
A Step Towards

QC Blind Signatures

R. Overbeck

overbeck[]terra.es

Abstract. In this paper we propose a conversion from signature schemes
connected to coding theory into blind signature schemes. We give formal
security reductions to combinatorial problems not connected to number
theory. This is the first blind signature scheme which can not be bro-
ken by quantum computers via cryptanalyzing the underlying signature
scheme employing Shor’s algorithms. We thus present a step towards di-
versifying computational assumptions on which blind signatures can be
based.
We achieve blind signatures by a different concept of blinding: Instead
of blinding the message, we blind the public key, such that generating a
(blind) signature for the blinded key requires the interaction of the holder
of the original secret key. To verify the blind signature, the connection
between the original and the blinded key is proven by a static ZK proof.
The major ingredient for our conversion is the PKP protocol by Shamir.

Keywords: Post-Quantum Cryptography, blind signatures, codes, lat-
tices, public key cryptography,

1 Introduction

Cryptography based on the theory of codes and lattices has received a
wide attention in the last years. This is not only because of the inter-
esting mathematical background but as well because of Shor’s algorithm,
which showed that in a world where quantum computers are assumed to
exist, number theoretic cryptosystems are insecure. There exist several in-
teresting (a)symmetric encryption, authentication and signature schemes
on the basis of coding and lattice theory which currently resist a crytp-
analysis by quantum computers (A few examples are the NTRU and GGH
encryption/signature schemes or the HB-family protocols). However, be-
sides by generic constructions, few other cryptographic primitives can be
realized without relying on number theory. In the case of blind signa-
tures the situation in the (hypothetical) quantum computer world is thus
quite desperate, since all generic constructions involve trusted third par-
ties or one-way-trapdoor-permutations which so far can be constructed
on number-theoretic assumptions, only.

One could argue that trusted third parties are not that bad. However,
as blind signatures are involved in voting schemes, it will be hard to find
a trusted third party for governmental elections – whom would you trust
not to unblind your vote? In the paper world, this would be like sending
your vote in a signed envelope to a counting assistant.

Our Contribution We present a conversion to obtain a blind signature
scheme from signature schemes based on syndrome decoding which we
assume to be secure troughout the paper. Our conversion does not require
the interaction with 3rd parties or number theoretic assumptions (see
below). However, since our proposal involves static zero knowledge proofs
it relies on random oracles and we can not hope to prove its security e.g.
in the UC-framework or in the case of adaptive adversaries. Instead, we
give evidence that the resulting blind signature scheme is secure against
active adversaries as long as some instances of NP-hard problems are
hard to solve.

The reader should not expect a complete solution for a blind singa-
ture scheme proven secure against quantum computers but a step toward
this direction. Besides problems that might occurr by the combination of
two different cryptographic schemes, we can not prove that a quantum
computer has no advantage over an classical computer in attacking our
scheme. (Nevertheless all the building blocks of our scheme resist against
the state of art in quantum cryptanalysis.) Further, we use a new def-
inition of a blind signature scheme, which might appear out of date in
comparison to the definitions currently used in the context of nubmer the-
oretic blind signature schemes. Anyway we want to start the discussion if
QC blind signatures exist. Comments and hints how to cryptanalyze our
conversion are most welcome.

Our conversion can be adapted for lattice based signature schemes
generating short vectors as signatures as long as all signature vectors are
of the same Eukledian norm (NTRUSign for example can be modified
to work that way). However, for the ease of understanding, we omit a
detailed description.

The general idea is to derive a blinded public key from a public key
of a code (or lattice) based signature scheme. Since both keys are related,
anyone able to generate signatures for the blinded public key should be
able to generate signatures for the original public key and vice versa.
However, the relation of a signature of the blinded public key to a signa-

ture of the original public key should not be computable for the signer
but only for the blinder.

To blind the public key, we propose to use permuted kernels (or a
variant based on isometric subcodes / sublattices). Lets assume that for
any code based signature scheme, the public key can be given in form of a
generator matrix. Indeed, after adding some vectors to the public gener-
ator matrix, the secret key holder will still be able to produce signatures
for this new code. However, by applying an isometry to this new code,
we can prevent the secret key holder to identify the added vectors and
thus the isometric subcode connection between the original code and the
newly generated code. In order to keep the problem to generate signatures
hard for the blinder, we will not allow him to add a unlimited number
of vectors of his choice to the public generator matrix. Instead, we force
him to do his choice among those in a vectorspace generated by a pseudo
random number generator.

