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Abstract. This work presents the first scalable, efficient and generic compilers to construct group key
exchange (GKE) protocols from two/three party key exchange (2-KE/3-KE) protocols. We propose
three different compilers where the first one is a 2-KE to GKE compiler (2-TGKE) for tree topology,
the second one is also for tree topology but from 3-KE to GKE (3-TGKE) and the third one is a compiler
that constructs a GKE from 3-KE for circular topology. Our compilers 2-TGKE and 3-TGKE are first
of their kind and are efficient due to the underlying tree topology. For the circular topology, we design a
compiler called 3-CGKE. 2-TGKE and 3-TGKE compilers require a total of O (n lg n) communication,
when compared to the existing compiler for circular topology, where the communication cost is O

`
n2

´
.

By extending the compilers 2-TGKE and 3-TGKE using the techniques in [18], scalable compilers
for tree based authenticated group key exchange protocols (2-TAGKE/3-TAGKE), which are secure
against active adversaries can be constructed. As an added advantage our compilers can be used in
a setting where there is asymmetric distribution of computing power. Finally, we present a constant
round authenticated group key exchange (2-TAGKE) obtained by applying Diffie-Hellman protocol and
the technique in [18] to our compiler 2-TGKE. We prove the security of our compilers in a stronger
Real or Random model and do not assume the existence of random oracles.

Keywords. Group Key Exchange, Compilers, Tree Based Group Key Exchange, Circular topology, Real or
Random Model, Scalability.

1 Introduction

Secure communication over an insecure channel which may be under the control of an adversary, is one of
the fundamental goals of cryptography. Encryption and authentication are the main tools for achieving the
aforementioned goal. Public key encryption and signature schemes can be used to achieve this but with an
overhead of very high cost for the basic operations, which deteriorates the main aim of the goal and may
not fit for most of the real time applications. As an alternative, concerned parties may establish a secret
key using key exchange(KE) protocols and then use this key to derive keys for symmetric encryption and
message authentication schemes. Group key exchange protocols(GKE) aim at establishment of a secret key
among a group of n users over an insecure channel. With the increase in use of applications like encrypted
group communication for audio-video conferences, chat systems, computer supported collaborative workflow
systems etc., group key exchange protocols are gaining more and more attention. Naive approach for designing
these GKE is to have a group leader who will choose the secret key and exchange it with the next user, who
will exchange with the next etc., but the round complexity for this is O(n), which is very inefficient and
hence non-scalable. Burmester-Desmedt [5][7][6] gave constant round group key exchange protocols, but the
protocols given are unauthenticated.

Compilers are tools used for adding extra features to existing KE schemes. As two-party KE protocols
are quite well studied in literature [20–29] and there exist efficient three-party KE protocols [30], compilers
for transforming 2-KE and 3-KE to GKE can be quite useful in practice. The protocol in [1] gives one such
! Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Com-

putation sponsored by Department of Information Technology, Government of India
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compiler for transforming secure 2-KE to secure GKE which works on circular topology. Tree topology is
more common in practice than circular topology (e.g.: Consider the case of an organization with a CEO at
the top, having some managers under his control and further each manager have many subordinates and so
on) and also tree based group key exchange protocols are more efficient as they have lesser communication
and computation complexity. To our knowledge, no efficient compiler for transforming a 2-KE/3-KE to tree
based GKE exists. In this paper, we present the compilers for transforming 2-KE/3-KE to tree based GKE
as well as 3-KE to GKE in the circular topology.

Related work. Several Diffie-Hellman based [5][6][7][8][9] and pairing based [11][12][13][14] group key ex-
change protocols have been proposed. Bresson et. al. [19] gave a GKE (BCPQ) that required n rounds and
O(n) communication and computation. Boyd-Nieto [32] gave constant round group key exchange protocols
(BN PK and BN DH) but the length of messages communicated in their protocols is O(n). Burmester-
Desmedt [5], [7] presented a constant round GKE (BD-I) with constant message size for circular topology.
They have also given a protocol (BD-II) for tree based settings in [6] but both the protocols are unauthen-
ticated also BD-II is not contributory (i.e., the secret key obtained finally does not involve the contribution
of intermediate values all the users in the group). Later, Katz and Yung in [15] have given a compiler for
transforming any secure GKE into an authenticated group key exchange (AGKE) protocol, which requires
O(n) signature verifications per user and adds one more round to the protocol. Following that, Katz and
Shin [16] gave a compiler for adding universal composibility (UC) and mutual authentication to any secure
GKE protocol. Also, Bresson et. al.[17] have proposed a compiler which provides both authentication and
mutual authentication to any secure GKE protocol. In a recent work by Desmedt et. al. [18], they obtain
authentication for a GKE protocol in tree structure more efficiently than [15]. Most of the tree based key
exchange protocols have complexity O(lg n), but [15] adds O(n) computation as each user has to perform
O(n) verifications, while [18] adds only O(lg n) computation, thereby keeping the complexity class intact.
Mayer and Yung [31] first considered the expansion of authenticated 2-party key transport to authenticated
group key transport, but the length of messages communicated in [31] is O(n). Hwang et. al.[1] proposed
a compiler for transforming any secure 2-KE protocol to a secure GKE assuming that group members are
arranged in a circular fashion and each member knows the relative position of all other members. Compiler
in [1] requires O(n2) communication, besides this the resulting protocol is not authenticated. Authors of
[1] suggest the use of compiler in [15] for making the resulting protocol authenticated, which in turn adds
O(n) verification per user. In a similar work for password authenticated key exchange(PAKE), Abdalla et.al.
[2] gave a compiler from 2 party PAKE to password authenticated group key exchange (GPAKE). They
have proved the security of their scheme in a stronger model -’real or random model’(ROR). Wu et. al. [3]
extended the work in [2] to consider group dynamism also. Although the protocols resulting from [3] are
authenticated, they do not introduce any means for construction of unique session identifier and hence [3] is
prone to replay attack, which we show in our paper out of interest. For avoiding this attack a unique session
identifier should be established for every new instance of the protocol similar to [15].

