
Algorithms to solve massively under-defined
systems of multivariate quadratic equations

Yasufumi Hashimoto ?

Institute of Systems & Information Technologies/Kyushu
7F 2-1-22, Momochihama, Fukuoka 814-0001, JAPAN

e-mail:hasimoto@isit.or.jp

Abstract. It is well known that the problem to solve a set of randomly
chosen multivariate quadratic equations over a finite field is NP-hard.
However, when the number of variables is much larger than the number
of equations, it is not necessarily difficult to solve equations. In fact,
when n ≥ m(m + 1) (n, m are the numbers of variables and equations
respectively) and the field is of even characteristic, there is an algorithm
to solve equations in polynomial time (see [Kipnis et al., Eurocrypt’99]
and also [Courtois et al., PKC’02]). In the present paper, we propose two
algorithms to solve quadratic equations; one is for the case of n ≥ (about)
m2−2m3/2+2m and the other is for the case of n ≥ m(m+1)/2+1. The
first algorithm solves equations over any finite field in polynomial time.
The second algorithm requires exponential time operations. However, the
number of required variables is much smaller than that in the first one,
and the complexity is essentially less than the exhaustive search.

Keywords. under-defined multivariate quadratic equations

1 Introduction

It is well known that the problem to solve a set of randomly chosen multivariate
quadratic equations over a finite field is NP-hard. Then the cryptosystems based
on multivariate quadratic equations (Matsumoto-Imai, HEF, UOV, STS, TTM
and so on, see e.g. [5], [7] and their references) have been expected to be secure
against the quantum attacks. However, not all quadratic equations are difficult to
be solved while the problem itself is NP-hard. In fact, some of such cryptosystems
were already broken and some others of them are weaker than expected when
they were proposed. Thus it is important to study which quadratic equations
are solved easily and how to characterize its difficulty for the practical use of
quadratic equations in cryptology.
? Partially supported by JST　 Strategic Japanese-Indian Cooperative Programme on

multidisciplinary Research Field, which combines Information and Communications
Technology with Other Fields, entitled ”Analysis of cryptographic algorithms and
evaluation on enhancing network security Based on Mathematical Science”, and
JSPS Grant-in-Aid for Young Scientists (B) no. 20740027.



For this topic, there have been several works in the view of the relation be-
tween the numbers of variables and equations. In fact, Courtois et al. ([2] and
[3]) have studied how to solve the equations when m is much larger than n
(where m, n are the numbers of equations and variables respectively). On the
other hand, Kipnis et al. [6] studied the case when n is much larger than m.
In fact, they found a polynomial time algorithm to solve quadratic equations
when n ≥ m(m + 1) and the characteristic of the field is even. Note that, when
the characteristic is odd, their algorithm requires O(2m × (polynomial)) oper-
ations. Although Courtois et al. [1] modified it to be more effectively for odd
characteristic cases, its modification requires much more variables.

In the present paper, we propose two algorithms to solve multivariate quadratic
equations when n is sufficiently larger than m. The first algorithm solves equa-
tions over any finite field in polynomial time when n ≥ (about) m2−2m3/2+2m.
The number of variables required in this algorithm is less than that in [6], and
this algorithm works in polynomial time both for even and odd characteristic
fields. The second algorithm solves equations for n ≥ m(m+1)/2+1. The com-
plexity of the second algorithm is roughly estimated by O(2m) or O(3m). While
it is in exponential time, it is much better than the exhaustive search, especially
for large fields, and furthermore the number of required variables is much less
than that in the first algorithm.

2 Preparations

2.1 Notations

Throughout this paper, we use the following notations.
q: a power of prime.
k: a finite field of order q.
n,m ≥ 1: integers.
x = (x1, · · · , xn)t ∈ kn.
x̃ = (x0, x1, · · · , xn)t ∈ kn+1.
fl(x) ∈ k (1 ≤ l ≤ m): a quadratic form of x.
f̃l(x̃) ∈ k (1 ≤ l ≤ m): the homogeneous quadratic form of x̃ such that
f̃l(1, x1, · · · , xn) = fl(x1, · · · , xn).
ei := (0, · · · , 0︸ ︷︷ ︸

i−1

, 1, 0, · · · , 0)t ∈ kn (1 ≤ i ≤ n).