So far our blind signature scheme works as follows: The blinder gen-
erates a blinded public key, asks the signer to generate a signature, which
he can transform into a signature for the blinded public key by applying
the isometry he used for blinding. To verify the signature, the blinder has
to provide the proof, that the blinded public key is related to the original
public key and that he did the blinding according to the specification of
the algorithm. The latter can be done by adding the blinded public key
and a static zero knowledge proof for the isometric subcode connection
to the signature.

Our blind signature conversion has two major drawbacks: The large
signatures (as we have to provide static zero knowledge proofs) and the
slow blind signature generation: In order to turn the unblinding impos-
sible for the signer, we have to assure that each signature produced by
the signer can be transformed into any blind signature by an appropriate
isometry. This condition is fulfilled only if all signature vectors generated
by the signer are of the same norm and each vector of a certain norm can
be transformed in each vector of the same norm. The latter is only possi-
ble in Hamming or Euclidean norm, which limits the choice of signature
schemes to which we may apply our blind signature conversion.

Related work Related work, as mentioned above are generic construc-
tions of blind signature schemes. The only ones, we are aware of are

– Weak blind signatures, which involve trusted third parties [3] and

– Blind signatures from PKCs [5], which apply only to PKCs which are
trapdoor permutations. All known PKCs satisfying this condition are
based on number theory.

Organization The paper is organized as follows: In the next sections we
present our notation for codes, define some NP-hard problems and recall
the basic schemes we use as a tool-box. In the third section we present
our conversion and apply our conversion to the CFS scheme in Section 4.
At the end we draw conclusions, make some remarks on how to extend
the conversion to NTRUSign and give some hints on possible next steps
in research.

2 Preliminaries

This section will introduce the basic notation, schemes and hard problems
we use throughout the paper. With a slight abuse of notation we will not
make a difference between a code and its generator matrix. We shortly
define our notation for codes:

Definition 2.1. Let C be an [n, k] code over Fq, i.e. a k-dimensional
subvectorspace of F

n
q . A k × n matrix C is a generator matrix of C if

the rows of C span C. We denote with C⊥ the check matrix of C, i.e. the
n× (n−k) matrix in systematic form, such that C ·C⊥ is the zero matrix.

In the following the norm used will be the Hamming norm and denoted
by ‖ · ‖, but one could think of different norms as well.

2.1 Underlying problems

In this section we present the problems on which the security of our blind
signature conversion will be based. The hardness of all these problems can
be reduced to the hardness of General Syndrome Decoding, which is NP-
hard even in the binary case [6]. Here we give a definition polynomial-time
equivalent to the standard one:

Definition 2.2. Let G be the generator matrix of an [n, k] code over a
finite field F with check matrix H, w ∈ N and s be an n− k vector over F

called syndrome. The Problem of General Syndrome Decoding (GSD) is
to find a vector e ∈ F

n of Hamming weight ≤ w such that the syndrome
of e is s, i.e. H(e) := eH = s.

To obtain a blind signature scheme, we will have to rely on the hard-
ness of another problem, the Permuted Kernel Problem:

Definition 2.3. The Permuted Kernel Problem (PKP) is defined as fol-

lows: Let A⊥ ∈ Z
(n−k)×n
q be a matrix and v ∈ Z

n
q a vector, where k <

n, q ∈ N. Find a permutation matrix P, such that vPA⊥ = 0, i.e. vP is
in the vector space spanned by the rows of A = (A⊥)⊥. We write A > vP

or A >P v.

The PKP is NP-hard even if q = 2 (since a polynomial time solver for
the binary PKP can solve the NP-hard binary general syndrome decoding
problem in polynomial time) or if k = n − 1 [7]. It is easy to verify that
a decisional variant of the PKP is polynomial time equivalent to PKP –
even in the case of signed permutations.

It is nice to remark, that NTRUEncrypt and NTRUSign can be broken
if the PKP can be solved efficiently as the distribution of the entries in the
secret NTRU vector is a system parameter. To apply our conversion to
NTRUSign, we would need analogeous definitions for genereral isometries,
not just permutations. We will come back to this issue in the conclusion.
For now, we would like to remark that the criteria for an isometry change
depending on the norm used (for any Lp norm with l 6= 2, all isometries
are signed permutations).