Our Contribution: In this paper, we present a replay attack, which is prevalent on any GPAKE protocol
obtained by applying the compiler of Wu et. al.[3]. We also present the first compilers for transformation of
secure 2/3 KE to TGKE secure against passive eavesdroppers. In the existing works only circular topology
was considered but it is important to consider such compilers for tree based protocols also, as tree based
topology is very common in practice. Further, we extend the compiler in [1] for converting any 3-KE into
GKE for circular topology. We prove the security of our compilers in ROR model and do not use any random
oracle assumption. Our compiler requires only O(n lg n) communication and computation. For achieving
authentication we use techniques of Desmedt et. al. [18] (it keeps the overall complexity O(n lg n) only). We
also present a constant round authenticated tree based group key exchange protocol(2-TAGKE) obtained
by applying our compiler to Diffie-Hellman protocol. Finally, we compare the performance of our compilers
and protocols with the existing ones.

Paper Organization: Rest of the paper is organized as follows. In section 2, we discuss security model and
efficiency requirements of group key exchange. In section 3, we give a replay attack on the compiler in [3].
In section 4, we present compilers for transformation of 2/3 KE to tree based GKE(2-TGKE, 3-TGKE and
3-CGKE). In section 5, we prove the security of our compilers in ROR model. In section 6, we present a
constant round authenticated tree based group key exchange protocol obtained by applying our compiler to
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Diffie-Hellman key exchange protocol. Section 7, gives efficiency comparison of our compilers and protocol
with the existing ones. Finally we conclude the paper in section 8.

2 Security models for Group key exchange

In this section we give security models and efficiency goals for group key exchange protocols. We follow the
model of Katz and Yung [15] who have used the security model for GKE due to Bresson et al. [19]. However
our model differs from [15] as we allow multiple test queries. Allowing multiple test queries is an extensively
used technique in password authenticated group key exchange(PAKE) and the model is commonly referred
to as real or random (ROR) model. It should be noted that ROR model is a stronger model as it considers a
stronger adversary, who is capable of asking many test queries. It can be proved that ROR model is equivalent
to the prevalent model with a loss of factor r, which is to the number of protocol instances given to adversary.
First, we discuss the notations and then we briefly discuss the various oracles which an adversary of GKE
has access to. Finally, we recall the efficiency concerns for the GKE.

Participants and Initialization: We assume that set of participants P is a polynomial size set of users
and any subset of P can establish a session key. For the authenticated version of our protocol, we further
assume that during the initialization phase each participant runs an algorithm G(1k) to generate a pair of
public and private keys (PK, SK). The secret key is stored by the user and public keys are made available
to all the members.

Adversarial Model: Each participant is given access to unlimited number of instances of the protocol. We
denote the instance i of user U as Πi

U , each instance can be used only once. As in [15] each instance Πi
U has

various variables statei
U , termi

U , acci
U , usedi

U , partner id pidi
U , session id sidi

U and session key ski
U associated

with it. Similar to [18], we define gid and reliU where, gid is the group identifier contained in pidi
U which

identifies all the partners involved in the current execution of the protocol and the set reliU = {V1, V2, . . . , Vt}
is the set of users whose input is processed by U (U is also an element of the set reliU ).

The adversary is assumed to have full control over the communication channel. As in [15] and [18], we do
not consider malicious insiders. Different adversarial capabilities are captured by giving the adversary access
to following oracles:-

1. Execute(U1, U2, . . . , Un): This oracle models a passive eavesdropper. GKE is executed between the
unused instances of U1, U2, . . . , Un ∈ P and the transcript of the execution is returned as the output.
Adversary has control over the number of players and their identities.

2. Send(U1, i, M): This oracle models an active adversary. It sends message M to the instance Πi
U1

and
outputs the reply generated by the instance. This oracle can also be used to prompt Πi

U1
to initiate

protocol with the unused instances of the users U2, U3, . . . , Un by calling Send(U1, i, (U2, . . . , Un)).