ẽi := (0, · · · , 0︸ ︷︷ ︸
i

, 1, 0, · · · , 0)t ∈ kn+1 (0 ≤ i ≤ n).

ai = (a1i, · · · , ani)t ∈ kn (1 ≤ i ≤ n): a vector with aii 6= 0.
ãi = (ã0i, · · · , ãni)t ∈ kn+1 (0 ≤ i ≤ n): a vector with ãii 6= 0.
Ui := (e1, · · · , ei−1, ai, ei+1, · · · , en): an invertible linear map such that xi 7→
a1ix1 + · · ·+ anixn and xj 7→ xj for j 6= i.
Ũi := (ẽ0, · · · , ẽi−1, ãi, ẽi+1, · · · , ẽn): an invertible linear map such that x̃i 7→
ã0ix̃0 + ã1ix̃1 + · · ·+ ãnix̃n and x̃j 7→ x̃j for j 6= i.
Ω(n): the complexity of the Gaussian elimination to solve n linear equations.



2.2 Elementary facts

Remember the following elementary facts learned in the undergraduate linear
algebra.

Fact 1. Let g(x) :=
∑

1≤i,j≤n gijxixj be a homogeneous quadratic form of
x = (x1, · · · , xn)t ∈ kn (gij ∈ k) and G = (Gij)1≤i,j≤n an n × n matrix over k
(Gij ∈ k) with gii = Gii and gij = Gij + Gji for i 6= j. Then g(x) = xtGx.

Fact 2. Let G, U be n× n matrices and u1, · · · , un ∈ kn the column vectors in
U , namely U = (u1, · · · , un). Then the ij-entry of U tGU is ut

iGuj .

Fact 3. Let g(x), G be as in Fact 1 and Ui be as in Section 2.1. Denote by
g(Ulx) =

∑
1≤i,j≤x g

(l)
ij xixj . Then we have g

(l)
ll = at

lGal = g(ul), g
(l)
il = et

iGal +

at
lGei (i 6= l) and g

(l)
ij = gij (i, j 6= l).

3 Kipnis-Patarin-Goubin’s algorithm for n ≥ m(m + 1)

In this section, we recall the algorithm proposed by Kipnis-Patarin-Goubin [6]
to solve m quadratic equations with n variables for n ≥ m(m + 1).
Step 1. Find U2 such that the coefficients of x1x2 in f1(U2x), · · · , fm(U2x) are
zero.
Step 2. Put f

(2)
l (x) := fl(U2x). Find U3 such that the coefficients of x1x3, x2x3

in f
(2)
1 (U3x), · · · , f

(2)
m (U3x) are zero.

...
Step m − 1. Put f

(m−1)
l (x) := f

(m−2)
l (Um−1x). Find Um such that the coeffi-

cients of x1xm, x2xm, · · · , xm−1xm in f
(m)
1 (Umx), · · · , f

(m)
m (Umx) are zero.

fl(x) 7→ xt

0
@
∗ 0
0 ∗ ∗
∗ ∗

1
Ax 7→ xt

0
BB@

∗ 0 0
0 ∗ 0
0 0 ∗

∗

∗ ∗

1
CCAx 7→ · · · 7→ xt

0
BBB@

∗ O

. . .

O ∗
∗

∗ ∗

1
CCCAx.

Step m. Put gl(x) := f
(m)
l (Umx). Substitute values into xm+1, · · · , xn such that

g1(x), g2(x), · · · , gm(x) are linear combinations of x2
1, · · · , x2

m and constants.
Step m + 1. Find a solution (x1, · · · , xm) of gl(x) = 0 for 1 ≤ l ≤ m.

Observation 1. According to Fact 3, we see that Step t (1 ≤ t ≤ m−1) requires
to solve tm homogeneous linear equations with n variables. Then one needs the
condition n > m(m− 1) until Step m− 1.
Observation 2. Remember that the coefficients of xixj (1 ≤ i < j ≤ m) in
gl(x) are zero. We see that Step m requires to solve m2 linear equations with
n−m variables (xm+1, · · · , xn). Then one needs the condition n ≥ m(m + 1) in
Step m.
Observation 3. Since gl(x)’s are linear combinations of x2

1, · · · , x2
m and con-

stants, one can reduce the problem solving gl(x) = 0 for 1 ≤ l ≤ m in Step



m + 1 to the problem solving x2
1 = (const), · · · , x2

m = (const) by linear opera-
tions. This requires to calculate the square roots. Thus this algorithm will work
in polynomial time when q is even, and with 2m × (polynomial) operations in
average when q is odd.

Note that Courtois et al. modified this algorithm for odd characteristic k with
the complexity 240 × (polynomial). However the number of required variables is
n ≥ 2m/7(m + 1). See [1] for the detail of its modification.

4 Solving quadratic equations for n ≥ (about)
m2 − 2m3=2 + 2m

In this section, we propose an algorithm to solve equations for n ≥ (about)
m2 − 2m3/2 + 2m. For the algorithm, we first prepare the following elementary
fact.

