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1 Introduction

Recently, algebraic attack has gained a lot of attention in cryptanalysis [1–
8]. The main idea of algebraic attack is to deduce the security of a stream
cipher to solve an over-defined system of multivariate nonlinear equations. To
implement algebraic attack, attackters firstly construct equation system between
the input bits (the secret key bits) and the output bits, then recover the input
bits by solving the equation system with efficient methods such as Linearization,
Relinearization, XL, Grönber bases, etc. [9–11].

Algebraic attack was firstly applied to LFSR (Linear Feedback Shift Register)-
based stream cipher by Courtois and Meier [1] in 2003. By searching low degree
annihilator, some LFSR-based stream ciphers such as Toyocrypt, LILI-128 [1],
SFINKS [5], etc. were successfully attacked. The efficiency of algebraic attack is
guaranteed by the existing of low degree multiple for any Boolean function [2].
That is, for any n-variable Boolean function, there exists multiple function with
degree no more than

⌈
n
2

⌉
. The core of algebraic attack is to find out minimum

degree nonzero annihilators of f or of f+1. This minimum degree is related to
the complexity of algebraic attacks [2].

To resist algebraic attack, a new cryptographic property of Boolean functions
which is known as algebraic immunity (AI) has been proposed by Meier et al. [2].
The AI of a Boolean function expresses its ability to resist standard algebraic
attack. Thus the AI of Boolean function used in cryptosystem should be suffi-
ciently high. Courtois and Meier [1, 2] showed that, for any n-variable Boolean
function, its AI is bounded by

⌈
n
2

⌉
. If the bound is achieved, we say the Boolean

function have optimum AI. Obviously, a Boolean function with optimum AI has
strongest ability to resist standard algebraic attack. Therefore, the construction
of Boolean functions with optimum AI is of great importance.
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Dalai et al. [14, 15] presented Boolean functions with optimum AI in even
variables by an recursive construction. It’s a second order recursive construc-
tion. Further study [14] showed that the functions are not balanced (although
it is possible to build balanced ones from them, but there would result in extra
computation). Another class of constructions [16–18] contains symmetric func-
tions. Being symmetric, they present a risk if attacks using this peculiarity can
be found in the future. Moreover, they do not have high nonlinearities either [19].
Li [21–23] proposed a method to construct all (2k+1)-variable Boolean functions
with optimum AI from one such given function. The construction has theoretical
sense. But the computational complexity of the construction do not have been
well studied. Carlet and Feng [24] proposed a well construction based on the
Boolean functions’ trace representation, recently. Their Boolean functions have
not only optimum AI but also high nonlinearity. Furthermore, they also have
a good behavior against fast algebraic attacks, at least for small values of the
number of variables. The drawback of the construction is the high complexity of
the computation for the value of f(x).

Many researches show that, Boolean functions in odd variables have differ-
ent properties from those in even variables, especially for ones with optimum
AI. For example, odd variables Boolean functions with optimum AI must be
balanced [25], the majority function is the only symmetric function depending
on an odd number of variables which has maximum AI [26], etc.. Dalai’s con-
struction [14,15] is also a case of that. Hence, people sometimes divide Boolean
functions into two categories (odd variables Boolean functions and even variables
Boolean functions) , and specify their research in one of them [21,22,25–29]. In
this way, properties of Boolean functions in specific type are found. But the rela-
tion between Boolean functions in different party number of variables is omitted.

We propose a first order recursive construction of Boolean function with
optimum AI. In the construction, we obtain even variable Boolean function from
odd ones, and odd ones from even ones, too. Hence the construction has sense
to study the relation between Boolean functions in different party number of
variables.

The organization of the paper is as follows. In the following section we give
some preliminaries about Boolean functions. In Section III, we present the con-
struction of Boolean functions with optimum AI. Their cryptographic properties
are studied in Section IV. Section V concludes the paper.