3. Reveal(U, i): Secret key ski
U is returned as the output.

4. Corrupt(U): Long term secret key SKU of user U is given as output.

5. Test(U, i): This query is allowed only if the session key is defined (i.e. acci
U = true and ski

U "= NULL)
and instance Πi

U is fresh (we define freshness of instance below). Challenger selects a random bit b ∈ {0, 1}
prior to the first call. It returns the session key ski

U , if b = 0. Otherwise, a uniformly chosen random
session key is returned. Similar to [2] we allow an arbitrary number of test queries, but once the test
oracle returned a value for an instance Πi

U , it will return the same value for all instances partnered with
Πi

U (see the definition of partnering below).

A passive adversary is given access to Execute, Reveal, Corrupt and Test oracles, while an active adversary
is additionally given access to Send oracle.
Partnering. As in [15] the session ID sidi

U equals the concatenation of all messages sent and received by
Πi

U during the course of its execution. While for partner ID, we follow the approach of [18]. Partner ID
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pidi
U consists of the group identifier and the identities of the player in the group with which Πi

U exchanges
messages during the protocol execution. Two instances Πi

U and Πj
U are said to be partnered if (1) session

ID of both the instances are equal, (2) each of the player belongs to the partner ID of the other and (3) gid
for both the instances is same.
Correctness. For correctness we require that for all partnered instances Πi

U , Πj
U ′ such that acci

U = accj
U ′ =

TRUE, same valid session key ski
U = skj

U is established.
Freshness. An instance Πi

U is fresh unless one of the following is true (1) at some point, the adversary
queried Reveal(U, i) or Reveal(U ′, i′) for any Πi′

U ′ partnered with Πi
U or (2) a query Corrupt(V ) was asked

before a query of the form Send(U ′, i′, ∗) by V, where V and U’ are in pidi
U .

Security. Let Succ be the event that the adversary queries Test oracle only on fresh instances and guesses
correctly the bit b used by the Test oracle. The advantage of adversary A against protocol P is defined as:

AdvA,P

(
1k

)
= |2.P r [Succ]− 1|.

A protocol P is a secure GKE if it is secure against a passive adversary, i.e. for any PPT adversary A
the advantage AdvA,P

(
1k

)
is negligible. Protocol P is a secure authenticated GKE(AGKE) if it is secure

against an active adversary. We use AdvKE
P (t, qex, qt) to denote the maximum advantage of any passive

adversary attacking P, running in time t, asking qex Execute queries and qt Test queries. For the AKE we
use AdvAKE

P (t, qex, qs, qt) where qs is number of Send queries.
Efficiency Concerns. Number of players in the GKE can be quite large, therefore efficiency is a major
concern. For GKE to be scalable it should be constant round, should have minimum possible communica-
tion(number of messages exchanged) and computational complexity. We consider both overall complexity
and average complexity per user(It should be noted that our protocols are more valuable in the case when
a subset of users has access to lesser computational resources).

3 A replay attack:

In this section, we give a replay attack on the protocols produced by [3] upon application of the compiler to
some base 2-party PAKE protocols (although they do not claim the resilience against replay attacks, it is
an important requirement and can easily be achieved by establishing a unique session ID for every different
run of the protocol). For the description of the protocol we refer the reader to [3]. The compiler in [3] is an
extended work on 2-party PAKE to GPAKE due to Abdalla et. al. [2] inorder to consider group dynamism
(i.e. Join and Leave) but they do not use the unique randomness as used in [2]. The protocol due to [2] is
secure against replay attacks while [3] is not because of the unique randomness used in [2] throughout the
scheme.

Let P be the underlying 2-KE(or 2-PAKE) which is authenticated and secure. The scheme in [3] do not
give any description of the unique session identifier for the GKE protocol, therefore the protocol obtained
is prone to replay attack. Let A be an active adversary. First A observes the honest run of the protocol
between the members U1, U2, . . . , Un and saves the values X1, X2, . . . , Xn broadcasted by the users. If every
member has broadcasted the right value and the protocol is successful then, X1⊕X2⊕ . . .⊕Xn = 0. A waits
for the initiation of another run of the protocol between the same set of users and allows the first round to
complete without any interruption. During the second round when U1 broadcasts X

′

1 to all other users, A
replays X

′

2, X
′

3, . . . , X
′

n on user U1 as if it were broadcasted by all others to U1 and lets all other members
operate according to the protocol. Here,

X
′

2 = X2 ⊕ X1, X
′

n = Xn ⊕ X
′

1 and X
′

i = Xi for all other i.

As X
′

1 ⊕ X
′

2 . . . ⊕ X
′

n = 0, replayed values pass the verification test of U1. U1 computes the secret key
according to replayed values, while all others compute the intended secret key. We show that A has a non
negligible advantage in the security game in ROR model. First A asks the Execute(U1, U2, . . . , Un) and
stores the transcript which contains all the Xi for i = 1, . . . , n. Then it starts another run of the protocol
and replays the messages as above using the proper Send queries. A then asks Test oracle to U1 and another
fresh instance(Note that instance corresponding to U1 is also fresh as no Reveal or Corrupt query has been
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asked on this instance). If the randomly chosen bit b of the simulator is 0 then both of them output different
value because session keys computed by both of them are different. Otherwise they output the same random
value. Therefore, comparing the output of the Test oracles, A can guess the correct value of bit b and thus
can win the game in all the cases.