2.2 Digital signatures and blind signatures

We now define the cryptographic primitives employed in our paper with
the exception of a zero knowledge proof system, where we refer to [4].

Definition 2.4. A signature scheme based on codes consists of three al-
gorithms:

– A key generation algorithm which on input of the security parame-
ter(s) returns a private key and a public key consisting of a check
matrix C⊥

pub and an integer B.
– A signature algorithm, that on input of a (hash of a) message m

and the private key returns a vector y of norm at most B satisfying
m = C⊥

pub(y).
– A verification algorithm, which on input of of m and y returns accept

iff m = C⊥

pub(y) and ‖y‖ ≤ B, reject otherwise.

We consider a signature scheme to be secure if its signatures

(i) are authentic, i.e. they convince that the signer interacted in generat-
ing them,

(ii) are non-malleable and unforgeable in the sense, that no one but the
signer can generate a l + 1st signature knowing l signatures and

(iii) can not be repudiated, i.e. the signer should not be able to claim that
he did not generate them.

The CFS digital signature meets the conditions of a secure code based
signature scheme according to the above definition. We expect the reader
to be familiar with that scheme which we recall briefly at the end of the
section.

In our paper however, we consider a slightly different flavor of a blind
signature scheme:

Definition 2.5. A blind signature scheme consists of two parties, namely
the blinder and the signer, and six algorithms:

– A key generation algorithm, that on input of the security parameters
returns a public/private key pair, hands the private key to the signer
and publishes the public key.

– A blinding algorithm, in which the blinder on input of the public key
and (the hash of) a message m returns a blinded message mblind and
a unblinding information (m,u).

– A signing algorithm, that on input of the private key and mblind re-
turns a signature y.

– A verification algorithm, that on input of the public key, a (hash of a)
message m′ and a signature y returns accept or reject

– An unblinding algorithm, where the blinder on input of y, (m,u) and
the public key returns a blind signature σ if y is verifiable by the above
algorithm with the public key and mblind.

– A blind verification algorithm, that on input of a blinded signature σ,
a (hash of a) message m′ and the public key returns accept or reject.

We say that a blind signature scheme works correct if every blind signa-
ture σ generated by the unblinding algorithm is verifiable with the blind
verification algorithm and the corresponding message.

Oftentimes there is no difference between the verification and the blind
verification algorithm (like e.g. in the blind signature scheme presented
in [1]) – however there is no need that the two algorithms are identical.

The classical but maybe somewhat out of date definition of a secure
blind signature scheme (by Chaum) is the following:

Definition 2.6. A blind signature scheme is secure if the following three
requirements are met:

(i) Digital signature – If the blind verification algorithm returns accept,
anyone can check, that σ was formed using the signers private key.

(ii) Blind signature – The signer can not learn anything about the corre-
spondence between the signatures yi and the blind signatures σi with-
out the unblinding information.

(iii) Conservation of signature – The blinder can create at most (!) one
blind signature for each signature returned by the signer.

2.3 Basic protocols

In the following we will employ Shamir’s Permuted Kernel ZKIP
[7], whose basic variant works as follows: Given the [n, k] code G and
an n-vector v over Fq Shamir’s protocol can be used to proof in zero
knowledge, that there is a permutation P ∈ Sn, such that vP is in G. By
Shamir’s 5-round zero-knowledge protocol, on can prove the knowledge
of P using two blending factors: a permutation Π and a random n-vector
over Fq. However, a dishonest prover not knowing P can cheat the verifier
in the protocol with probability (q + 1)/(2 · q). Thus, the protocol has
to be repeated several times to detect cheating provers. Computing Π

from v and G is is solving the PKP. The communication cost is about
n(l + log2(n)) log2(q) plus two times the size of the commitments.

Since we can represent a [n, l] subcode of G as an n-vector over Fql

and G over Fql as well, we can prove the permuted subcode connection by
Shamir’s protocol. In each iteration, a cheating prover has the probability
of (ql+1)/(2·ql) to succeed. In the following q will be 2, such that the terms
“premutation” and “isometry” coincide for the Hamming norm. However,
if q 6= 2, Shamir’s protocol works analogeous for general isometries in
Hamming norm.