Fact 4. Let U = (uij)0≤i,j≤n be an invertible matrix over k. If U satisfies
that u00 6= 0 and the coefficient of x2

0 of f̃l(Ux̃) are zero for 1 ≤ l ≤ m, then
(u−1

00 u10, · · · , u−1
00 un0) is a solution of f1(x) = 0, · · · , fm(x) = 0.

This follows from Fact 1 and 2 immediately . Then, instead of solving the
equation, we will give an algorithm to find such U in this section.

Before it, we prepare the following two algorithms.

Algorithm A.
Aim. Let g(x) be a quadratic form x = (x1, · · · , xm)t ∈ km. Find an invertible
linear transform U : km → km such that the coefficients of xixj (i + j ≤ m) in
g(Ux) are zero.

g(x) 7−→ xt

0
B@

O ∗
. .

.

∗ ∗

1
CAx

Step 1. Find U1 such that the coefficients of x2
1 is zero.

Step 2. Put g(1)(x) := g(U1x). Find U2 such that the coefficients of x1x2, x2
2 in

g(1)(U2x) are zero.
...

Step bm/2c. Put g(bm/2c−1)(x) := g(bm/2c−2)(Ubm/2c−1x). Find Ubm/2c such
that the coefficients of xixj (1 ≤ i, j ≤ bm/2c) in g(bm/2c−1)(Ubm/2cx) are zero.
Step bm/2c + 1. Put g(bm/2c)(x) := g(bm/2c−1)(Ubm/2cx). Find Ubm/2c+1 such
that the coefficients of xixbm/2c+1 (1 ≤ i ≤ bm/2c − 1) in g(bm/2c)(Ubm/2c+1x)
are zero.
Step bm/2c+2. Put g(bm/2c+1)(x) := g(bm/2c) (

Ubm/2c+1x
)
. Find Ubm/2c+2 such

that the coefficients of xixbm/2c+2 (1 ≤ i ≤ bm/2c−2) in g(bm/2c+1)
(
Ubm/2c+2x

)
are zero.

...



Step m − 1. Put g(m−2)(x) := g(m−3)(x)(Um−2x). Find Um−1 such that the
coefficients of x1xm−1 in g(m−1)(Um−1x) are zero.

Observation. Due to Fact 3, we see that Step t (1 ≤ t ≤ bm/2c) requires to
solve a quadratic homogeneous equation and t−1 homogeneous linear equations
of n variables. On the other hand, Step t (bm/2c+ 1 ≤ m− 1) requires to solve
m− t homogeneous linear equations of n variables. Thus the complexity in this
algorithm is less than mΩ(bm/2c).
Algorithm B.
Aim. Let n,L, M ≥ 1 be integers with L ≤ n/2 and

M ≤





⌊n− L

L− 1

⌋
, (n ≤ L2 − L),

L− 1, (L2 − L + 1 ≤ n ≤ L2),
L, (n ≥ L2 + 1),

and g1(x), · · · , gM (x) be quadratic forms of x = (x1, · · · , xn)t. Suppose that
the coefficients of xixj (1 ≤ i, j ≤ L) in g1(x), · · · , gM−1(x) are zero. Find
an invertible linear transform U : kn → kn such that the coefficients of xixj

(1 ≤ i, j ≤ L) in g1(x), · · · , gM (x) are zero.

xt

„
OL ∗
∗ ∗

«
x, · · · , xt

„
OL ∗
∗ ∗

«
x

| {z }
M−1

, xt

„∗ ∗
∗ ∗
«

x 7−→ xt

„
OL ∗
∗ ∗

«
x, · · · , xt

„
OL ∗
∗ ∗

«
x

| {z }
M

Step 1. Using Algorithm A, find an invertible linear map W1 : kL → kL such
that the coefficients of xixj (1 ≤ i, j ≤ L, i+ j ≤ L) in gM (W̃1x) are zero, where

W̃1 :=
(

W1

I

)
. Find UL such that the coefficients of xixj (1 ≤ i, j ≤ L) in

gl(W̃1ULx) for 1 ≤ l ≤ M − 1 and of x1xL in gM (W̃1ULx) are zero.

gM (x)
Alg. A7−→ xt

0
BBBBBBBBBB@

O 0 ∗
. .

. ∗ ∗
. .

.
. .

.
. .

.

0 ∗ . .
.

∗ ∗ ∗

∗

∗ ∗

1
CCCCCCCCCCA

x
change xL7−→ xt

0
BBBBBBBBBB@

O 0 0

. .
. ∗ ∗

. .
.

. .
.

. .
.

0 ∗ . .
.