This attack can be avoided by having a unique session identifier(session ID) for each new run of the
protocol and sending it with all the messages so that messages of one session cannot be replayed in the
succeeding sessions.

4 Efficient Compilers from 2/3 KE to GKE

In this section we present compilers for transforming a secure 2/3 KE into secure GKE. First, we present
a compiler (2-TGKE) for 2-KE to tree based GKE transformation, then we present a similar compiler(3-
TGKE) which uses 3-KE as the basic protocol. Finally, we give a compiler(3-CGKE) for converting 3-KE
to GKE in circular topology. Protocols obtained by our compilers are not authenticated but authenticated
protocols can be obtained by using the techniques in [18] for tree based protocols (Note: It should be noted
that using the techniques in [18] keeps the complexity of the protocol intact). For circular geometry, compiler
in [15] can be used. Our compiler follows the design similar to [1],[2],[3] but it should be noted that we are
the first to consider such compilers for 3-party key exchange protocols as well as for tree topology. We follow
the approach of [3] to consider group dynamism. For tree based protocols we assume that users join and
leave at lowermost level only so as to maintain the almost complete structure of the binary tree. Due to space
constraint we give Join and Leave for 2-TGKE only, which can easily be adapted to work for 3-TGKE and
3-CGKE also.

4.1 2-KE to TGKE (2-TGKE)

Let the members who wish to share the key be arranged in an almost complete binary tree structure (refer
Fig. 1.) We denote user i by Ui and use parent(i), left(i), right(i) to denote parent of Ui, left child of Ui and
right child of Ui respectively. We assume that 1 and 2 are parents of each other. Let 2-P be the underlying
two party key exchange protocol secure against passive adversary. Let κ be the security parameter then the
group key established belongs to {0, 1}κ. Let G = 〈g〉 be a cyclic group with prime order p. Similar to [3]
we choose a collision resistant pseudo random function F : {0, 1}∗ −→ {0, 1}l and an injective mapping
f : G −→ Zq( f is introduced to consider the group dynamism). Let P = {U1, U2, . . . Un} be the set of
participants. Our compiler works as follows:

1. Round 1: Each non-leaf user Ui establishes 2-P keys with its parent, left child and right child indepen-
dently with 3 runs of the 2-P protocol, while a leaf node establishes 2-P key with its parent only. Thus
non-leaf nodes have Ki,parent(i), Ki,left(i) and Ki,right(i), while leaf nodes have Ki,parent(i).

2. Round 2: Each non-leaf user Ui computes and broadcasts
Xleft = f(gKi,parent(i)) ⊕ f(gKi,left(i)) to its left descendants and
Xright = f(gKi,parent(i)) ⊕ f(gKi,right(i) ) to its right descendant

3. Each user Ui computes

Ni = f(gKi,parent(i))

Nparent(i) = Xi ⊕ Ni

Nparent(parent(i)) = Xparent(i) ⊕ Nparent(i)

...

N1 = X3 ⊕ N3 = f(gK1,2), if Ui is a descendent of U3

OR

N1 = X4 ⊕ N4 = f(gK1,2), if Ui is a descendent of U4
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OR

N2 = X5 ⊕ N5 = f(gK1,2), if Ui is a descendent of U5

OR

N2 = X6 ⊕ N6 = f(gK1,2), if Ui is a descendent of U6

Now, the shared secret key can be obtained by Ui as F
(
f(gK1,2) ‖ P

)
.

21

3 4 5 6

7 8 9 10 11 12 13 14

Level 1

Level 2

Level 3... .
..

...
...

...
...

.

..
.
..

Fig. 1.

Now we give Join and Leave algorithms for considering group dynamism for 2-TGKE.

Join: Let J = {Un+1, Un+2, . . . , Un+n′} (n′ ≥ 1) be the set of new members who wish to join the existing
group P . It is required that none of these new members should be able to know the previously established
keys. Algorithm works as follows:

– Round 1: Members of J are arranged at the bottom of tree so as to maintain the almost complete binary
tree structure. Each member Un+j(j = 1, . . . , n′) of J executes 2-P with its parent and with both children
also independently if it is a non-leaf node to get the corresponding keys. All previously existing members
update their old 2-P keys by squaring them to obtain their new 2-P keys (K2

i,parent(i), K
2
i,left(i), K

2
i,right(i),

for i = 1 to n ).
– Round 2: Same as Round 2 of 2-TGKE with group size n + n′.
– The shared secret key is computed similar to step 3 of 2-TGKE with group size n + n′.

Intuitively, the security depends on the inability of a newly joining member to compute gx from gx2
.