2 Preliminaries

Let F2 = {0, 1}, be the finite field with two elements. Then a Boolean function
in n variables is defined as mapping from Fn

2 into F2. We denote by Bn the set
of all n-variable Boolean functions. A basic representation of a Boolean function
f(x1, · · · , xn) is by the output column of its truth table, i.e., a binary string of
length 2n,

f = [f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)].
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Sometimes, we may use a binary string of length 2n to represent a n-variable
Boolean function.

For an n-variables Boolean function f , we define its support and offset as

supp(f) = {x ∈ Fn
2 |f(x) = 1},

offset(f) = {x ∈ Fn
2 |f(x) = 0}.

and denote them by 1f and 0f respectively. The Hamming weight wt(f) of f is
the size of supp(f), i.e., wt(f) = | supp(f)|. It counts the number of 1’s in the
truth table of f . We say f is balanced, if the truth table contains an equal number
of 1’s and 0’s, i.e., supp(f) = offset(f), implying wt(f) = 2n−1. The Hamming
distance between two Boolean functions, f and g, is denoted by d(f, g) and is the
number of places where their truth tables differ. Note that d(f, g) = wt(f + g)
(by abuse of notation, we also use + to denote the addition in F2, i.e., the XOR);

Any Boolean function has a unique representation as a multivariate polyno-
mial over F2, called the algebraic normal form (ANF):

f(x1, · · · , xn) =a0 +
∑

1≤i≤n

aixi+∑
1≤i≤j≤n

aijxixj + · · ·+ a12···nx1x2 · · ·xn,

where the coefficients a0, ai, aij , · · · , a12···n ∈ F2. The algebraic degree deg(f) of
f is the number of variables in the highest order term with nonzero coefficient.
A Boolean function is affine if it has algebraic degree at most 1 and we denote
by An the set of all affine functions in n variables.

The nonlinearity of an n-variable function f is its distance from the set of
all n-variable affine functions, i.e.,

nl(f) = min
g∈An

(d(f, g)).

To be cryptographically secure [30, 31], Boolean functions used in crypto-
graphic systems must be balanced to prevent the system from leaking statistical
information on the plaintext when the ciphertext is known, have high algebraic
degree to counter linear synthesis by Berlekamp-Massey algorithm, have high
order of correlation immunity to counter correlation attacks, and have high non-
linearity to withstand linear attacks and correlation attacks.

Recently, it has been identified that any combining or filtering should not
have a low-degree-multiple. More precisely, it is shown in [1] that, given any
n-variable Boolean function f , it is always possible to get a Boolean function g
with degree at most

⌈
n
2

⌉
such that f ·g has degree at most

⌈
n
2

⌉
. Therefore, while

choosing a Boolean function f , the cryptosystem designer should avoid that the
degree of f · g falls much below

⌈
n
2

⌉
with a nonzero Boolean function g whose

degree is also much below
⌈

n
2

⌉
. Otherwise, resulting low degree multivariate

relations between key bits and output bits of Boolean function f will allow a
very efficient attack. As observed in [1, 2], it is necessary to check that f and
f + 1 do not admit nonzero annihilators of low degrees.
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Definition 1. Given f ∈ Bn, we define

Ann(f) = {g ∈ Bn|f · g = 0}.

Any function g ∈ Ann(f) is called an annihilator of f .

It’s explicit that a function g is an annihilator of f if and only if g takes value
0 on supp(f), i.e.,

g ∈ Ann(f) ⇔ 1f ⊆ 0g.

Definition 2. Given f ∈ Bn, we define its algebraic immunity, denote by AIn(f),
as the minimum degree of all nonzero annihilators of f or f + 1, i.e.,

AIn(f) = min{deg(g)|0 6= g ∈ Ann(f) ∪Ann(f + 1)}.

We usually denote AIn(f) by AI(f) for short, when there is no confusion
about the number of variables.