0 ∗ ∗

∗

∗ ∗

1
CCCCCCCCCCA

x

Step 2. Put g
(1)
l (x) := gl(W̃1ULx). Using Algorithm A, find an invertible linear

map W2 : kL−1 → kL−1 such that the coefficients of xixj (1 ≤ i, j ≤ L, i + j ≤

L + 1) in g
(1)
M (W̃2x) are zero, where W̃2 =




1
W2

I


. Find UL such that the

coefficients of xixj (1 ≤ i, j ≤ L) in g
(1)
l (W̃2ULx) for 1 ≤ l ≤ M − 1 and of

x1xL, x2xL in g
(1)
M (W̃2ULx) are zero.



...
Step L − 1. Put g

(L−2)
l (x) := g

(L−3)
l (W̃L−2ULx). Using Algorithm A, find an

invertible linear map WL−1 : k2 → k2 such that the coefficients of xixj (1 ≤

i, j ≤ L, i+j ≤ 2L−1) in g
(L−2)
M (W̃L−1x) are zero, where W̃L−1 =




I
WL−1

I


.

Find UL such that the coefficients of xixj (1 ≤ i, j ≤ L) in g
(L−2)
l (W̃L−1ULx)

for 1 ≤ l ≤ M−1 and of x1xL, x2xL, · · · , xL−1xL in g
(L−2)
M (W̃L−1ULx) are zero.

Step L. Put g
(L−1)
l (x) := g

(L−2)
l (W̃L−1ULx). Find UL such that the coefficients

of xixj (i, j ≤ L) in g
(L−1)
1 (ULx), · · · , g

(L−1)
N (ULx) are zero.

Observation 1. According Fact 3, we see that Step t (1 ≤ t ≤ L− 1) requires
to solve
(i) (L− 1)(M − 1) + t− 1 homogeneous linear equations of (aL+1,L, · · · , an,L),
(ii) 1 homogeneous linear equation of (aL,L, · · · , an,L),
(iii) M − 1 homogeneous quadratic equations of (a1,L, · · · , an,L) in the forms

L∑

i=1

ai,L × (linear form of (aL+1,L, · · · , an,L))

+ (quadratic form of (aL+1,L, · · · , an,L)) = 0.

In order to solve the equations (i),(ii) and (iii), first solve (i) and find aL+1,L, · · · ,
an,L. Then aL,L is automatically determined by (ii). Substituting such values to
(iii), we see that the quadratic equations (iii) become N − 1 linear equations of
(a1,L, · · · , aL−1,L). Thus one needs n−L > (L− 1)(M − 1) + L− 2 and L ≥ M
until Step L− 1.
Observation 2. Similarly, Step L requires to solve
(i) (L− 1)M homogeneous linear equations of (aL+1,L, · · · , an,L),
(ii) M−1 homogeneous quadratic equations of (a1,L, · · · , an,L) in the same forms
to (iii) in the previous observation.
(iii) a homogeneous quadratic equation of (a1,L, · · · , an,L) in the form

a2
L,L +

L∑

i=1

ai,L ×
(
linear form of (aL+1,L, · · · , an,L)

)

+
(
quadratic form of (aL+1,L, · · · , an,L)

)
= 0.

When n−L > (L− 1)M , one can find a non-trivial solution of (i). Substitute it
into (ii). The quadratic equations (ii) become to linear equations, and (iii) be-
comes a quadratic equation whose quadratic terms is only a2

L,L. Then a solution
will be found when M ≤ L. On the other hand, when n − L = (L − 1)N , the
solution of (i) is trivial, namely aL+1,L = · · · = an,L = 0. This means that (ii)
and (iii) become homogeneous equations of (a1,L, · · · , aL,L). Then M < L is nec-
essary. Therefore, in Step L, one needs the condition that M < (n−L)/(L− 1),



M ≤ L or M = (n− L)/(L− 1), M < L, namely

M ≤





⌊n− L

L− 1

⌋
, n ≤ L2 − L,

L− 1, L2 − L + 1 ≤ n ≤ L2,

L, n ≥ L2 + 1.

Observation 3. Each step include Algorithm A with m ≤ L, solving at most
(L− 1)M linear equations and a quadratic equation. Thus we see that the com-
plexity in Algorithm B is less than L(LΩ(bL/2c) + Ω((L− 1)M) + Ω(M − 1)).
Since Ω(n) ¿ n3, we can claim that this algorithm works in polynomial time.