Leave: Let L = {Un−n′+1, . . . , Un} (n′ ≥ 1) be the set of n′ members who wish to leave from the existing
group P . It is required that none of these old members should be able to know the future keys of the reduced
group. We assume that the members leave from bottom only, maintaining the almost complete binary tree
structure. Algorithm works as follows:

– Round 1: Old 2-P keys established with the members of L are expired and the remaining members
update their new keys to the square of their old 2-P keys(K2

i,parent(i), K
2
i,left(i), K

2
i,right(i) etc.).

– Round 2: Same as Round 2 of 2-TGKE with group size n − n′.
– The shared secret key is calculated similar to step 3 of 2-TGKE with group size n − n′.

Security here depends on the inability of a leaving member to compute gx2
from gx.

Remark 1: Note that leaf nodes don’t have to do any broadcast, also leaf nodes have to participate
only in one run of the 2-P protocol while all non-leaf nodes have to participate in 3-runs of the 2-P protocol.
The protocol obtained can be used for the settings where, some users have lower computational power and
can’t do highly expensive broadcasts. Such a scene can occur quite frequently, for example consider the case
of security agency of some country having a head office in the capital where enough computational power
is available, it is also having zonal offices in state capitals and regional offices in other cities with in the
state, with computing powers in decreasing order. Finally, it is having some local agents in different cities of
various countries with mobiles or other hand held devices. Here, we require (1) Tree structure as an implicit
requirement, also (2) users at the lowest level don’t have enough computational power so a GKE given by
above compiler will be well suited for this kind of applications.

Remark 2: Note that the protocol obtained is secure against passive adversary only. To make it secure
against an active adversary we use the technique presented in [18].
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4.2 3-KE to TGKE(3-TGKE)

The tree in Fig. 2. gives a clean picture of the setting up of users in a binary tree format. Let 3-P be a three
party key exchange protocol secure against passive adversary. We show that it can be extended to obtain a
GKE secure against passive adversary in the following way:

Fig. 2.

1. Round 1: Each non-leaf user Ui (from level 1 onwards) establishes 3-P keys with (1) both children and (2)
its parent and sibling independently by running two instances of 3-P, while each leaf node establishes a 3-P
with its parent and sibling alone. Thus, non-leaf nodes compute Ki,left(i),right(i) and Ki,parent(i),sibling(i)

while leaf nodes compute only Ki,parent(i),sibling(i) (note: we use sibling(i) to represent the sibling of Ui

with respect to its parent parent(i)).
2. Round 2: Each non-leaf user Ui(from level 1 onwards) computes and broadcasts to all its descendants:

Xi = f(gKi,parent(i),sibling(i) ) ⊕ f(gKi,left(i),right(i) )

3. Each user i (i ≥ 2) computes,

Ni = f(gKi,parent(i),sibling(i))

Nparent(i) = Xparent(i) ⊕ Ni

Nparent(parent(i)) = Xparent(parent(i))⊕Nparent(i)

...

N1 = X1 ⊕ N3 = f(gK0,1,2), if Ui is a descendent of U3

OR

N1 = X1 ⊕ N4 = f(gK0,1,2), if Ui is a descendent of U4

OR

N2 = X2 ⊕ N5 = f(gK0,1,2), if Ui is a descendent of U5

OR

N2 = X2 ⊕ N6 = f(gK0,1,2), if Ui is a descendent of U6

Now, F
(
f(gK0,1,2) ‖ P

)
is the shared secret key of the group that is computed by each Ui.

Remark 3: Inorder to achieve group dynamism, Join and Leave can be done similar to 2-TGKE.
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4.3 3-KE to GKE for circular topology(3-CGKE)

Consider n users U1, U2, . . . Un arranged in a circular fashion (i.e. Un+1 = U1, Un+2 = U2 . . .). Assuming that
the number of users in the group is even (n = 2m), the compiler works as follows:

1. Round 1: Each user Ui (for i = 1, 3, 5, . . . , 2m− 1) establishes 3-P key with i − 2, i − 1 and i + 1, i + 2
to get Ki,i−1,i−2 and Ki,i+1,i+2.

2. Round 2: Each user Ui for (i = 1, 3, 5, . . . , 2m− 1) broadcasts Xi = f(gKi,i−1,i−2) ⊕f(gKi,i+1,i+2) to all
other users in the group.

Fig. 3.

3. Each user checks whether X1 ⊕ X3 ⊕ . . . X2m−1
?= 0. If the check fails it sets acci

U = 0 and terminates
the protocol. Otherwise, it evaluates (assuming that user U is from the triplet Ui, Ui+1, Ui+2)

Ni = f(gKi,i+1,i+2)

Ni+2 = Xi+2 ⊕ Ni

...

Ni+2m−2 = Xi+2m−2 ⊕ Ni+2m−4

In this way each user evaluates the secret key of all the triplets and sets F(f(gK1,2,3) ‖ f(gK3,4,5)
. . . f(gK2m−1,2m,1) ‖ P ) as the shared secret key of the group.