Note that AI(f) ≤ deg(f), since f · (f + 1) = 0. As f or f + 1 must have
an annihilator at an algebraic degree ≤

⌈
n
2

⌉
[1], we have AI(f) ≤

⌈
n
2

⌉
. If an n-

variable Boolean function f satisfies that deg(f) =
⌈

n
2

⌉
, we say it has optimum

AI. The AI of a Boolean function expresses its ability to resist standard algebraic
attack. So, Boolean functions with higher AI (even optimum AI) is preferred in
cryptosystem. Note that although AI is not a property that can resist all kinds
of algebraic attacks, but clearly still a necessary one.

3 A First Order Recursive Construction of Boolean
Function with Optimum Algebraic Immunity

From now on, we use a binary string of length 2n to express an n-variable
Boolean function, and denote by “‖” the concatenation of binary strings.

For example, let s, t ∈ B2, and s = x1x2 +x2 +1, t = x1x2 +x2. In the truth
table representation, they are s = 1101, t = 0010. Let u = s‖t = 11010010, then
u ∈ B3, and u = x1x2 + x2 + x3 + 1.

For the denotation “‖”, the following proposition holds.

Proposition 1. Given f1, f2 ∈ Bn, let f = f1‖f2, then

i) f ∈ Bn+1, and f = f1 + xn+1(f1 + f2);
ii) deg(f1),deg(f2) ≤ deg(f);
iii) for any g ∈ Ann(f), decompose it as g = g1‖g2 where g1, g2 ∈ Bn, then

g1 ∈ Ann(f1) and g2 ∈ Ann(f2).

Now, we’re proposing a first order recursive construction of Boolean function,
and then proving that they have optimum AI.

Construction 1. {
φn+1 = φn‖φ1

n,

φi
n+1 = φi−1

n ‖φi+1
n ,

(1)

with base step φ0
n = φn, φj

1 = x1 + (j mod 2), i, n ≥ 1, j > 0.
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By Proposition 1, (1) can be transformed into the algebraic form as following:{
φn+1 = φn + xn+1(φn + φ1

n),
φi

n+1 = φi−1
n + xn+1(φi−1

n + φi+1
n ).

(2)

We list part of the Boolean functions in Table 1 and Table 2. To understand
the recursion more precisely, see Fig. 1.

Table 1: Boolean functions in Construction 1 (truth table)

φ1 = 10 φ1
1 = 01 φ2

1 = 10 φ3
1 = 01 · · ·

φ2 = 1001 φ1
2 = 1010 φ2

2 = 0101 · · ·
φ3 = 10011010 φ1

3 = 10010101 · · ·
φ4 = 1001101010010101 · · ·

Table 2: Boolean functions in Construction 1 (ANF)

φ1=x1+1 φ1
1=x1 φ2

1=x1+1 φ3
1=x1 · · ·

φ2=x2+x1+1 φ1
2=x1+1 φ2

2=x1 · · ·
φ3=x2x3+x2+x1+1 φ1

3=x2x3+x3+x2+x1+1 · · ·
φ4=x3x4+x2x3+x2+x1+1 · · ·

(a) The recursion of φn (b) The recursion of φ5

Fig. 1: The recursion of Boolean functions in Construction 1

To prove that φn has optimum AI, we need intermediate results. For technical
reasons, during our proofs, we will encounter certain situations when the degree
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of a function is negative. As such functions do not exist, we will replace them
by function 0.

Lemma 1. Given n ≥ 1, assume that the function φn ∈ Bn has been generated
by Construction 1 and AI(φt) =

⌈
n
2

⌉
for 1 ≤ t ≤ n. If, for some 0 ≤ i ≤ n− 2,

there exists g ∈ Ann(φi
n) and h ∈ Ann(φi+1

n ) such that deg(g + h) ≤
⌊

n−i
2

⌋
− 1,

then g = h.

Proof. We prove it by induction on n.
For the base step n = 1, 0 ≤ i ≤ −1 implies that functions in the assumption

cannot exist, i.e., g = h = 0.
Now we prove the inductive step. Assume that, for n < k, the induction

assumption holds (for every 0 ≤ i ≤ n− 2). We show it for n = k and for every
0 ≤ i ≤ n− 2.

