
All-or-Nothing Transforms as a Countermeasure

to Differential Side-Channel Analysis

Robert P. McEvoy1, Michael Tunstall2, Claire Whelan3,
Colin C. Murphy1, and William P. Marnane1

1 Department of Electrical & Electronic Engineering,
University College Cork, Cork, Ireland.

{robertmce,cmurphy,liam}@eleceng.ucc.ie
2 Department of Computer Science, University of Bristol,

Merchant Venturers Building, Woodland Road,
Bristol BS8 1UB, United Kingdom.

tunstall@cs.bris.ac.uk
3 Department of Computer Science,

Trinity College Dublin, Ireland.
claire.whelan@cs.tcd.ie

Abstract. All-or-Nothing Encryption was introduced by Rivest as a
countermeasure to brute force key search attacks. This work identifies a
new application for All-or-Nothing Transforms, as a protocol-level coun-
termeasure to Differential Side-Channel Analysis (DSCA). We describe
an extension to the All-or-Nothing protocol, that strengthens the DCSA
resistance of the cryptosystem. The resultant scheme is a practical alter-
native to Boolean and arithmetic masking, used to protect implementa-
tions of encryption and decryption operations on electronic devices.
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1 Introduction

Electronic devices, such as smart cards used in electronic payment sys-
tems, naturally leak information about the data they are processing. For
example, this leakage can manifest itself in the execution time of a cryp-
tographic algorithm on the device [1], via its power consumption [2], or
through electromagnetic emanations from the device [3]. Side-Channel
Analysis (SCA) encompasses the class of implementation attacks which
passively monitor these physical manifestations, then manipulate them
to compromise the system’s integrity. Inevitably, along with the develop-
ment of an array of powerful attacks, there has also been active research
to find appropriate, effective and efficient countermeasures [4–8].



All-or-Nothing Transforms (AONTs) are unkeyed probabilistic trans-
formations, with numerous applications in cryptography. They were orig-
inally proposed by Rivest [9], as a means of hindering brute force key
searches on block ciphers with short key lengths. By applying an AONT
to a plaintext message, a ‘pseudo-message’ is formed. In order to in-
vert the AONT, possession of the entire pseudo-message is required. This
pre-processing stage is not considered encryption, however, as the AONT
does not use a secret key. An All-or-Nothing Encryption (AONE) mode is
formed when a pseudo-message is encrypted using a symmetric or asym-
metric cipher.

In this paper, we consider All-or-Nothing cryptosystems from the
point of view of side-channel attacks. We demonstrate that AONE pos-
sesses properties that inherently deter first-order Differential Side-Channel
Analysis (DSCA). The AONE mode is extended, to further strengthen
encryption systems against attacks based on either the plaintext or the
ciphertext. The proposed system provides protection against DSCA while
maintaining efficiency, in contrast to current DSCA countermeasures,
which are often inefficient from the perspectives of speed and area.

This paper is organised as follows. Section 2 provides background on
Differential Side-Channel Analysis, whilst Section 3 discusses the use of
masking transformations as a DSCA countermeasure. In Section 4, we
consider All-or-Nothing Transforms, and describe the DSCA resistance
that is inherent to All-or-Nothing Encryption. Section 5 proposes an ex-
tension to the All-or-Nothing Encryption protocol to complete its DSCA
resistance. Section 6 describes how the performance of the new encryp-
tion mode can be enhanced, by using the properties of the All-or-Nothing
Transform. Finally, Section 7 presents further considerations, and we con-
clude in Section 8.

2 Differential Side-Channel Analysis

Differential Side-Channel Analysis (DSCA) exploits the fact that the in-
stantaneous side-channel leakage from a cryptographic device, such as a
smart card, depends on the data that it processes and the operations
that it performs. For example, Differential Power Analysis (DPA) is a
type of differential side-channel attack that has been well studied in the
academic literature, and exploits data-dependent variations in the instan-
taneous power consumption of a cryptographic device [2, 10]. Similarly,
Differential Electromagnetic Analysis (DEMA) is a type of DSCA that is
based on electromagnetic (EM) radiation [3].