In Section 4 we will apply our conversion to the CFS signature
[2], which we explain in short. It starts from a secret Goppa code with
generator matrix G ∈ F

k×n
2 and known error correction algorithm. For an

error e ∈ F
n
2 we define its syndrome as s = eG⊥. If e is of weight below

the error correcting radius t, it is uniquely defined by its syndrome and
can efficiently recovered from s by the error correction algorithm of G.
The public key is the systematic check matrix Hpub of the permuted code
GP with a secret permutation P ∈ Sn. To sign a syndrome s ∈ F

n−k
2 ,

the signer tries to compute a vector e of weight ≤ B with syndrome
eHpub = s. Otherwise the signature generation fails.

In practice, since not for all syndromes s there is an error vector e
of weight ≤ B, which can be computed efficiently, a random vector r is
chosen and the signer tries to sign s′ = h(m||r) instead, where h is a
hash function. The choice of r has to be repeated until a signature can
be generated, which is about (

(2m

B

)

· 2−mt)−1 ≈ t! times if B = t. The
resulting signature is then (r, e).

Besides the slow signature generation, typical parameter sets for CFS
like n = 216, k = n − 16 · 9, t = 9 are subject to attacks via Wagner’s
solution of the generalized birthday problem as stated by Bleichenbacher.
Consequently, an attack on this parameter set can be performed in about
259.6 operations.

3 The blind signature conversion

In this section we show how to blind a signature scheme based on solving
GSD. We will take such a signature scheme as a black box and convert it
by adding a blinding, unblinding and blind verification algorithm.

The general idea is as follows: Given the public generator matrix Cpub

of the signature scheme, we add a number of vectors Rpub, which are
generated by a pseudo random number generator. While the signer still
can solve the GSD in the resulting code, we can at the same time blind
this code by taking a permuted (isometric) subcode Cblind. Knowing the
employed permutation Π, the signer still would be able to solve the GSD
in Cblind as long as Cpub is a isometric subcode of Cblind:

CR :=

[

Cpub

Rpub

]

> CblindΠ
−1 > Cpub.

To generate a blind signature of a syndrome s, the blinder can thus do the
following to solve the GSD in Cblind in interaction with the signer: Take
the syndrome s of Cblind and convert it into a syndrome of Cpub, which
can be signed by the signer. Then, apply the isometry Π to the signature
y to obtain the GSD solution yΠ ∈ Cblind for the challenge s. We will
denote with PKP-Proof (C⊥

blind,C
⊥

R
) the static PKP-Proof for Cblind being

an isometric subcode of CR.

We present our conversion of a signature scheme based on codes lat-
tices to a blind signature scheme in Algorithms 3.1, 3.2 and 3.3. After the
blinding algorithm, s is sent to the signer who returns the signature y of
norm B for s, which is verifiable with C⊥

pub: C⊥

pub(y) = s (We assume the

Algorithm 3.1 Blinding algorithm
System parameters: l < L, Hash function h, a pseudo random number generator
and a norm ‖ · ‖.
Input: The message m, the public matrix C

⊥

pub, r a random seed and B.
Output: The blinded syndrome s and the unblinding information u.

- Generate the matrix Rpub ∈ Z
L×n
q from r by a pseudo random number generator.

- Generate a random l × L full rank matrix S over Zq, set R = SRpub.
- Generate a random isometry Π of the norm ‖ · ‖ (i.e. a permutation in the case of
the Hamming norm).
- Generate the check matrix C

⊥

blind of the code with generator matrix

Cblind =

»

Cpub

R

–

Π.

- Compute the blinded syndrome s, such that for all z ∈ Z
n

“

C
⊥

pub(z) = s
”

⇒
“

C
⊥

blind(zΠ) = h(m||C⊥

blind)
”

via linear algebra:
- solve C

⊥

blind(z) = h(m||C⊥

blind) for some z.
- set s = C

⊥

pub(zΠ
−1).

return the blinded syndrome s and the unblinding information u = (r, Π, C⊥

blind)

Algorithm 3.2 Unblinding algorithm
System parameters: l < L, Hash function h, a pseudo random number generator
and a norm ‖ · ‖.
Input: The message m, the public matrix C

⊥

pub, B, the blinded syndrome s, the

unblinding information u = (r, Π, C⊥

blind) and a valid signature y of C
⊥

pub.
Output: The blind signature σ of m or failure.

- veritfy that y has norm B and C
⊥

pub(y) = s else return failure

- Generate PKP-Proof (C⊥

blind, C⊥

R) and return the blind signature

σ =
`

r, C
⊥

blind, σ̄ = yΠ, PKP-Proof (C⊥

blind, C⊥

R)
´

.

signer to halt the protocol if y does not have norm B of if he is unable
to compute it).