Algorithm C.
Aim. Let n,L, M ≥ 1 be integers with the same conditions in Aim of Algo-
rithm B, and g1(x), · · · , gM (x) be quadratic forms of x = (x1, · · · , xn)t. Find
an invertible linear transform U : kn → kn such that the coefficients of xixj

(1 ≤ i, j ≤ L) in g1(x), · · · , gM (x) are zero.

xt

„∗ ∗
∗ ∗
«

x, · · · , xt

„∗ ∗
∗ ∗
«

x

| {z }
M

, 7−→ xt

„
OL ∗
∗ ∗

«
x, · · · , xt

„
OL ∗
∗ ∗

«
x

| {z }
M

Step 1. Find an invertible linear transform V1 : kn → kn such that the coeffi-
cients of xixj (1 ≤ i, j ≤ L) in g1(V1x) are zero by using Algorithm A.
Step 2. Put g

(1)
l (x) := gl(V1x). Using Algorithm B, find an invertible linear

transform V2 : kn → kn such that the coefficients of xixj (1 ≤ i, j ≤ L) in
g
(1)
1 (V2x), g(1)

2 (V2x) are zero.
...

Step M . Put g
(M−1)
l (x) := gM−2

l (VM−1x). Using Algorithm B, find an invertible
linear transform VM2 : kn → kn such that the coefficients of xixj (1 ≤ i, j ≤ L)
in g

(M−1)
1 (VMx), · · · , g

(M−1)
M (VMx) are zero.

Observation. According to Observation 3 in Algorithm B, we see that Step t
(1 ≤ t ≤ M) requires the complexity L(LΩ(bL/2c) + Ω((L − 1)t) + Ω(t − 1)).
Summing up this from t = 1 to M , we can estimate the complexity in this
algorithm by

ML(LΩ(bL/2c) + Ω((L− 1)M) + Ω(M − 1))
<n(LΩ(bL/2c) + Ω(n−M) + Ω(M − 1)) = O(nΩ(n)).

Thus the Algorithm C works in polynomial time.

Based on Algorithm C, we propose an algorithm to solve quadratic equations
for n ≥ (about) m2 − 2m3/2 + 2m.
Algorithm 1.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0 when
n ≥ (about) m2 − 2m3/2 + 2m.



Step 1. Choose M1 <
√

n + 1. Put

L1 := min
(⌊

n + 1
2

⌋
,

⌊
n + 1 + M1

M1 + 1

⌋)
.

Using Algorithm C, find an invertible linear map V1 : kn+1 → kn+1 such that
the coefficients of xixj (0 ≤ i, j ≤ L1 − 1) in f̃1(V1x̃), · · · , f̃M1(V1x̃) are zero.
Put f̃

(1)
l (x̃) := f̃l(V1x̃).

Step 2. Choose M2 <
√

L1. Put

L2 := min
(⌊

L1

2

⌋
,

⌊
L1 + M2

M2 + 1

⌋)
.

Using Algorithm C, find an invertible linear map V2 : kL1 → kL1 such that the
coefficients of xixj (0 ≤ i, j ≤ L2−1) in f̃

(1)
M1+1(Ṽ2x̃), · · · , f̃M1+M2(Ṽ2x̃) are zero,

where Ṽ2 :=
(

V2

I

)
. Put f̃

(2)
l (x̃) := f̃

(1)
l (Ṽ2x̃).

...
Continue such operations until Lt = 1. Then one can get an invertible linear

map U = (uij)0≤i,j≤n such that the coefficients of x2
0 in f̃l(Ux̃) for 1 ≤ l ≤

M1 + M2 + · · ·+ Mt are zero.

f̃1(x̃), · · · , f̃m(x̃)
Step 17−→ x̃t

„
OL1 ∗
∗ ∗

«
x̃, · · · , x̃t

„
OL1 ∗
∗ ∗

«
x̃

| {z }
M1

, x̃t

„∗ ∗
∗ ∗
«

x̃, · · · , x̃t

„∗ ∗
∗ ∗
«

x̃

Step 27−→ x̃t

„
OL2 ∗
∗ ∗

«
x̃, · · · , x̃t

„
OL2 ∗
∗ ∗

«
x̃

| {z }
M1+M2

, x̃t

„∗ ∗
∗ ∗
«

x̃, · · · , x̃t

„∗ ∗
∗ ∗
«

x̃

7−→ · · · 7−→ x̃t

„
0 ∗
∗ ∗
«

x̃, · · · , x̃t

„
0 ∗
∗ ∗
«

x̃

| {z }
M1+M2+···+Mt

Due to Fact 4, this algorithm finds a solution when m ≤ M1 + · · · + Mt ∼
n1/2+n1/4+· · · , namely n ≥ (about) m2−2m3/2+2m. According to Observation
in Algorithm C, we see that the complexity of this algorithm is O(n4)+O(n2)+
O(n) + · · · = O(n4). Thus Algorithm 1 works in polynomial time.