DSCA involves identifying an intermediate operation in a computa-
tion involving data that is known to an adversary (e.g. the plaintext or
ciphertext), and data that is related to the secret (e.g. a portion of the
secret key). This operation is referred to as a selection function. For exam-
ple, let βi = S(αi, K) denote a selection function, where αi is known by
the adversary, and K is related to the secret. The algorithm is executed
a number of times on the target device, with input αi, where 1 ≤ i ≤ T .
For each execution, a trace ti of the side-channel information (e.g. power
consumption) is captured. In general, the selection function accepts n-bit
inputs, where n may be the target device processor word size, or the num-
ber of bits input to an S-box, in the case of a symmetric-key algorithm.
Therefore, it is feasible to calculate 2n hypotheses βi,j = S(αi, Kj) for
0 ≤ Kj < 2n, since K only relates to an n-bit portion of the secret.

The process of determining which hypothesis Kj corresponds to the
actual secret K depends on the attack. For example, classical DPA cate-
gorises the power traces into two sets depending on a single bit b of βi,j ,
where the same bit is used to categorise the power traces for all hypotheses
of Kj , then calculates the distance of means between the two sets [2]. In
contrast, Correlation Power Analysis (CPA) considers a processor’s en-
tire word [11]. CPA estimates the power consumption of βi,j , which is
calculated depending on a power model, where the power model is chosen
to most accurately describe the target device’s underlying architecture.
The estimated power consumption is then compared to the actual power
consumption, using a correlation test. Attacks such as these are termed
first-order DSCA attacks, since the side-channel leakage from a single
operation within the target device is exploited.

3 Masking as a DSCA Countermeasure

The goal of countermeasures against DPA attacks is to make the power
consumption of a cryptographic device independent of the intermediate
values of a cryptographic algorithm. Such countermeasures can be clas-
sified into two categories: hiding and masking. Hiding countermeasures
remove the dependence of the side-channel leakage of a cryptographic de-
vice on the intermediate variables processed within that device. For ex-
ample, hiding countermeasures against DPA either attempt to randomise
the power consumption or to make it constant. This paper focuses on
masking countermeasures.



3.1 Boolean and Arithmetic Masking

Masking countermeasures work by rendering the intermediate variables
processed within a device independent of the intermediate variables in a
cryptographic algorithm, so that the intermediate variable βi processed
by the device is not equal to S(ai, K) [4, 5]. This independence is achieved
by combining each intermediate variable in the cryptographic algorithm
with a random value (a ‘mask’), which changes on each execution of the
algorithm. For example, an intermediate variable x can be masked with a
random value r via: xr = x⊕r. This is termed Boolean masking, since the
masking operation is Boolean XOR, denoted by ⊕. Similarly, arithmetic
masking applies a mask using an arithmetic function, such as modular
addition or modular multiplication. Subsequently, it is the masked value
xr that appears on the device during the execution of an algorithm, rather
than x. Since xr is unpredictable to an attacker, first-order DSCA attacks
are prevented.

Masking can be applied at the architecture level, where random masks
are incorporated into high-level functions, such as multiplication or key
addition [12]. Masking can also be implemented at the gate level, where
basic cells, such as AND and OR gates, are modified to incorporate ran-
dom inputs as well as masked inputs [13]. When classical masking is
applied at either the architecture or the gate level, the implementation
should also include mask correction circuitry. This circuitry tracks the
modifications to the mask that happen when the masked data is processed
by the cryptographic algorithm, so that the mask can be removed at the
end of the cryptographic computation. Mask correction typically leads to
increases in the implementation area and execution time of the device.

3.2 Masking using Cryptographic Transformations

To date, few publications in the literature have considered using cryp-
tographic transformations to protect encryption (and decryption) algo-
rithms against DSCA [7, 8, 14]. As illustrated in Figure 1, such counter-
measures operate by applying cryptographic transformations T1 and T2
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Fig. 1. Using cryptographic transformations as a DSCA countermeasure



before and after the encryption operation E(·, k), respectively. The cryp-
tographic transformations are such that the input m′ and output c′ of the
encryption function are obscured from a side-channel attacker. Therefore,
hypotheses for the value of an intermediate variable βi cannot be com-
puted based on knowledge of the plaintext m or the ciphertext c′′, and
first-order DSCA is prevented. Since the transformations use additional
variables k1

s and k2
s unknown to the attacker (e.g. random strings), this

countermeasure may be considered to be a type of protocol level masking.