5 Security Proof:

In this section we prove the security of the compilers given in section 4. We prove that, if the underlying
protocol is secure against a passive adversary then the resulting GKE is secure against a passive adversary.
We consider security in ROR model where multiple Test queries are allowed. ROR model is apparently
stronger than traditional model where only one Test query is allowed, although both the model can be
shown to be equivalent with a loss of factor r, which is the number of protocol instances that the adversary
is given access to. Our proof is inline with [4][2] except that we do not give access to Send oracles as we are
dealing with a passive adversary. We give the proof of security of our first compiler (2-TGKE) only, which
can easily be adapted for other two compilers. Due to space constraint we do not give proof of security for
Join and Leave, we have given intuition for security with respect to Join and Leave algorithms in section
4.1, for full proof we refer the reader to Theorem2 of [3].

Theorem 1. Let Aror−KE
GKE be a passive adversary having non-negligible advantage against the security of

group key exchange produced by 2−TGKE compiler, running in time t and asking at most qexe, qreveal and
qt Execute, Reveal and Test queries respectively then there exists a passive adversary Aror−KE

2−P against the
security of the underlying 2-KE protocol 2-P such that

Advror−KE
AGKE

(t, qexe, qreveal, qt) ≤ 2Advror−KE
A2−P

(t, 2nqexe, qreveal, nqexe + 2qt)+

q2
exe

2q
+

q2
exe

2l+1
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Proof: We prove the security using a sequence of hybrid games, starting with the real attack and ending in
a game where adversary’s advantage is zero. We use AdvGi to denote the advantage of Aror−KE

GKE in Game i.
Game 0: This game corresponds to the real attack. By definition we have

Adv(G0) = Advror−KE
AGKE

Game 1: In this game we replace all the 2-P session keys by random session keys. We show below that
difference between the advantages of adversary in Game 0 and Game 1 is at most that of the advantage of
Aror−KE

2−P against the security of underlying 2-KE protocol 2-P

|Adv(G1) − Adv(G0)| = 2Advror−KE
A2−P

(t, 2nqexe, qreveal, nqexe + 2qt)

We show this by constructing an adversary Aror−KE
2−P using an adversary A, distinguishing Game 0 from

Game 1.
Aror−KE

2−P is given access to the simulation of 2-P. To answer its queries, Aror−KE
2−P first associates three

instances of 2-P with each non-leaf and a single instance of 2-P with each leaf user according to the specifi-
cation of 2-TGKE in section 5. Now, whenever A queries a Corrupt query, Aror−KE

2−P answers it by querying
its own Corrupt oracle. To answer an Execute query it first queries the Execute oracles of 2-P instances to
obtain the transcript for Round 1. To simulate the following rounds, Aror−KE

2−P first queries the Test oracles
of instances of 2-P and uses the returned values as the 2-P keys of Round 1 (Ki,parent(i), Ki,left(i), Ki,right(i)

etc.). It uses these values to construct the X ′
is broadcasted in Round 2 and returns the transcript. To simu-

late a Reveal query Aror−KE
2−P asks its Reveal oracle to the corresponding instance of the user 1 or 2 if it is

non-fresh, otherwise, it asks its Test oracle for that instance and uses the 2-P key obtained to construct the
session key and returns it. In a similar way it can simulate the Test oracle.

It is easy to observe that view of A corresponds to Game 0, if Test query reveals the actually exchanged
key and to Game 1 if Test returns a random element from the key space. Thus, A distinguishes the games
Game 0 from Game 1 with probability at most 2Advror−KE

A2−P
(t, 2nqexe, qreveal, nqexe + 2qt)

Game 2: Now the simulation of Execute is modified at the point of computing the session key. Simulator
keeps a list of assignments (N1, N2, . . . , Nn, i1, i2, . . . , in, U1, . . . , Un, sk). When a Reveal query is asked
simulator first checks whether the secret key for that session was already established and returns that key.
Otherwise, a key sk ∈ {0, 1}l is selected uniformly at random. The output of pseudo random function F is
indistinguishable from the random secret key sk except in case of a collision, which occurs with probability at

most
q2
exe

2l+1
. Also a collision might occur in the records (N1, N2, . . . , Nn) but that happens with a probability

at most
q2
exe

2q
. Therefore

|Adv(G2) − Adv(G1)| =
q2
exe

2q
+

q2
exe

2l+1

In Game 2, all session keys are chosen uniformly at random and the adversary has no advantage i.e.
Adv(G2) = 0. We get the result as,

Advror−KE
AGKE

(t, qexe, qreveal, qt) = |Adv(G0) − Adv(G2)|

≤ |Adv(G1) − Adv(G0)| + |Adv(G2) − Adv(G1)|

6 Constant round authenticated tree based group key exchange protocol
(2-TAGKE) - An instantiation

In this section, we give a constant round authenticated tree based group key exchange protocol(2-TAGKE)
obtained by applying a combination of our 2-TGKE compiler and techniques of Desmedt et.al.[18] on the
Diffie-Hellman key exchange protocol for two parties. Let P = {U1, U2, . . . Un} be the subset of users who
wish to establish a common group key and relU = {V1, V2, . . . , Vtu} be the set of ancestors of U(including
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U) whose broadcast will be processed by U . Let G be a group of prime order p and φ : G −→ {0, 1}κ be an
injective mapping. The set of users proceed in the following way:-

During the initialization phase each party U ∈ P generates the signing / verification key pair (PKU , SKU )
using the algorithm G(1κ).