The following is the table of the number of variables required to solve m
equations in Algorithm 1 and the algorithm in [6].

m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 · · ·
n for Alg. 1 1 3 4 9 12 16 20 25 36 49 64 81 90 100 121 144 156 169 · · ·

n for [6] 2 6 12 20 30 42 56 72 90 110 132 156 182 210 240 272 306 342 · · ·



5 Solving quadratic equations for n ≥ m(m + 1)/2 + 1

In this section, we propose an algorithm to solve equations for n ≥ m(m+1)/2+1.

Algorithm 2.
Aim. Find a solution x ∈ kn of the equations f1(x) = 0, · · · , fm(x) = 0 when
n ≥ m(m + 1)/2 + 1.

Step 1. Find Ũ0 such that the coefficient of x2
0 in f̃1(Ũ0x̃) is zero. Put f̃

(1)
l (x) :=

f̃l(Ũ0x̃).
Step 2. Find Ũ1 such that the coefficients of x0x1 and x2

1 in f̃
(1)
1 (Ũ1x̃) and the

coefficient of x0x1 in f̃
(1)
2 (Ũ1x̃) are zero. Put f̃

(1,1)
l (x̃) := f̃

(1)
l (Ũ1x̃). If there is

a solution z2 ∈ k of f̃
(1,1)
2 (1, z2, 0, · · · , 0) = 0, denote by V2 :=




1 0
z2 1

I


, and

put f̃
(2)
l (x̃) := f̃

(1,1)
l (V2x̃). If there are no such z2, take another Ũ1 and repeat

it until such z2 ∈ k appears.
Step 3. Find Ũ1 such that the coefficients of x0x1 and x2

1 in f̃
(2)
1 (Ũ1x̃), f̃ (2)

2 (Ũ1x̃)
and the coefficient of x0x1 in f̃

(2)
3 (Ũ1x̃) are zero. Put f̃

(2,1)
l (x̃) := f̃

(2)
l (Ũ1x̃). If

there is a solution z3 ∈ k of f̃
(2,1)
3 (1, z3, 0, · · · , 0) = 0, denote by V3 :=




1 0
z3 1

I


.

and put f̃
(3)
l (x̃) := f̃

(2,1)
l (V3x̃). If there are no such z3, take another Ũ1 and repeat

it until such z3 ∈ k appears.
...

Step m. Find Ũ1 such that the coefficients of x0x1 and x2
1 in f̃

(m−1)
1 (Ũ1x̃), · · · ,

f̃
(m−1)
m−1 (Ũ1x̃) and the coefficient of x0x1 in f̃

(m−1)
m (Ũ1x̃) are zero. Put f̃

(m−1,1)
l (x̃)

:= f̃
(m−1)
l (Ũ1x̃). If there is a solution zm ∈ k of f̃

(m−1,1)
m (1, zm, 0, · · · , 0) = 0,

denote by Vm :=




1 0
zm 1

I


 and put f̃

(m)
l (x̃) := f̃

(m−1,1)
l (Vmx̃). If there are no

such zm, take another Ũ1 and repeat until such zm ∈ k appears.

Observation 1. Step 1 requires to solve a homogeneous quadratic equation of
n + 1 variables. Thus one needs n ≥ 2 in Step 1. According to Fact 4, we see
that Step 1 solves a quadratic equation of at least 2 variables.
Observation 2. Step 2 requires to solve to solve two homogeneous linear equa-
tions and a homogeneous quadratic equation of n+1 variables. The linear equa-
tions is solved by the elimination and the quadratic equation is solved by Step
1. Since Step 1 requires at least 2 variables, Step 2 requires at least 2 + 2 = 4
variables. We also note that the coefficients of x2

0, x0x1, x
2
1 in f̃

(2)
1 (x̃) and x2

0 in
f̃

(2)
2 (x̃) are zero. Thus Step 1 and 2 solve two quadratic equation of at least 4

variables.
Observation 3. Step 3 requires to solve 3 homogeneous linear equations and
2 homogeneous quadratic equations of n + 1 variables. If n ≥ 3 + 4 = 7, this



can be done by Step 1 and 2 and linear operations. Note that the coefficients of
x2

0, x0x1, x
2
1 in f̃

(3)
1 (x̃), f̃ (3)

2 (x̃) and x2
0 in f̃

(3)
3 (x̃) are zero. Thus Step 1 to 3 solve

three quadratic equation of at least 7 variables.
Observation 4. Suppose that Step 1 to Step t (1 ≤ t ≤ m) solves t quadratic
equations of at least rt variables. Since Step t + 1 requires to solve t + 1 ho-
mogeneous linear equations and t homogeneous quadratic equations of n + 1
variables. If n ≥ rt + t, this can be done by Step 1 to Step t and linear oper-
ations. Note that the coefficients of x2