Please observe, that with a fixed r, there are ql possible s which result
from the possibilities to add a vector from the space spanned by R to z.
However, it is not desirable to use the same R (and thus Cblind) twice
(e.g. if the signing algorithm fails) since the signer could identify R after
receiving l syndromes built with the same R. Further, if the signature σ

Algorithm 3.3 Blind Verification

Input: L, the hash function h, a norm ‖ · ‖, m, C
⊥

pub and
the blind signature σ =

`

r, C
⊥

blind, σ̄, PKP-Proof (C⊥

blind, C
⊥

R)
´

- Generate the matrix Rpub ∈ Z
L×n
q from r by a pseudo random number generator.

- Generate some vector ȳ such that C
⊥

blind(ȳ) = h(m‖C⊥

blind).
- Check ‖σ̄‖ < A and ȳ − σ̄ ∈ Cblind.
- Check PKP-Proof (C⊥

blind, C
⊥

R)

was generated according to algorithm 3.1, the verification in Algorithm 3.3
does not fail in the case of an honest blinder. Our scheme thus satisfies
the condition of being a signature. We will prove the security of that
signature in the following.

3.1 Security analysis

The signature conversion can be proven secure to a certain extend if the
underlying signature scheme is secure, as we will show in this section. We
first state the security argument for the signer:

Theorem 3.1. (Conservation of signature) Let σi, i = 1, · · · ,m be a
set of blind signatures and yj, j = 1, · · · ,m be a set of signatures used to
generate the σi. If the blinder can produce a m+1st blind signature σm+1

without interaction with the signer, then he can solve the GSD for CR, B
and a random vector v.

The theorem above is easy to verify thus we omit giving a formal
proof. As long as GSD with input CR and w = B is infeasible to solve
without knowing the secret key for Cpub, the blinder can not deduce more
blind signatures, than the ones he created in interaction with the signer.
The security argument for the blinder is much harder to prove:

Theorem 3.2. (Blind Signature) Assume that it is infeasible to prove
that the minimum distance of Cpub is below B. Let σi, i = 1, · · · ,m be a

set of blind signatures and yj, j = 1, · · · ,m be a set of signatures used to
generate the σi. If the signer can identify the m pairs (i, j), such that yj

was used to generate σi, then he can solve at least one of the (decisional)
PKP Problems:

(

Cσi
=

[

(Cblind)i
yiΠi

]

,yj

)

Proof. We know that the zero-knowledge PKP proofs do not reveal any
information on the correct pairs (i, j). Thus, if the signer can identify the
correct pairs, he is able to solve the PKP instances





Cpub

Rpub

y



 >Π

[

Cblind

yΠ

]

>Π
−1

[

Cpub

y

]

>Id y or

[

Cpub

Rpub

]

>Π
Cblind >Π

−1

Cpub.

However, solving the first sequence of permuted inclusions implies solving
the second one: Assume, the efficient algorithm solving the first sequence
gives an answer Π̂ such that

[

Cblind

yΠ

]

>

[

Cpub

y

]

Π̂ and Cblind 6> CpubΠ̂.

Then, yΠΠ̂−1 is in Cpub. This however means that we have found a vector
of norm B in Cpub, which is below the known minimum distance of Cpub

and would thus contradict the statement of the theorem.

4 Application to the CFS signature scheme – an example

In this section we will briefly view the application of our conversion to the
CFS signature scheme. As example we start from the parameter set m =
16, t = 9 and B = 9. The public key C⊥

pub is a 2m×mt binary check matrix,
which takes about 1.12 Mbytes to be stored. If we take, for example
2l = L = 80 as parameter set for our blind signature conversion, then
C⊥

blind will be a 216 × 104 binary matrix, which takes about 0.81 Mbytes
to be stored. We have d = 2t+1 > B, thus the conditions of Theorem 3.2
are met. Algorithm 3.1 has to be called about (

(2m

B

)

2−mt)−1 ≈ (t!)−1 ≈
218.5 times to generate a single signature, where each call costs the signer
m3t2 ≈ 218.33 and the blinder (16 · 9)3 ≈ 221 operations, which is the
dominating part of the blind signature generation (The blinder has to
change only a few rows of Cblind per call, not all – the only condition is that
he does not use the same Cblind twice). Thus, a signature can be generated
in time corresponding to eight CFS signatures. The size of a signature is

dominated by PKP-Proof (C⊥

blind,C
⊥

R
), which requires to store a matrix

of the size of Cblind each round. The resulting signature has thus a size
of about 50 Mbytes. The scheme reaches more than 280 security against
unblinding, as so far, there is no effective attack to solve the PKP problem
for codes. The fastest attack is by the generalized birthday paradox, aims
to forge blind signatures and requires 259.6 operations like for the original
CFS scheme – remember that the blind signature generation takes ≈ 239.5

Operations.