Giraud and Prouff proposed a construction of this countermeasure, to
counteract DSCA of block ciphers [7]. Their solution was to add a layer
P 0

k′ before the encryption operation and a layer P 1

k′ after, parameterised
by a shared secret key k′. Each layer consisted of a fixed, linear, invo-
lutive diffusion function L and a non-linear permutation πk′ . However,
the countermeasure proposed by Giraud and Prouff was withdrawn, after
weaknesses were discovered in the design. In particular, the output of the
P 0

k′ layer (i.e. m′, the input to the encryption function) was found to be
predictable by an attacker, for inputs of low Hamming weight.

In [8], Tiri, Schaumont and Verbauwhede proposed two ‘side-channel
leakage tolerant architectures’. As in [7], the aim of these designs was to
provide DSCA protection, whilst leaving the encryption and decryption
operations unmodified. The first architecture proposed the application of
permutations P1 and P2 before and after encryption, respectively. These
permutations are dependent on secret permutation keys Kp1 and Kp2.
However, specific constructions of the permutations P1 and P2 were not
provided. Furthermore, the problem of distributing the secret permuta-
tion keys Kp1 and Kp2 was not discussed, nor how often these keys should
be updated. The second architecture considered in [8] uses two intertwined
Cipher Block Chaining (CBC) mode encryptions to prevent DSCA based
on knowledge of the plaintext or the ciphertext. A disadvantage of this
scheme is that the encryption function must be invoked twice for each
message block that is to be encrypted.

Recently, Coron proposed the use of permutation tables as a DSCA
countermeasure [14]. A randomised permutation P is applied to the mes-
sage and the key prior to encryption, and it is these permuted variables
that are used by the encryption algorithm. At each stage of the encryption
algorithm, the intermediate variables are corrected, so that they remain
in the permuted form described by P . This correction is time-consuming;
the permutation table countermeasure is approximately four times slower
than classical masking [14]. Once the encryption algorithm has completed,
the inverse permutation P−1 is applied. In contrast, the countermeasures



described by [7] and [8] do not implement correction; therefore, the re-
sultant ciphertext differs from that which would have been produced by
an unprotected implementation. It is this type of scheme, with no mask
correction, that is the focus of this paper. In a sense, the ‘mask correction’
required to retrieve the message m from the schemes of [7] and [8] is ap-
plied at the receiver side. The receiver uses the corresponding decryption
protocol to invert T2, decrypt with secret key k, and invert T1, thereby
retrieving the message m.

3.3 Properties of Masking Transformations

In general, cryptographic transformations T1 and T2 should possess cer-
tain properties, if they are to be used in the DSCA countermeasure shown
in Figure 1. These properties are listed below.

Property 1: Pre-encryption transformation T1 and post-encryption trans-

formation T2 should be dependent on randomly chosen inputs k1
s and k2

s ,

respectively.

If k1
s is a random string generated within the device, then the input m′

to the encryption function is rendered unpredictable to an attacker. Sim-
ilarly, the entropy of k2

s ensures that c′ is unpredictable, and ‘reverse’
DSCA cannot be mounted.

Property 2: Post-encryption transformation T2 should be dependent on

a shared secret k2
s .

Transformation T2 should only be invertible to the legitimate receiver, so
that it cannot be inverted by an attacker. This requires that T2 should
include some element, k2

s , known exclusively to the sender and receiver.
For example, k2

s could be equal to, or derived from, the shared secret
key k. As will be shown in the following section, it is not required that
a receiver must possess k1

s in order to invert T1 and recover the message m.

Property 3: Post-encryption transformation T2 should not linearly com-

bine the output of the encryption stage c′ with a constant.

If the output of the encryption function is linearly combined with some
constant; then this constant can be derived by DSCA in the same way in
which one would attempt to derive the key. Another attack could include
the constant as part of the final functions of the encryption algorithm.
This attack could then proceed by firstly deriving the effect of the con-
stant, and then deriving some information about the secret key k.



All-or-Nothing Encryption All-or-Nothing Decryption

Inputs: plaintext m, random value r Inputs: ciphertext c′

1. m′ = AONTr(m); 1. m′ = Dk(c′);
2. c′ = Ek(m′); 2. (m, r) = Inv-AONT(m′);

Table 1. All-or-Nothing Encryption and Decryption

Property 4: Pre- and post-encryption transformations T1 and T2 should

themselves be DSCA-resistant.

This final property may seem obvious; however, it is important to empha-
sise. When constructing T2, it may seem reasonable to combine the shared
secret k2

s (required by Property 2) with some variable data d. However,
if this data is known to an attacker, then the focus of the DSCA attack
shifts from the encryption operation E to the transformation T2. Ideally,
Property 4 can be attained by using random values for k1

s and k2
s , that

change for each new message m that is encrypted.