0, x0x1, x
2
1 in f̃

(t+1)
1 (x̃), · · · , f̃

(t+1)
t (x̃) and

x2
0 in f̃

(t+1)
t+1 (x̃) are zero. Thus Step 1 to t + 1 solve t + 1 quadratic equation of

at least n ≥ rt + t variables. Since t1 = 2 and Step 1 and 2 solves two quadratic
equations, we see that Step 1 to Step m solves m quadratic equations of at least
tm = m(m + 1)/2 + 1 variables.
Observation 5. We now estimate the complexity of this algorithm. It is too
difficult in general since we do not know how many times one computes Ũ1 in each
step. Then, for simplicity, we do it under the assumption that one computes Ũ1

once when q is even and twice when q is odd in all steps, because the probability
that univariate quadratic equation has a solution is almost 1 if q is even and 1/2
if q is odd. Let ct be the complexity in Step t. Since Step t includes Step 1 to
Step t− 1 again and linear operations, we have

ct =

{
c1 + c2 + · · ·+ ct−1 + (polyn), (2 | q),
2(c1 + c2 + · · ·+ ct−1) + (polyn), (2 - q).

Thus it is easy to see that ct = O(2t) when q is even and ct = O(3t) when q
is odd. This means that the complexity of Algorithm 2 is roughly estimated by
c1 + · · ·+ cm = O(2m) for even q and O(3m) for odd q.

6 Solving equations over small fields

In Section 4 and 5, we propose algorithms to solve equations for general finite
fields. When q is not very larger than n and m, one can solve equations effectively
by inserting the exhaustive search in each step of Algorithm 1 little by little if
n is (not very) smaller than as described in the table at the end of Section 4.

As examples, we describe how to solve quadratic equations with (q, m, n) =
(16, 64, 16) and (16, 48, 16), which are used for UOV suggested in [6]. For sim-
plicity to estimate the complexity, suppose that the complexity of Algorithm C
is n(n − M)3/3 since Ω(n) ∼ n3/3 for the classical Gaussian elimination. Of
course, using the faster elimination algorithm, the complexity becomes smaller.

6.1 Solving equations of (q, m, n) = (16, 64, 16).

Aim. Find a solution x ∈ k64 of f1(x) = 0, · · · , f16(x) = 0.
Step 1. Use Algorithm C to find V1 : k65 → k65 such that the coefficients of
xixj (0 ≤ i, j ≤ 7) in f̃1(V1x̃), · · · , f̃8(V1x̃) are zero. Put x(1) := (x0, · · · , x7)t

and f
(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x7, 0, · · · , 0)t

)
.



Step 2. Use Algorithm C to find V2 : k8 → k8 such that the coefficients of xixj

(0 ≤ i, j ≤ 2) in f
(1)
9 (V2x

(1)), f (1)
10 (V2x

(1)) are zero. Put x(2) := (x0, x1, x2)t and
f

(2)
l (x(2)) := f

(1)
l

(
V2(x0, x1, x2, 0, · · · , 0)t

)
.

Step 3. Find x(2) = (1, x1, x2)t such that f
(2)
11 (x(2)) = 0. Check whether f

(2)
12 (x(2))

= 0 for the same x(2). If so, go to the next step, and if not, change x(2) until
f

(2)
12 (x(2)) = 0.

Step 4. Check whether f
(2)
13 (x(2)) = f

(2)
14 (x(2)) = f

(2)
15 (x(2)) = 0. If so, go to the

next step, and if not, go back to Step 2.
Step 5. Check whether f

(2)
16 (x(2)) = 0. If so, finish this algorithm, and if not, go

back to Step 1.

Observation. The complexity in Step 1 and 2 are respectively 65× 573/3 and
8 × 54/3. Step 3 requires to find a square root and the exhaustive search for
f

(2)
12 (x(2)) = 0. Since the probability that f

(2)
12 (x(2)) = 0 for randomly chosen x(2)

is about q−1, the complexity in Step 3 is log q×q = 25 in average. Similarly, since
the probabilities that f

(2)
13 (x(2)) = f

(2)
14 (x(2)) = f

(2)
15 (x(2)) = 0 and f

(2)
16 (x(2)) = 0

are respectively q−3 and, one repeats Step 2 by q3 = 212 times and Step 1 by
q = 24 times on average. Thus the complexity of this approach is

24 × (
65× 573/3 + 212 × (

8× 54/3 + 25
)) ∼ 226.4.