Suppose that there exists g ∈ Ann(φi
k) and h ∈ Ann(φi+1

k ) such that deg(g +
h) ≤

⌊
k−i
2

⌋
− 1. We decompose g and h as g = g1‖g2, h = h1‖h2 where

g1, g2, h1, h2 ∈ Bk−1. By Proposition 1, we have:

g + h = (g1 + h1) + xk(g1 + h1 + g2 + h2), (3)

g1 ∈ Ann(φi−1
k−1), g2 ∈ Ann(φi+1

k−1),

h1 ∈ Ann(φi
k−1), h2 ∈ Ann(φi+2

k−1).

And deg(g1 + h1) ≤ deg(g + h) ≤
⌊

k−i
2

⌋
− 1.

1) To prove g1 = h1

a) If i = 0, then g1 + h1 ∈ Ann(φk−1) since g1, h1 ∈ Ann(φk−1). By
hypothesis, AI(φk−1) =

⌈
k−1
2

⌉
. Since deg(g1 + h1) ≤ deg(g + h) ≤

⌊
k
2

⌋
− 1 ≤

AI(φk−1), we have g1 + h1 = 0, according to induction assumption. That is
g1 = h1.

b) If i > 0, then deg(g1 + h1) ≤
⌊

k−i
2

⌋
− 1 =

⌊
(k−1)−(i−1)

2

⌋
− 1, thus

g1 = h1, according to induction assumption.
2) To prove g2 = h2

Equation (3) changes into g + h = xk(g2 + h2), since g1 + h1 = 0. Thus
deg(g2 +h2) = deg(g +h)−1 ≤

⌊
k−i
2

⌋
−1−1 =

⌊
(k−1)−(i+2)

2

⌋
−1, then g2 = h2,

according to induction assumption.
Hence we get g + h = 0, i.e., g = h which finishes the proof. ut

Lemma 2. Given n ≥ 1, assume that the function φn ∈ Bn has been generated
by Construction 1 and AI(φt) =

⌈
t
2

⌉
for 1 ≤ t ≤ n. If, for some 0 ≤ i ≤ n − 2,

there exists g ∈ Ann(φi
n) ∩Ann(φi+1

n ) such that deg(g) ≤
⌊

n+i
2

⌋
, then g = 0.

Proof. We prove Lemma 2 by induction on n.
For the base step n = 1, it can easily be checked.
Now we prove the inductive step. Assume that, for n < k, the induction

assumption holds (for every 0 ≤ i ≤ n− 2). We show it for n = k and for every
0 ≤ i ≤ n− 2.
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Suppose that there exists g ∈ Ann(φi
k)∩Ann(φi+1

k ) such that deg(g) ≤
⌊

k+i
2

⌋
.

We decompose g as g = g1‖g2 where g1, g2 ∈ Bk−1, then

g = g1 + xk(g1 + g2), (4)

according to Proposition 1.
1) If i = 0, then {

φk = φk−1‖φ1
k−1

φ1
k = φk−1‖φ2

k−1

.

By Proposition 1, we have

g1 ∈ Ann(φk−1), and g2 ∈ Ann(φ1
k−1) ∩Ann(φ2

k−1).

Since deg(g) ≤
⌊

k
2

⌋
, we get deg(g2) ≤

⌊
k
2

⌋
=
⌊

(k−1)+1
2

⌋
.

Thus g2 = 0, according to induction assumption.
Then Equation (4) changes into g = (1 + xk)g1, which implies deg(g1) =

deg(g) − 1 ≤
⌊

k
2

⌋
− 1 <

⌊
k−1
2

⌋
. Since g1 ∈ Ann(φk−1) and, by hypothesis,

AI(φk−1) =
⌊

k−1
2

⌋
, there would be g1 = 0. And then g = 0.

2) If i > 0, then {
φi

k = φi−1
k−1‖φ

i+1
k−1

φi+1
k = φi

k−1‖φ
i+2
k−1

.