Round 0:

– Each user Ui chooses a random nonce ri ∈ {0, 1}κ and broadcasts it to its descendants Ui|0|ri. Each
instance Πj

U stores the identities and their per round randomness together with the group ID in directjU .
Where directjU = (gid|V1|r1 . . . Vtu|rtu) and stores this as a part of its state information.

Round 1:

– Each non-leaf member Ui sends to its parent and children Ui|1|gai |σ where σ = SignSKUi
(1|gai |directjUi

).
While leaf members send only to their parent node.

– Each non-leaf member Ui on receiving the messages Us|k|gas |σs for s = {parent(i), left(i), right(i)}
checks that (1) Us ∈ pidj

Ui
, (2) k = 1 and (3) V erifyPKUs

(k|gas |directjUs
,σs) = 1. If any of these checks

fails, Πj
Ui

aborts the protocol and sets accj
Ui

= FALSE and skj
Ui

= NULL. Otherwise, it computes
Ki,s = φ((gas)ai) = φ(gas.ai) for s = {parent(i), left(i), right(i)}. While leaf users proceed in a similar
manner to compute Ki,parent(i) only.

Round 2:

– Each non-leaf member computes and broadcasts (Ui|2|Xleft|σleft) , (Ui|2| Xright|σright) to its left de-
scendants and right descendants respectively. Where Xleft = f(gKi,parent(i)) ⊕ f(gKi,left(i)), Xright =
f(gKi,parent(i)) ⊕ f(gKi,right(i) ), σleft = SignSKUi

(2|Xleft|directjUi
) and σright is equal to SignSKUi

(2|Xright|
directjUi

).

– Each member Ui on receiving the messages Us|k|Xs|σs where s ∈
{
reljUi

}
first goes through the verifi-

cation process as in Round 1 and then computes

Ni = f(gKi,parent(i))

Nparent(i) = Xi ⊕ Ni

Nparent(parent(i)) = Xparent(i) ⊕ Nparent(i)

...

N1 = X3 ⊕ N3 = f(gK1,2), if Ui is a descendent of U3

OR

N1 = X4 ⊕ N4 = f(gK1,2), if Ui is a descendent of U4

OR

N2 = X5 ⊕ N5 = f(gK1,2), if Ui is a descendent of U5

OR

N2 = X6 ⊕ N6 = f(gK1,2), if Ui is a descendent of U6

Now, each user computes the shared secret key of the group as F
(
f(gK1,2) ‖ P

)
.

Remark 1: 2-TAGKE runs in 3 rounds. For each run of the protocol n
2 non-leaf users require 6 exponenti-

ations (E) and n
2 leaf users require only 4 E. (Note: two extra exponentiations in Round 2 are to consider

dynamism). Therefore on an average 5 exponentiations are to be computed per user(3 if dynamism is not
considered). On an average each user has to compute 2 signatures(S), lg n XORs and has to do at most
O(lg n) signature verifications(V).

Remark 2: 2-TAGKE is efficient communication wise. On an average each user needs to do 1 broadcast(b)
to O(lg n) users and 2 point to point communication(Overall O(n lg n) communication overhead is there as
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compared to O(n2) for [1]). Users at the bottom don’t have to do any broadcast, therefore 2-TAGKE is
useful in applications where leaf users have lower computational power.

Remark 3: Security of 2-TAGKE follows from the security proof in Section 5 and security proof of [18].

Remark 4: Note that 2-TAGKE is non contributory. In fact, no protocol with computation and communi-
cation complexity lower than O(n) can be fully contributory [18].

In a similar fashion we can obtain 3-TAGKE and 3-CAGKE by application of 3-TGKE and 3-CGKE
protocol on joux’s 3-party protocol [30].

7 Comparison:

In this section, we compare our compilers with the existing protocols. In Table 1 we compare the various
properties of GKE protocols such as Topology, whether they are Dynamic or not, the Work Distribution
among the members of a group and whether the schemes are Contributory. We are the first to consider
the compiler for transformation of 2/3 KE to GKE in tree based settings. Mayer et.al. [31] considered the
transformation of any two party authenticated key transport to group key transport but it is not scalable.