6.2 Solving equations of (q, m, n) = (16, 48, 16).

Aim. Find a solution x ∈ k48 of f1(x) = 0, · · · , f16(x) = 0.
Step 1. Use Algorithm C to find V1 : k49 → k49 such that the coefficients of
xixj (0 ≤ i, j ≤ 6) in f̃1(V1x̃), · · · , f̃6(V1x̃) are zero. Put x(1) := (x0, · · · , x6)t

and f
(1)
l (x(1)) := f̃l

(
V1(x0, · · · , x6, 0, · · · , 0)t

)
.

Step 2. Use Algorithm C to find V2 : k7 → k7 such that the coefficients of xixj

(0 ≤ i, j ≤ 2) in f
(1)
7 (V2x

(1)), f (1)
8 (V2x

(1)) are zero. Put x(2) := (x0, x1, x2)t and
f

(2)
l (x(2)) := f

(1)
l

(
V2(x0, x1, x2, 0, · · · , 0)t

)
.

Step 3. Find x(2) = (1, x1, x2)t such that f
(2)
9 (x(2)) = 0. Check whether f

(2)
10 (x(2))

= 0 for the same x(2). If so, go to the next step, and if not, change x(2) until
f

(2)
10 (x(2)) = 0.

Step 4. Check whether f
(2)
11 (x(2)) = f

(2)
12 (x(2)) = 0. If so, go to the next step,

and if not, go back to Step 2.
Step 5. Check whether f

(2)
13 (x(2)) = · · · = f

(2)
16 (x(2)) = 0. If so, finish this

algorithm, and if not, go back to Step 1.

Observation. The complexity in Step 1 and 2 are respectively 49× 423/3 and
7 × 44/3. Step 3 requires to find a square root and the exhaustive search for
f

(2)
10 (x(2)) = 0. Since the probability that f

(2)
10 (x(2)) = 0 for randomly chosen

x(2) is about q−1, the complexity in Step 3 is log q×q = 25 in average. Similarly,
since the probabilities that f

(2)
11 (x(2)) = f

(2)
12 (x(2)) = 0 and f

(2)
13 (x(2)) = · · · =

f
(2)
16 (x(2)) = 0 are respectively q−2 and q−4, one repeats Step 2 by q2 = 28 times



and Step 1 by q4 = 216 times on average. Thus the complexity of this approach
is

216 × (
49× 423/3 + 28 × (

7× 43/3 + 25
)) ∼ 236.4.

Remark that the complexity to solve the quadratic equations with (q,m, n) =
(16, 64, 16) and (16, 48, 16) have been studied in [1] and [4] to analyze the security
of UOV with such parameters proposed in [6]. We summarize the complexities
of the attacks by [1], [4] and our approach in the following table.

(q, n, m) (16, 48, 16) (16, 64, 16)
exhaustive 264 264

Courtois et al. [1] 246 242

Faugére-Perret [4] 240.5 240.5

Our attack 236.4 226.4

7 Conclusion

In the present paper, we propose two algorithms to solve quadratic equations
when n is much larger than m. Though we reduce the required n compared
to the works in [6] and [1], it is still too large to break most cryptosystems
based on multivariate quadratic equations. Then it is important to improve our
algorithms and to study the lower bound of n such that m equations can be
solved in polynomial (or effective) time.

References

1. N. Courtois, L. Goubin, W. Meier and J. Tacier, Solving underdefined systems of
multivariate quadratic equations, PKC’02, LNCS 2274, pp.211–227.

2. N. Courtois, A. Klimov, J. Patarin and A. Shamir, Efficient algorithms for solv-
ing overdefined systems of multivariate polynomial equations, Eurocrypt’00, LNCS
1807, pp.392–407.

3. N. Courtois and J. Pieprzyk, Cryptanalysis of Block Ciphers with Overdefined Sys-
tems of Equations, Asiacrypt’02, LNCS 2501, pp. 267–287.

4. J. Faugére and L. Perret, On the security of UOV, Proceedings of SCC’08, pp.103–
109.

5. J. Ding, J. Gower and D. Schmidt, Multivariate public key cryptosystems, Advances
in Information Security, Springer, 2006.

6. A. Kipnis, J. Patarin and L. Goubin, Unbalanced Oil and Vinegar Signature
Schemes, Eurocrypt’99, LNCS 1592 (1999), pp. 206–222, extended in citeseer/
231623.html, 2003-06-11.

7. S. Tsujii, T. Kaneko, K. Tadaki and M. Gotaishi, Design Policy of MPKC based on
Piece in Hand Concept (in Japanese), IEICE Technical Report 108 (2008), pp.15–
22.


