b) = 2e. So we can write:

k(a, b) =

{
e+ t, b = 0
2e, b 6= 0

The nonlinearity of D(a,b)f is,

nl(D(a,b)f) = 2n−1 − 1

2
max

(λ,µ)∈Ft
2×Ft

2

|WD(a,b)f (λ, µ)|

= 2n−1 − 1

2
2

n+k(a,b)
2 .

Since, 1 ≤ i < t and e = gcd(i, t), we have e < t. Therefore,

max
(a,b)∈Ft

2×Ft
2

(nl(D(a,b)f)) = 2n−1 − 1

2
2

n+2e
2 .

By Proposition 1, we get

nl2(f) ≥ 1

2
(2n−1 − 1

2
· 2

n+2e
2 ). (3)

Note that in [4], it was remarked that in general, the bound obtained by Proposition 2
is better than that of Proposition 1. Therefore, we still have scope to improve the lower
bound by using Proposition 2, since, the values of nl(D(a,b)f) are all known. We obtain,∑

(a,b)∈Ft
2×Ft

2

nl(D(a,b)f)

= nl(D(0,0)f) +
∑

(a,0)∈Ft
2×Ft

2,a6=0

nl(D(a,0)f) +
∑

(a,b)∈Ft
2×Ft

2,b 6=0

nl(D(a,b)f)

= (2t − 1)(22t−1 − 1
2
2

3t+e
2 ) + 2t(2t − 1)(22t−1 − 1

2
2

2t+2e
2 )

= 24t−1 − 22t−1 + 1
2
(22t+e + 2

3t+e
2 − 23t+e − 2

5t+e
2 ).

Then by using Proposition 2, we get

nl2(f) ≥ 22t−1 − 1

2

√
24t − (24t − 22t + (22t+e + 2

3t+e
2 − 23t+e − 2

5t+e
2 )

= 22t−1 − 1

2

√
23t+e − 2

3t+e
2 + 22t(2

t+e
2 − 2e + 1)

= 2n−1 − 1

2

√
2( 3n

2
+e) − 2( 3n

4
+ e

2
) + 2n(2(n

4
+ e

2
) − 2e + 1). (4)

Let us now calculate the difference between the two lower bounds that we have obtained
in (3) and (4) respectively. The difference is as follows.
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2n−1 − 1
2

√
2( 3n

2
+e) − 2( 3n

4
+ e

2
) + 2n(2(n

4
+ e

2
) − 2e + 1)− 1

2
(2n−1 − 1

2
2

n+2e
2 )

= 2n−2 + 2
n+2e−4

2 − 1
2

√
2( 3n

2
+e) − 2( 3n

4
+ e

2
) + 2n(2(n

4
+ e

2
) − 2e + 1)

= 1
4
(2(e+n

2
) + 2n)− 1

2

√
2

3n
4 (2(e+ 3n

4
) + 2

e+n
2 + 2

n
4 − 2

e
2 − 2(e+n

4
))

> 0,

for sufficiently large n. Therefore we conclude that,

nl2(f) ≥ 2n−1 − 1

2

√
2( 3n

2
+e) − 2( 3n

4
+ e

2
) + 2n(2(n

4
+ e

2
) − 2e + 1).

Remark 1 The function of Theorem 2 does not have any derivative in R(1, n) [2]. In [4],
a general lower bound has been given on the second order nonlinearity for the n-variable
functions which do not have derivatives in R(1, n) and the bound is 2n−1 − 2n−

3
2 . Let us

calculate the difference between this bound and the one that we have obtained in (3). The
difference is

1

2
(2n−1 − 1

2
2

n+2e
2 )− (2n−1 − 2n−

3
2 ) = 2n−2(

√
2− 1− 2−

n−2e
2 ) > 0,

if
√

2− 1 > 2−
n−2e

2 . Taking logarithm base 2 in both the sides of this inequality we obtain
2e < n + 2 log2(

√
2 − 1) that is 2 gcd(i, t) < 2t + 2 log2(

√
2 − 1). Therefore, Theorem 2

provides us a class of cubic bent functions with no affine derivatives whose lower bound on
second order nonlinearity is greater than the general lower bound provided in [4].
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