In the following section, we present new constructions for transforma-
tions T1 and T2 based on All-or-Nothing Transforms, that fulfil all of the
above properties.

4 All-or-Nothing Transforms

All-or-Nothing Transforms (AONTs) were proposed by Rivest [9] in 1997,
for the purpose of deterring exhaustive key searches on block ciphers.
An All-or-Nothing Transform uses a random string r to map a plaintext
message m (of variable bit length) to a pseudo-message m′. The pseudo-
message can, subsequently, be encrypted with an encryption function E

and key k; for example, using a symmetric block cipher such as AES [15].
The entire process is referred to as All-or-Nothing Encryption (AONE).

All-or-Nothing Decryption allows the receiver to recover the message
m from the transmitted ciphertext c′. The receiver applies the decryption
function D with key k to recover m′. Subsequently, the inverse AONT is
applied, to recover r and m. The All-or-Nothing Encryption and Decryp-
tion protocols are described in Table 1.

An attacker attempting to conduct an exhaustive key search on an All-
or-Nothing encryption mode is required to decipher all of the ciphertext
blocks, in order to test a single key hypothesis. Therefore, the average
execution time of a brute force attack on an cryptosystem using AONE
is increased in proportion to the number of blocks in the ciphertext.



4.1 AONT Properties and Constructions

As put forward in [9], AONTs should possess four properties:

1. The transformation should be invertible. Given the entire pseudo-
message, one can invert the transformation to retrieve the plaintext.

2. Both the AONT and its inverse should be efficiently computable.
3. All AONTs should be randomised, in order to avoid chosen-message

and known-message attacks on the encryption mode.
4. If any l (or more) bits of the pseudo-message are unknown, it should

be computationally infeasible to invert the AONT, or determine any
function of the plaintext bits. This is called the “All-or-Nothing” prop-
erty. The value of l is AONT-dependent, but large enough to deter
brute force attacks on the unknown bits of the pseudo-message.

Property 3 implies that pseudo-message m′ is not a deterministic function
of the plaintext m. In order to fulfil this requirement, an AONT requires
a user-generated random string r when computing m′ from m.

Many candidate AONT constructions have been proposed in the lit-
erature. In this paper, we focus on OAEP (Optimal Asymmetric En-
cryption Padding) [16, 17] and the CTR Transform [18] as case studies.
Other proposed transforms include: Package Transform [9], Exposure-
Resilient Function-based Transforms [19], Quasigroup-based AONTs [20],
‘Extended-Indistinguishable’ AONTs [21], and Error-Correcting Code-
based AONTs [22].

Both OAEP and CTRT conform to a general model for AONTs, shown
in Figure 2. In our general AONT model, an expansion function G uses
the random value r to produce an “All-or-Nothing keystream”, having
the same bit length as the message m. Since r changes for each new
message m, the AON keystream G(r) can be viewed as a type of one-
time pad [23]. Subsequently, this AON keystream is used to mask the
message m. In both OAEP and CTRT, the masking function is simply a
Boolean XOR. This generates the majority of the pseudo-message bits.
We refer to this sequence of operations as a “partial AONT”, which is
effectively equivalent to Boolean or arithmetic masking.

However, the partial AONT does not possess the All-or-Nothing prop-
erty, nor is it invertible. To effectuate these properties, the sender must
communicate the value of the random value r to the receiver. This is
achieved by compressing the output of the partial AONT, and using it to
mask the random value r. This final step completes the AONT, ensuring
that the entire pseudo-message is required by the receiver, in order to
retrieve r and subsequently invert the transformation.
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Fig. 2. General model for All-or-Nothing Transforms

The operations used by OAEP are recalled in Table 2, where s||t de-
notes concatenation of the strings s and t. Functions G and H are defined
as random oracles [16, 17]. OAEP forms the basis of a routine called En-
coding Method for Encryption #1 (EME1), which is standardised in [24].
According to the standard, functions G and H should be instantiated
using mask generation function MGF1, which has a user-specified out-
put length. MGF1 is based on repeated iterations of a secure one-way
hash function, such as SHA-256 [25]. In general, G can be regarded as
expanding its input, whilst H compresses its input. The CTR Trans-
form (CTRT) is described in Table 3. In CTRT, the expansion function
is instantiated using a block cipher in CTR mode, essentially turning
the block cipher E into a stream cipher, using random key k′. The final
pseudo-message block is formed by simply XOR-ing together all of the
other pseudo-message blocks, along with the random key.