By Proposition 1, we have

g1 ∈ Ann(φi−1
k−1) ∩Ann(φi

k−1),

g2 ∈ Ann(φi+1
k−1) ∩Ann(φi+2

k−1).

Since deg(g2) ≤ deg(g) ≤
⌊

k+i
2

⌋
=
⌊

(k−1)+(i+1)
2

⌋
, we have g2 = 0, according

to induction assumption.
Then Equation (4) changes into g = (1 + xk)g1, which implies deg(g1) =

deg(g) − 1 ≤
⌊

k+i
2

⌋
− 1 <

⌊
(k−1)+(i−1)

2

⌋
. Thus g1 = 0, according to induction

assumption. And then g = 0.
Hence we get g = 0, by 1) and 2). This completes the proof. ut

Theorem 1. The function φn obtained in Construction 1 has optimum algebraic
immunity, for every n ≥ 1, i.e.,

AI(φn) =
⌈n

2

⌉
.

Proof. We prove Theorem 1 by induction on n.
For the base step n = 1, it can easily be checked.
Now we prove the inductive step. Assume that, for n < k, the induction

assumption holds. We show it for n = k.
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We have to prove that any nonzero function g such that g·φk = 0 has degree at
least

⌈
k
2

⌉
(proving that any nonzero function g such that g·(φk+1) = 0 has degree

at least
⌈

k
2

⌉
is similar). Suppose that such a function g with deg(g) <

⌈
k
2

⌉
exists.

Then, g can be decomposed as g = g1‖g2 where g1, g2 ∈ Bk−1. By Proposition
1, we have

g = g1 + xk(g1 + g2), (5)

g1 ∈ Ann(φk−1), g2 ∈ Ann(φ1
k−1).

By Equation (5), we can see

deg(g1 + g2) ≤ deg(g)− 1 <

⌈
k

2

⌉
− 1 =

⌊
k − 1

2

⌋
,

i.e., deg(g1 + g2) ≤
⌊

k−1
2

⌋
− 1. Thus we get g1 = g2 by Lemma 1. Then

g = (1 + xk)g1, (6)

g1 ∈ Ann(φk−1) ∩Ann(φ1
k−1).

By Equation (6), we can see

deg(g1) = deg(g)− 1 <

⌈
k

2

⌉
− 1 =

⌊
k − 1

2

⌋
,

i.e., deg(g1) ≤
⌊

k−1
2

⌋
− 1. Thus we get g1 = 0 by Lemma 2.

Hence g = 0, which completes the proof. ut

4 The analysis of other cryptographic properties

In this section, we will analyze other cryptographic properties of the con-
structed Boolean functions. In the analysis, we lay emphasis on their balance,
algebraic degree and nonlinearity.

4.1 Balance

From the recursive definition, we can see that φi
n’s (n > 1, i ≥ 0) truth table

is concatenated by φi−1
n−1’s and φi+1

n−1’s. If φi−1
n−1 and φi+1

n−1 are both balanced, then
φi

n is of course balanced, too. Since the base functions φj
1(j ≥ 0) are balanced (it

can be easily checked), we can easily infer the following property by induction
on n.

Property 1. The Boolean function φi
n(n > 1, i ≥ 0) obtained in Construction 1

is balanced. Specially, φn is balanced.
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4.2 Algebraic Degree

Observing the Boolean functions’ ANFs in Table 2, we can find that every
function has and only has one term containing x1, and the unique term is x1.
Actually, we have the following property.

Property 2. Let ϕi
n = x1 + φi

n(n > 1, i ≥ 0), then ϕi
n does not have any term

containing variable x1.

Proof. We prove it by induction on n.
For the base step n = 1, ϕi

i = 1 + (i mod 2), the assertion obviously holds.
Assume that the induction assumption holds until n < k, then we show it

for n = k.
1) If i = 0, then

ϕ0
k = x1 + φ0

k = x1 + xk(φ0
k−1 + φ1

k−1)

= x1 + (x1 + ϕ0
k−1) + xk(x1 + ϕ0

k−1 + x1 + ϕ1
k−1)

= ϕ0
k−1 + xk(ϕ0

k−1 + ϕ1
k−1).