The tree based authenticated group key exchange protocols obtained from 2-TGKE and 3-TGKE by
applying the techniques in [18] are named 2-TAGKE and 3-TAGKE respectively. We compare the efficiency
of protocols obtained by applying Diffie-Hellman 2-party protocol and Joux’s 3-party protocol to our tree
based compilers 2-TAGKE and 3-TAGKE respectively with the authenticated version of few existing GKE
protocols, based on tree topology and arbitrary structures. We compare the number of rounds (Rounds)
required to complete the protocol, message length (Length) with respect to the security parameter, message
complexity (Message), communication complexity (Comm) and computational complexity (Computation).
The various notations and parameters which are considered for comparison of computation overhead are
‘PM’ that denotes scalar multiplication of points on elliptic curve, ‘pa’ for pairing computation, ‘M’ for
multiplication of field elements, ‘E’ for exponentiation of a group element, ‘S’ for signature generation and
‘V’ for signature verification. The parameters, Message and Comm in Table 2 are compared by the number
of point-to-point communication per user represented by ‘p’ and the number of broadcasts per user which
is represented by ‘b’. In particular, we would like to compare 2-TAGKE with BD-II because both are non-
contributory and have O(lg n) computation and communication complexity. But 2-TAGKE is dynamic while
BD-II is not, also BD-II requires lg n multiplications while 2-TAGKE requires lg n XORs which are easier to
compute. For 3-TAGKE, if the parameters are chosen appropriately such that pairing computation is fast
then the pairing based protocols can give performance comparable to discrete logarithm based protocols.

Compiler of Hwang et. al. [1] converts a two party authenticated KE protocol to GKE assuming the
circular topology as the base structure. We compare the authenticated versions of BD-I [5, 7], the GKE ob-
tained by applying Diffie-Hellman 2-party protocol to the compiler in [1] (HLGKE) and 3-CAGKE (applying
the authentication compiler given in [15] and 3-party Joux’s protocol to 3-CGKE we obtain 3-CAGKE) in
Table 3. It can be observed from Table 3 that 3-CAGKE is far more efficient than BD-I and HLGKE. It
should be noted that BD-I and HLGKE are contributory but 3-CAGKE is not.

Table 1: Comparison of the properties of few authenticated GKE schemes
Topology Dynamic Work Distribution Contributory

BCPQ[19] Any - Asymmetric
√

BN PK[32] Any - Asymmetric
√

BN DH[32] Any - Asymmetric
√

BD-I[5, 7] Circular - Symmetric
√

BD-II[6] Tree - Symmetric -
BD-II seq [6] Tree - Asymmetric -
HLGKE [1] Circular - Symmetric

√

2-TAGKE Tree
√

Asymmetric -
3-TAGKE Tree

√
Asymmetric -

3-CAGKE Circular
√

Asymmetric
√
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Table 2: Comparison of the costs of few authenticated GKE schemes in arbitrary and tree topology
Rounds Message Comm Length Computation

BCPQ[19] n 2b (n − 1)p, 2b O(1) nS, nV, nE, nM
BN PK[32] 1 1b 1b O(n) 1S, nV , 2(n − 1)E, (n − 1)M
BN DH[32] 2 1p, 1b (n1)p, 1b O(n) 2S, nV, nE, (n − 1)M
BD-II[6] 3 3p, 1b 6p, (log2n)b O(1) 2S, (log2n)V, 3E, (log2n)M
BD-II seq [6] (log2n) 5p 6p O(1) 3S, 4V , 4E, 2M
2-TAGKE 3 1b, 3p O(lg n)b, 3p O(1) 2S, lg nV, 5(3)∗E, lg n XOR
3-TAGKE 3 1b, 4p O(lg n)b, 4p O(1) 1.5S, lg nV, 3E(1.5E), 1 PM, 1.5 pa, lg n XOR

Table 3: Comparison of the costs of authenticated GKE in circular topology
Rounds Message Comm Length Computation

BD-I[5, 7] 3 2p, 1b 4p, nb O(1) 2S, nV , 3E, (2n − 1)M
HLGKE [1] 3 1b, 2p (n − 1)b, 2p O(1) 2S, (n + 1)V, 3E, (n − 1) XOR
3-CAGKE 3 1b, 4p n − 1b, 4p O(1) 1.5S, n

2 V, 3E(1.5E), 1 PM, 1.5 pa, (n
2 − 1) XOR

8 Conclusion:

We have presented efficient and scalable compilers for transformation of secure 2/3 KE to secure GKE,
both in tree (2-TGKE/3-TGKE) and circular (3-CGKE) topologies. We proved the security of our compilers
in ROR model without assuming the existence of random oracles. Protocols produced by our tree based
compilers have O(lg n) computational and communication complexity which is very efficient when compared
to the existing compiler due to [1] which requires O(n) computational and communication complexity in the
circular topology. We have also compared the authenticated versions of the protocols obtained by applying
2-party Diffie-Hellman KE to 2-TGKE (2-TAGKE) and 3-party Joux’s protocol to 3-TGKE (3-TAGKE)
with few other existing schemes that are in tree as well as arbitrary topologies. We have also demonstrated a
weakness in the protocol in [3] due to replay attack. Finally, we presented a constant round authenticated tree
based group key exchange protocol with performance better than BD-II. It is an interesting open problem
to design a contributory protocol for tree based setting which is efficient like the protocols presented in this
paper.
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