4.2 DSCA Resistance of AONE systems

Aside from hindering brute force key searches on cryptosystems with short
key lengths, AONTs have found other useful applications in cryptography.
For example, AONTs are an important part of remotely keyed encryp-
tion [17, 26] and protocols for efficient block cipher encryption [27]. Here,



OAEP Inverse-OAEP

Inputs: message m, random value r Input: pseudo-message m′ = s||t
Output: pseudo-message m′ = s||t Outputs: random value r, message m

1. s = m ⊕ G(r); 1. r = t ⊕ H(s);
2. t = r ⊕ H(s); 2. m = s ⊕ G(r);

Table 2. OAEP and Inverse-OAEP Transformations

CTRT Inv-CTRT

Inputs: message blocks mi, 1 ≤ i ≤ n Inputs: pseudo-message blocks m′

i, 1 ≤ i ≤ n + 1
random key k′ Outputs: random key k′

Outputs: pseudo-message blocks m′

i, 1 ≤ i ≤ n + 1 message blocks mi, 1 ≤ i ≤ n

1. m′

i = mi ⊕ Ek′(i); 1 ≤ i ≤ n 1. k′ = m′

1 ⊕ m′

2 ⊕ · · · ⊕ m′

n+1;
2. m′

n+1 = k′ ⊕ m′

1 ⊕ m′

2 ⊕ · · · ⊕ m′

n; 2. mi = m′

i ⊕ Ek′(i); 1 ≤ i ≤ n

Table 3. CTR Transform (CTRT) and Inverse CTRT

it is shown that All-or-Nothing Encryption can be used to protect against
Differential Side-Channel Attacks.

As described in Section 2, to perform DSCA on an encryption al-
gorithm, an attacker is required to predict an intermediate state within
the algorithm. In All-or-Nothing Encryption, however, the plaintext m is
pre-processed along with a random string r. It is the resulting m′ that is
operated upon by the encryption algorithm E and key k. The attacker
cannot predict m′, without knowing r. Moreover, the random input r

changes on each application of the AONT, mapping m to a different
m′ each time. Therefore, the hypothesis phase of the attack cannot be
performed. Hence, All-or-Nothing Encryption (AONE) exhibits inherent
resistance to DSCA. With reference to Figure 1, it can be seen that the
AONT is equivalent to applying a pre-encryption transformation T1. The
random input r to the AONT is equivalent to the parameter k1

s of T1.

5 Extended All-or-Nothing Encryption

All-or-Nothing Encryption uses a cryptographic transformation to mask
the plaintext prior to encryption. However, AONE does not prevent hypo-
theses based on the resultant ciphertexts, and so a post-encryption trans-
formation T2 is required, to complete the DSCA protection. A construc-
tion for T2 is presented in this section, based on a partial AONT (from
the general AONT model defined above). We call the resultant protocol
“Extended All-or-Nothing Encryption”, and it is illustrated in Figure 3.
The steps of the protocol are as follows:
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Encryption protocol

1. At the beginning of the communication session, the sender and re-
ceiver must agree on a secret key k and a secret initial random value
r0. This part of the protocol is discussed later in this section.

2. The message m to be transmitted is divided into packets mj , 1 ≤ j ≤
N . The size of the packets is arbitrary and may, for example, depend
on the particular transmission protocol in use by the communications
system.

3. The value of j is set to 1.

4. Packet mj is transformed using an AONT with random value rj , pro-
ducing a pseudo-message packet m′

j .

5. The pseudo-message packet m′

j is encrypted with the encryption al-
gorithm E and secret key k. If E is a block cipher, then it may be
applied several times, as the length of m′

j may exceed the block size
of the cipher. The result is an encrypted pseudo-message packet c′j .

6. A partial AONT is then applied to c′j . However, a new random value
is not used; instead, the random value rj−1 is re-used. Clearly, it is
advantageous to base the partial AONT on the same AONT that
is used in the pre-encryption transformation. In this way (for 2 ≤
j ≤ N), the sender does not need to fully re-compute G(rj−1), the
All-or-Nothing keystream that was generated by using the expansion
function on rj−1, because it was already computed while m′

j−1
was

being generated. An extra block of G(rj−1) does need to be generated,
however, since the bit length of m′ is greater than that of m.