2) If i > 0, then

ϕi
k = x1 + φi

k = x1 + xk(φi−1
k−1 + φi+1

k−1)

= x1 + (x1 + ϕi−1
k−1) + xk(x1 + ϕi−1

k−1 + x1 + ϕi+1
k−1)

= ϕi−1
k−1 + xk(ϕi−1

k−1 + ϕi+1
k−1).

According to induction assumption, none of ϕ0
k−1, ϕ1

k−1, ϕi−1
k−1 and ϕi+1

k−1 has
any term containing x1. Thus, ϕi

k does not have any term containing x1, either.
This completes the proof. ut

Property 2 shows that, for any n > 1, i ≥ 0, φi
n has and only has one term

containing variable x1, and furthermore, the unique term is x1. That means we
just need to consider the terms excluding variable x1, when analyze φn’s (n > 1)
algebraic degree. We denote by cn and ci

n the 2-variable (x2 and x3) functions
equal to the factors of x3x4 · · ·xn in the ANFs of φn and φi

n, for n > 3. From
φi

n’s recursion, we can easily infer that cn+1 = cn + c1
n, ci

n+1 = ci−1
n+1 + ci+1

n+1. It’s
difficult to compute cn and ci

n from this recursion directly. With the method
used in proving Proposition 5 of [14], we get the following property.

Property 3. Let cn(n > 3) be the 2-variable (x2 and x3) function equal to the
factor of x3x4 · · ·xn in the ANF of φn. And define that: c0 = cst, c1 = cst, c2 =
x2x3 + x2 + x3 + cst. Then we have

cn =
blog2 nc∑

t=0

cn−2t + cst, (7)

where cst is some bit depending on n.
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Table 3: Values of cn for n ≤ 21

n cn n cn

0 cst 11 cst
1 cst 12 cst
2 x2x3 + x2 + x3 + cst 13 cst
3 x2x3 + x2 + cst 14 cst
4 x3 + cst 15 cst
5 x2x3 + x2 + x3 + cst 16 cst
6 x3 + cst 17 x2x3 + x2 + x3 + cst
7 cst 18 x3 + cst
8 cst 19 cst
9 x2x3 + x2 + x3 + cst 20 cst
10 x3 + cst 21 cst

We compute cn for n ≤ 21, and list them in Table 3.
According to Property 3 and Table 3, it can be easily inferred by induction

that

cn(n ≥ 4) =


x2x3 + x2 + x3 + cst n = 2k + 1,

x3 + cst n = 2k + 2,

cst others.
(8)

Since φn(n ≥ 4) has no high order terms that containing x1 (by Property 3),
deg(φn) ≤ n − 1. According the meaning of cn, if deg(cn) > 0, then deg(φn) =
deg(cn) + (n− 3). Thus, formula (8) can be deduced into

deg(φn)(n ≥ 4) =

{
n− 1 n = 2k + 1,

n− 2 n = 2k + 2.
(9)

From formula (2), it’s clearly that deg(φk+1) ≥ deg(φk), i.e., deg(φn) is an
increasing function of n. To sum up, we get the following property:

Property 4. Given n ≥ 4, let k = blog2 nc, then

deg(φn)

{
= n− 1 n = 2k + 1 or n = 2k + 2,

≥ n− 2 others.

We compute deg(φn) for n ≤ 14, and list them in Table 4.

Table 4: Values of deg(φn) for n ≤ 14

n 3 4 5 6 7 8 9 10 11 12 13 14

deg(φn) 2 2 4 4 5 5 8 8 9 9 11 11
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4.3 Nonlinearity

Let ϕn = ϕ0
n. Property 2 says that, ϕi

n has no terms containing variable
x1. Thus ϕi

n can be viewed as an (n−1)-variable Boolean function in variables
x2, x3, · · · , xn. We shall prove that, as an (n−1)-variable Boolean function, ϕn

has optimum algebraic immunity.

