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Abstract. Using the pigeon-hole principle, we derive a new bound for the key length in a l-
wise almost universal hash function where the multicollision or l-collision probability is bounded
above by ε ∈ [0, 1]. The important features of this bound are (1) it decreases very slowly as l
increases, and (2) the key length grows at least linearly with the logarithm of the message length.
To our knowledge, this is the first almost universal hash bound for any integer l ≥ 2. This work
arises from the use of l-wise almost universal hash functions in manual authentication protocols.

1 Introduction

An almost universal family of hash functions AU with parameters (K,M, b) was introduced
by Carter and Wegman [3]. A universal family consists of 2K hash functions, each of which
maps a M -bit message from {0, 1}M into {0, 1}b or a b-bit output. In this paper, we will
derive a AUl-bound whose l-collision probability is ε ∈ [0, 1] for any l ≥ 2.

Definition 1. A l-wise almost universal hash function ε-AUl satisfies that for any l distinct
and equal-length messages m1, . . . ,ml and as key k is selected randomly from {0, 1}K :

Prob{0≤k<2K}[hk(m1) = hk(m2) = · · · = hk(ml)] ≤ ε

This specification arises from the use of AUl in a number of group protocols in the manual
authentication technology, including the schemes of Laur and Pasini [7], and the authors [8,
9]. In these protocols, parties have to manually compare a universal hash value of some key
and public data that they seek to agree on. An attacker therefore will attempt to fool multiple
parties into accepting more than two different versions of that piece of data. For this reason, it
is desirable that we constrain the chance of a multicollision attack as specified in Definition 1.
Moreover, to build such an ε-AUl, we want to understand the theoretical constraints among
the values of different l-wise universal hash parameters, which is the bound we derive here.

We note that there have been bounds for a l-wise strongly universal hash function, which
is a stronger version of AUl, due to Kurosawa et al. [6], sadly these are only proved for the
perfect case where ε = 2−b. What also relevant to our work is the equivalence between error-
correcting codes (ECC) and pairwise universal hash functions, and thus several ECC-bounds
have been transformed into bounds for universal hash functions [4, 11]. This strategy however
cannot be used to derive AUl-bound for l > 2 because the minimum Hamming distance among
pairs of codewords corresponds to the pairwise-collision property in AU2. ECC-parameters
therefore do not give enough information to analyse l-collision in AUl.

Even though multicollision attacks in AUl and cryptographic hash functions are not the
same, it might be worth to mention that the idea of multicollision has been encountered
in cryptographic hash design such as the cascaded or Merkle-Damg̊ard structure [5] and
NIST’s specification for SHA-3 candidates [1] (Section 2.B.1). Multicollision resistance in
cryptographic hash functions is also required in several identification and signature schemes [2,
5, 10]. The intuitive reason is because constructing l messages with the same hash value should
be much harder than constructing only two of these.



2 A new bound for almost universal hash functions

The following AUl-bound tells us the lower bound for the key bitlength in terms of the
l-collision probability ε and the bitlengths of message and hash output. Although K,M ,
and b are often integers, this bound applies to both integer and non-integer bitlengths. For
simplicity the subscript in log2 is omitted as logarithms in all formulae are taken to base 2.

Theorem 1. For any integer l ≥ 2, if there exist a l-wise almost universal hash function
ε-AUl with parameters (K,M, b), then the below conditions apply. In this bound, we define
an integer x such that 2xb < l ≤ 2(x+1)b and M = bt+ b′ where t is an integer and 0 ≤ b′ < b.

(i) If b′ ≤ log(l − 1)− xb then K ≥ log
(
ε−1 (bM/bc − x− 1)

)
(ii) If b′ > log(l − 1)− xb then K ≥ log

(
ε−1 (bM/bc − x)

)
Proof. The pigeon-hole principle states that given two positive integers n and m, if n items
are put into m holes then at least one hole must contain more than or equal to dn/me items.

For any key k1, there exists a hash value h1 such that there are at least
⌈
2M−b

⌉
distinct

messages forming a set S1 all hashing to h1 under the same key k1, thanks to the pigeon-hole
principle. For any choice of k2 other than k1, there will also be a collection of at least

⌈
2M−2b

⌉
different messages from set S1 mapping to some hash value h2 under k2. We note that the
value of h1 can be either different from or equal to h2.

Since we defined 2xb < l ≤ 2(x+1)b, we can always repeat this process t− x− 1 times and
obtain at least v =

⌈
2M−(t−x−1)b

⌉
= d2(x+1)b+b′e distinct messages m1, . . . ,mv where v ≥ l,

and t− x− 1 different keys k1, . . . , kt−x−1 such that

∀k ∈ {k1, · · · , kt−x−1} : hk(m1) = hk(m2) = · · · = hk(mv)

This leads to two possibilities:

(i) If b′ ≤ log(l − 1) − xb then l ≤ d2(x+1)b+b′e ≤ 2b(l − 1). We cannot repeat the above
process further because at least l distinct messages must be left to have a l-collision.
Thus to bound the l-collision probability above by ε, we arrive at:

ε2K ≥ t− x− 1 = bM/bc − x− 1

K ≥ log
(
ε−1 (bM/bc − x− 1)

)
(ii) If b′ > log(l− 1)− xb then d2(x+1)b+b′e ≥ 2b(l− 1) + 1. Repeating the above process for

one more random key kt−x will end up with at least l distinct messages that map to the
same values under t− x = bM/bc − x keys. We therefore have ε2K ≥ bM/bc − x, which
means that K ≥ log(ε−1(bM/bc − x)).