Changing t to 10 and B to 12 would reduce the number of calls of Al-
gorithm 3.1 before a valid blind signature is generated to (

(

2m

B

)

·2−mt)−1 ≈
1/8 ≤ 1. At the same time, this raises the signer’s workfactor (he has to
guess two error positions and correct another 10 ones do decode a syn-
drome with B = 12 errors). Now, the signature generation takes only
about twice as many operations as before (

(

B
B−t

)

/
(2m

B−t

)

· m3t2 ≈ 240.4),

while the security against existential forgery increases to about 273.6.

Even if the security level of the proposed blind signature with the
CFS scheme is sufficiently high, blind signature generation and storage is
too costly to consider our scheme for practical applications.

5 Conclusion

In this paper we present the first conversion of a non-number theoretic
signature scheme to a blind signature scheme without a TTP. Our con-
version is applicable to code based signature schemes. However, there are
two drawbacks of our solution: The slow blind signature generation (as we
require all signatures to be of the same norm) and the large signature sizes
(as the signatures include a static PKP-Proof). Of course, the security
of the proposed blind signature conversion against quantum computers
is not proven but only conjectured and thus further research has to be
done.

Possible extensions to lattice based signature schemes As we did
already remark, the concept of our conversion to a blind signature scheme
could be extended to lattice based signature schemes like NTRUSign.
Essential for the application to other schemes than CFS is the possibility
to transform two vectors of the same norm into each other via isometries.
This is only possible for special norms like the Hamming and Eucledian
norm.

The crucial point is, that the PKP protocol can be extended to isome-
tries. Further, the concept of syndromes can be transfered to lattices since
the scalar product of some vector with any vector of the dual lattice is
an integer iff the vector is in the lattice. The major obstacle for applying
such an conversion e.g. to NTRUSign is the fact, that NTRUSign produces
signature vectors of variable length. Thus, one would have to consider a
variant of NTRUSign which produces signature vectors of a single length,
only. So far we can not give bounds on the fraction of NTRU signatures
of a certain norm better than the obvious lower bound 1/B2 (the square
of the signature vector’s norm has to be an integer), where B refers to
the maximal norm of accepted signature vectors.

Further research and open questions One could improve signifi-
cantly on the problem of the signature sizes, if one could provide a zero
knowledge proof for the PKP problem, which requires less rounds, i.e.
with lower cheating probability. This could be possible due to the fact,
that the kernel we use is of dimension > 1.

Another direction of research could be to speed-up the signature gen-
eration by allowing signatures of different norms, e.g. by allowing the
blinder to add a short blending vector to the signature. However, so far
we were not able to give evidence for the security of such a variant.

References

1. David Chaum. Blind signatures for untraceable payments. In CRYPTO, pages
199–203, 1982.

2. N. Courtois, M. Finiasz, and N.Sendrier. How to achieve a McEliece-based digital
signature scheme. In Advances in Cryptology - ASIACRYPT 2001, volume 2248,
pages 157–174. Springer-Verlag, 2001.

3. Matthew K. Franklin and Moti Yung. The blinding of weak signatures (extended
abstract). In EUROCRYPT 1994, pages 67–76, 1994.

4. O. Goldreich. Modern Cryptography, Probabilistic Proofs an Pseudo-randomness.
Springer-Verlag Heidelberg, 1999.

5. Ari Juels, Michael Luby, and Rafail Ostrovsky. Security of blind digital signatures
(extended abstract). In CRYPTO 1997, volume 1294 of Lecture Notes in Computer

Science, pages 150–164. Springer, 1997.
6. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correctiong Codes.

North-Holland Amsterdam, 7 edition, 1992.
7. A. Shamir. An efficient identification scheme based on permuted kernels. In Proc.

of Crypto’89, volume 435 of LNCS, pages 606–609. Springer Verlag, 1990.