Proposition 2. Let ϕi
n = x1+φi

n, ϕn = ϕ0
n(n > 1, i ≥ 0), then ϕn has optimum

algebraic immunity, i.e.,

AIn−1(ϕn) =
⌈

n− 1
2

⌉
.

Proof. In the proof of Property 2, ϕi
n had been showed to have the same recursion

as φi
n. Hence, ϕn could be proved to have optimum algebraic immunity similar

to φn. ut

It’s easy to check that, for any n-variable Boolean function f ∈ Bn, there is
nl(xn+1 + f) = 2 ·nl(f). Since φn = x1 +ϕn and ϕn has no terms containing x1,
we get nl(φn) = 2 · nl(ϕn).

Loabnov [32] found a relation between Boolean function’s algebraic immunity
and nonlinearity, i.e.,

Proposition 3. For any n-variable Boolean function f ∈ Bn, let k = AIn(f),
then

nl(f) ≥ 2n−1 −
n−k∑
i=0

(
n− 1

i

)
= 2

k−2∑
i=0

(
n− 1

i

)
.

As to ϕn, Proposition 2 shows that k = AIn−1(ϕn) =
⌈

n−1
2

⌉
, thus

nl(φn) = 2 · nl(ϕn) ≥ 4
k−2∑
i=0

(
n− 2

i

)
.

If n = 2k, then

4
k−2∑
i=0

(
n− 2

i

)
= 2

(
k−2∑
i=0

(
n− 2

i

)
+

k−3∑
i=0

(
n− 2

i

)
+
(

n− 2
k − 2

))

> 2

(
k−2∑
i=0

(
n− 2

i

)
+

k−3∑
i=0

(
n− 2

i

)
+ 1

)

= 2
k−2∑
i=0

(
n− 1

i

)
.
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If n = 2k + 1, then

4
k−2∑
i=0

(
n− 2

i

)
= 2

(
k−2∑
i=0

(
n− 2

i

)
+

k−2∑
i=0

(
n− 2

i

))

< 2

(
k−1∑
i=0

(
n− 2

i

)
+

k−2∑
i=0

(
n− 2

i

)
+ 1

)

= 2
k−1∑
i=0

(
n− 1

i

)
.

Hence, we have the following property:

Property 5. For the function φn obtained in Construction 1,

nl(φn) ≥


4
dn−1

2 e−2∑
i=0

(
n− 2

i

)
n = 2k,

2
dn

2 e−2∑
i=0

(
n− 1

i

)
n = 2k + 1.

(10)

We compute nl(φn) for n ≤ 14, and list them in Table 5. It can be observed
that the value of nl(φn) in Table 5 all reach the low bound of formula (10).

Table 5: Values of nl(φn) for n ≤ 14

n 3 4 5 6 7 8 9 10 11 12 13 14

nl(φn) 2 4 10 20 44 88 186 372 772 1544 3172 6344

5 Conclusion

In this paper, we proposed a first order recursive construction of Boolean
function with optimum algebraic immunity. It’s the first one of such construc-
tions. By the construction, we obtained (n+1)-variable Boolean function with
optimum AI from n-variable ones. The construction has sense to study the re-
lation between the odd variables Boolean functions and even variables Boolean
functions. We also analyzed other cryptographic properties of the constructed
Boolean functions, which showed that they’re balanced and have good algebraic
degrees.
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USA: AMS, 1994

12. N. Courtois. Fast algebraic attacks on stream ciphers with linear feedback[A]. Ad-
vances in Cryptology-Crypto 2003[C], Berlin: Springer-Verlag, 2003, 176-194

13. F. Armknecht. Improving fast algebraic attacks[A]. Fast Software Encryp-
tion2004[C], Berlin: Springer-Verlag, 2004, 65-82

14. C. Carlet, D. K. Dalai, K. C. Gupta, et al. Algebraic Immunity for Cryptograph-
ically Significant Boolean Functions: Analysis and Construction[J]. IEEE Transac-
tions on Information Theory, 2006, 52(7): 3105-3121