We cannot repeat the above process t−x+ 1 times because the number of different messages
we would end up with is d2(x−1)b+b′e ≤ 2xb < l, which is insufficient to form a l-collision. ut

3 Interpretations of the new bound

We observe that the bound decreases very slowly as we increase l, which is not surprising
since the bigger l the more unlikely a l-collision can be formed, and so fewer keys are required.
Moreover, if (ε, l, b) are fixed then as M increases K grows at least in proportion to logM .

For l = 2, our AU2-bound is satisfied with equality by the well-studied polynomial hashing
scheme over finite field of Johansson et al. [4] where x = x1 · · ·xt ∈ {0, 1}tb for any integer
t ∈ [2, 2b), k ∈ {0, 1}b and hk(x) = x1 + x2k + · · ·+ xtk

t−1, because ε = (t− 1)/2b ∈ [2−b, 1),
and so K = log(ε−1(M/b− 1)). Theorem 1(i) is satisfied with equality.

For l > 2, we give two constructions for AU3 and AU5 that meet the bound with equality.



(ε = 1/2)-AU3 m1 m2 m3 m4 m5 m6 m7 m8 m9

k1 0 1 2 3 0 1 2 3 0
k2 3 2 1 0 2 3 2 1 0

Table 1. An AU3 having 2M = 9, 2b = 4, and ε = 1/2 requires 2K ≥ ε−1bM/bc = 2, due to Theorem 1(ii).

(ε = 1/3)-AU5 m1 m2 m3 m4 m5 m6 m7 m8 m9

k1 0 1 0 1 0 1 0 1 0
k2 1 0 1 1 1 0 0 0 1
k3 0 1 0 0 1 1 0 1 1

Table 2. An AU5 having 2M = 9, 2b = 2, and ε = 1/3 requires 2K ≥ ε−1(bM/bc−2) = 3, due to Theorem 1(ii).

4 Comparison against other AU -bound

To our knowledge, the only other AU -bound is due to Stinson [11] but it works with l = 2.
It is very different from our AU2-bound that can be rounded up to 2K ≥ M

εb for comparison.

Stinson’s AU2-bound: 2K ≥ 2M (2b − 1)

2M (ε2b − 1) + 22b(1− ε)

For ε = 2−b, Stinson’s bound is stronger than ours for then it gives K ≥M − b, which means
that K grows at least linearly with M . We stress that although our AU2-bound can also be
met with equality when ε = 2−b, it does so with a very limited range of values of (K,M, b),
i.e. M = 2K = 2b as in the polynomial hashing construction. In contrast, if ε > 2−b and
M � 2b, Stinson’s bound significantly underestimates K because it can never prove stronger
a bound than 2K ≥ 2b/(ε2b − 1). In particular, when ε > 2−bM/(M − b) that is only slightly
greater than 2−b, Stinson’s bound becomes weaker than our AU2-bound.

Our AU2-bound and Stinson’s bound therefore represent two spectrums of the asymptotic
behaviour of any AU2 [4]: when ε only slightly exceeds 2−b the key length grows in proportion
to the logarithm of message length, but if ε = 2−b it will grow at least linearly.

References

1. http://csrc.nist.gov/groups/ST/hash/documents/FR Notice Nov07.pdf
2. E. Brickell, D. Pointcheval, S. Vaudenay, and M. Yung. Design validation for siscrete logarithm based

signature schemes. In PKC 2000, LNCS vol. 1751, pp. 276-292.
3. J. Carter and M. Wegman. Universal Classes of Hash Functions. Computer & System Sciences,18(1979),143-154.
4. T. Johansson, G.A. Kabatianskii and B. Smeets. On the relation between A-Codes and Codes correcting

independent errors. Eurocrypt 1993, LNCS vol. 765, pp. 1-11.
5. A. Joux. Multicollisions in Iterated Hash Functions. CRYPTO 2004, LNCS vol. 3152, pp. 306-316, 2004.
6. K. Kurosawa, K. Okada, H. Saido, and D.R. Stinson. New combinatorial bounds for authentication codes

and key predistribution schemes. Designs, Codes and Cryptography,15 (1998), 87-100.
7. S. Laur and S. Pasini. SAS-Based Group Authentication and Key Agreement Protocols. Public Key Cryp-

tography, PKC, 197-213 (2008).
8. L.H. Nguyen and A.W. Roscoe. Authenticating ad hoc networks by comparison of short digests. Information

and Computation 206 (2008), 250-271.
9. L.H. Nguyen and A.W. Roscoe. Authentication protocols based on low-bandwidth unspoofable channels: a

comparative survey. Journal of Computer Security (to appear).
10. R. Rivest, A. Shamir. PayWord and MicroMint two simple micropayment schemes. CryptoBytes, 2(1):7-

11, 1996.
11. D.R. Stinson. On the Connections Between Universal Hashing, Combinatorial Designs and Error-

Correcting Codes. Congressus Numerantium, vol. 114 (1996), 7-27.