7. The output of this post-encryption transformation is ciphertext packet
c′′j , which is transmitted to the receiver. The value of j is incremented.

8. Steps 4 – 7 are repeated, until all N blocks in the message have been
processed.

At the receiver side, the steps of the corresponding decryption protocol
are as follows:



Decryption protocol

1. The secret key k and secret initial random value r0 are agreed upon
with the sender at the start of the communications session.

2. The value of j is set to 1.

3. Packet c′′j is received, and is processed using the (inverse) partial
AONT with random value rj−1, to produce c′j .

4. Packet c′j is decrypted using secret key k and D, the decryption algo-
rithm corresponding to E. Depending on the size of c′j , several calls to
D may be required. The result of the decryption stage is packet m′

j .

5. Once all of the bits of m′

j have been determined, the inverse AONT
is applied to it, generating mj and rj . The value of j is incremented.

6. Steps 3 – 5 are repeated, until all N packets of the received message
have been processed. Finally, the mj blocks are reassembled to form
the message m.

Establishing the initial random value r0

It is important that the initial random value r0 is not made public,
otherwise an attacker could use c′′

1
to retrieve c′

1
. By continually resetting

a target device, the attacker could gather many different values of c′
1
,

and use this knowledge and corresponding side-channel information to
conduct a differential side-channel attack on the encryption algorithm.

In public-key cryptosystems, r0 can be determined as part of the nor-
mal key setup phase, e.g. using a protocol based on Diffie-Hellman key
exchange [28]. However, ubiquitous cryptographic devices such as smart
cards are often not part of a public-key infrastructure. Instead, these
devices are often configured with secret keys at the time of their manu-
facture. The secret key value can only be accessed by the device itself, and
by trusted entities such as banks. In this type of symmetric-key scenario,
it is more difficult to exchange an initial random value r0 securely.

A natural solution is to use the fact that the secret key k is known
to both the sender and the receiver. The initial random value r0 may be
some derivative of the key; for example, the result of applying a hash func-
tion i times to the key, where the value of i is transmitted in clear from
the sender to the receiver. It is a non-trivial problem to safely commu-
nicate the value of r0, because any public information transmitted from
the sender to the receiver could be used to perform a side-channel attack
on the calculation from which r0 is derived, leading to exposure of the
secret key k. Whatever solution is chosen will ultimately depend on the



nature of the sender and receiver (e.g. smart cards, card readers, crypto-
graphic processors etc.), their computational capabilities and the security
protocols for key setup that already exist within the cryptosystem.

6 Combining with Efficient Encryption

In the previous section, we described how Extended All-or-Nothing En-
cryption can be used as a DSCA countermeasure. The performance of
the Extended AONE scheme can be enhanced by combining it with an-
other application of AONTs, namely “Efficient Encryption” [27, 29]. In
the Efficient Encryption scheme, an AONT is applied to a plaintext mes-
sage, but only some (as opposed to all) of the pseudo-message blocks
are subsequently encrypted. The AONT ensures that all of the pseudo-
message blocks are required in order to invert the transformation and
regain the plaintext. Therefore, fewer secret-key encryptions and decryp-
tions are required. The transmitted ciphertext comprises both encrypted
and unencrypted pseudo-message blocks.

To combine the Efficient Encryption with the Extended AONE scheme,
the plaintext message packet mj is transformed with an AONT, as de-
scribed above. A certain set of pseudo-message blocks is chosen to be en-
crypted with encryption function E and secret key k; knowledge of which
blocks are in the set can be made public. The presence of the AONT

E E

Partial AONT

. . .

. . .

. . .

AONT

c′′j

rj

mj

m′
j

kk

rj−1

Fig. 4. Extended All-or-Nothing Encryption combined with Efficient Encryption.



as a pre-encryption transformation T1 prevents DSCA of the encryption
function, based on known plaintext messages. A post-encryption trans-
formation T2 (in the form of a partial AONT) must then be applied to
those blocks that were encrypted, to prevent reverse DSCA. The transmit-
ted ciphertext packet c′′j consists of unencrypted pseudo-message blocks,
alongside blocks that are output from T2. An example of the combined
scheme is shown in the block diagram in Figure 4. The system has the
advantage of being resistant to DSCA, whilst requiring fewer encryption
operations to be performed with the secret key. Therefore, depending
on the particular constructions used for the AONT and partial AONT,
and the message size, the overall latency and power consumption of the
cryptosystem may be reduced.