15. D. K. Dalai, K. C. Gupta and S. Maitra. Cryptographically Significant Boolean
functions: Construction and Analysis in terms of Algebraic Immunity[A]. Fast Soft-
ware Encryption 2005 (FSE05) [C], Paris, France, 2005, 98-111

16. A. Braeken and B. Preneel. On the algebraic immunity of symmetric Boolean func-
tions[A]. Progress in Cryptology-Indocrypt 2005[C], Berlin: Springer-Verlag, 2005,
35-48



14

17. D. K. Dalai, S. Maitra and S. Sarkar. Basic Theory in Construction of Boolean
Functions with Maximum Possible Annihilator Immunity[J]. Design, Codes and
Cryptography, 2006, 40(1): 41-58

18. C. Carlet. A method of construction of balanced functions with optimum algebraic
immunity[EB/OL]. http://eprint.iacr.org/2006/149

19. C. Carlet, X. Zeng, C. Li, et al. Further properties of several classes of Boolean func-
tions with optimum algebraic immunity[EB/OL]. http://eprint.iacr.org/2007/370

20. F. Armknecht, C. Carlet, P. Gaborit, et al. Efficient Computation of Algebraic
Immunity for Algebraic and Fast Algebraic Attacks[A]. Advances in Cryptology-
Eurocrypt 2006[C], Berlin: Springer-Verlag, 2006, 147-164

21. N. Li and W. Qi. Construction and analysis of Boolean functions of 2t+1 variables
with maximum algebraic immunity[A]. Advances in Cryptology-Asiacrypt 2006[C],
Berlin: Springer-Verlag, 2006, 84-98

22. N. Li and W. Qi. Boolean function of an odd number of variables with maximum
algebraic immunity[J]. Science in China, Ser. F, 2007, 50(3): 307-317

23. N. Li, L. Qu, W. Qi, et al. On the construction of Boolean functions with optimal
algebraic immunity[J]. IEEE Transactions on Information Theory, 2008, 54(3): 1330-
1334

24. C. Carlet and K. Feng. An Infinite Class of Balanced Functions with Optimal
Algebraic Immunity, Good Immunity to Fast Algebraic Attacks and Good Nonlin-
earity[A]. Advances in Cryptology-Asiacrypt 2008[C], Berlin: Springer-Verlag, 2008,
425-440

25. D. K. Dalai, K. C. Gupta and S. Maitra. Results on Algebraic Immunity for Cryp-
tographically Significant Boolean Functions[A]. Progress in Cryptology-Indocrypt
2004[C], Berlin: Springer-Verlag, 2004, 92-106

26. L. Qu, C. Li, and K. Feng. A note on symmetric Boolean functions with max-
imum algebraic immunity on odd number of variables[J]. IEEE Transactions on
Information Theory, 2007, 53(8): 2908-2910

27. L. Qu and C. Li. On the 2m-variable symmetric Boolean functions with maximum
algebraic immunity[J]. Science in China, Ser. F, 2008, 51(2): 120-127

28. F. Liu and K. Feng. On the 2m-variable symmetric Boolean functions with max-
imum algebraic immunity 2m−1 [J]. To be published in Designs, Codes and Cryp-
tography

29. L. Qu and C. Li. Weight support technique and the symmetric Boolean functions
with maximum algebraic immunity on even number of variables[A]. Procedding of
Information Security and Cryptology 2007[C], Berlin: Springer-Verlag, 2007, 270-
281

30. A. Canteaut and M. Trabbia. Improved fast correlation attacks using parity-check
equations of weight 4 and 5[A]. Advances in Cryptology-Eurocrypt 2000[C]. Berlin:
Springer-Verlag, 2000, 573-588

31. C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers[M]. Lec-
ture Notes in Computer Science (vol.561). Berlin: Springer-Verlag, 1991

32. M. Lobanov. Tight bound between nonlinearity and algebraic immunity[EB/OL].
http://eprint.iacr.org/2005/441