In ordinary encryption modes (including AONE), the security of the
ciphertext blocks relies on the security of the encryption function E,
which, in turn, relies on the secrecy of the key k. However, in this Ef-
ficient Encryption mode, not all of the transmitted ciphertext blocks are
operated on by the encryption function E. The encryption function E im-
parts security to the encrypted ciphertext block(s). If one has confidence
in the security of the encryption function, then one can be confident that
the missing pseudo-message block(s) cannot be recovered without knowl-
edge of the secret key k. Because of the All-or-Nothing property of the
pseudo-message, the security properties of E are bestowed on the entire
pseudo-message. If the AONT is not invertible without possession of the
missing pseudo-message block(s), the plaintext should not be recoverable
by an attacker. Therefore, the security of the scheme shifts from relying
entirely on the encryption function E when all blocks are encrypted, to
relying almost entirely on the AONT when fewer blocks are encrypted.

7 Further Considerations

The main advantage of Extended All-or-Nothing Encryption over Boolean
and arithmetic masking is that mask correction terms do not have to be
computed. Calculation of mask correction terms typically impacts upon
the area and speed of the cryptosystem, and such masking schemes must
be designed specifically for the particular encryption algorithm being
used [30]. Clearly, extra area and time are required in order to com-
pute the pre- and post-encryption transformations. However, this is not
necessarily a disadvantage if a fast AONT is employed. Additionally, in
the above section it was shown that, due to the All-or-Nothing property,
it is unnecessary to encrypt the entire AONT output. If just one pseudo-



message block is encrypted, then the latency of the encryption protocol
approaches the latency of the AONT.

In describing our general AONT model, it was noted that application
of the partial AONT may be regarded as Boolean or arithmetic masking.
This implies that the new countermeasure is susceptible to the same types
of strong side-channel attacks as the first-order masking countermeasure,
namely higher-order DSCA [31] and template attacks [32]. It has been
shown that significant protection against these attacks can be achieved
by combining first-order masking with a hiding countermeasure such as
randomisation of the order of operations (‘shuffling’) in the encryption
function [33]. Therefore, Extended All-or-Nothing Encryption should be
combined with shuffling, to deter stronger side-channel attacks.

Extended All-or-Nothing Encryption does not have the same weak-
ness as the scheme of Giraud and Prouff [7], regarding inputs of low
Hamming weight. The AONT input m is combined with the pseudo-
random sequence G(r) before being operated upon by the encryption
function. Even if m is of low Hamming weight, the pseudo-randomness of
the pseudo-message m′ is unaffected.

Extended AONE is comparable to a side-channel leakage tolerant ar-
chitecture of Tiri et al. [8]. Here, we instantiate P1 and P2 using an AONT
and partial AONT. The session keys Kp1 and Kp2 correspond to the ran-
dom inputs rj and rj−1, which update for each new message packet that
is encrypted. Once the initial ‘session key’ r0 has been securely shared
between the sender and receiver, subsequent session keys (for subsequent
packets) do not need to be explicitly relayed to the receiver. Because
the pre- and post encryption transformations are based on AONTs, the
receiver uncovers the value of rj when decoding packet mj . Therefore, up-
dates of the session keys happen as a by-product of the usage of AONTs.

8 Conclusion

In this paper, we presented a novel countermeasure to first-order Differ-
ential Side-Channel Analysis, based on All-or-Nothing Transforms. The
proposed countermeasure can be viewed as a type of masking counter-
measure at the protocol level, since for each message packet mj to be
encrypted, the AONT uses a new random ‘mask’ rj . The AONT expands
the random value rj , and uses it to mask all of the bits of the message mj .
Therefore, the masked message m′

j cannot be predicted by an attacker.
Similarly, the output of the encryption operation c′j is unpredictable to
an attacker, because it is concealed by a mask derived from rj−1, using a



partial AONT. This DSCA countermeasure differs from previously pro-
posed masking schemes in the literature, because a mask correction is not
applied. By using fast AONT constructions (e.g. hash function based), the
new countermeasure can out-perform the classical masking countermea-
sure. In conjunction with the Efficient Encryption technique of [29], the
latency of a DSCA-protected encryption can be reduced to the latency of
the All-or-Nothing Transform. Future work will evaluate the performance
of this new countermeasure on the smart card platform, for various AONT
constructions, and compare it with the masking countermeasure, which
is currently widely used in the electronic payments industry.
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