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Abstract. A block cipher is intended to be computationally indistinguishable from a random permu-
tation of appropriate domain and range. But what are the properties of a random permutation? By
the aid of exponential and ordinary generating functions, we derive a series of collolaries of interest
to the cryptographic community. These follow from the Strong Cycle Structure Theorem of permu-
tations, and are useful in rendering rigorous two attacks on Keeloq, a block cipher in wide-spread
use. These attacks formerly had heuristic approximations of their probability of success.

Moreover, we delineate an attack against the (roughly) millionth-fold iteration of a random per-
mutation. In particular, we create a distinguishing attack, whereby the iteration of a cipher a number
of times equal to a particularly chosen highly-composite number is breakable, but merely one fewer
round is considerably more secure. We then extend this to a key-recovery attack in a “Triple-DES”
style construction, but using AES-256 and iterating the middle cipher (roughly) a million-fold.

It is hoped that these results will showcase the utility of exponential and ordinary generating
functions and will encourage their use in cryptanalytic research.
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1 Introduction

The technique of using a function of a variable to count objects of various sizes, using
the properties of multiplication and addition of series as an aid, is accredited to Pierre-
Simon Laplace [12]. Here, we will use this family of techniques, now called “analytic
combinatorics” to count permutations of particular types. An ordinary generating series
associated with a set of objects assigns as the coefficient of the zith term, the number
of objects of size i. An exponential generating series is merely this, with each term
divided by i!. In particular, this can be used to describe permutations drawn at random
from Sn, which is the topic of this paper.

The cipher Keeloq, can be written as the eighth iterate of a permutation followed
by one more permutation [3, Ch. 2]. This eighth power naturally affects the cycle
structure; for example, we will prove that the fixed points of the eighth power are
those of order {1, 2, 4, 8} under the original. There are many other properties of these
repeated permutations that follow from the factorization of the number of iterations,
and we will show cryptanalytic consequences.

In the remainder of this section we will introduce analytic combinatorics through
exponential and ordinary generating functions. In Section 2 we prove a theorem on
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the cycle structures of random permutations, and in Section 3 we present a number of
corollaries. We imagine that most if not all of these are already known in some form,
but here we are compiling them all in one place, with a view to determining when a
random permutation has a given property, rather than merely counting objects which is
the usual use of the techniques of this subject. The proofs are our own. In Section 4, we
apply these techniques to Keeloq, and describe two quite feasible attacks, but also their
exact success probabilities. These attacks have been previously described as requiring
the entire code-book of the cipher (all plaintext-ciphertext pairs under the current key)
but here we let η represent the fraction of the code-book available, and show how η
affects the success probability. In Section 5, we present an unusual example, where a
very highly iterated cipher appears to be secure, but adding one iteration opens up a
feasible and effective distinguishing attack. We conclude in Section 6.

1.1 Background

A combinatorial class C is a set of objects C together with a function `C : C → Z≥0,
which asssigns to each element a non-negative integer “size”. For example, if P is
the set of permutation groups Sn for all positive integers n, then we may use the size
function `P (π) = n, for any π ∈ Sn, to make P into a combinatorial class.

Let Ci be the cardinality of the set of elements ofC with size i. Thus in our example,
Pi = i! for i ≥ 0. It will be useful to represent Ci by either an exponential or an
ordinary generating function (OGF or EGF). First, a brief discussion of generating
functions is in order.

Given a set of constants indexed by Z≥0, say c0, c1, c2, . . ., the ordinary generating
function (or OGF) is defined as the formal power series:

c(z) def=
∞∑
i=0

ciz
i = c0 + c1z + c2z

2 + c3z
3 + · · · .

The EGF is defined as the formal power series:

ce(z)
def=

∞∑
i=0

ci
i!
zi = c0 +

c1

1!
z +

c2

2!
z2 +

c3

3!
z3 + · · · .

For our example combinatorial class, P , its OGF is P(z) = z + 2z2 + 6z3 + 24z4 +
120z5 + · · · , and its EGF is Pe(z) = z + z2 + z3 + z4 + z5 + · · · . The series 1 +
z+ z2 + z3 + z4 + z5 + · · · represents the OGF of the non-negative integers, Z≥0 with
“size” function being the identity: `(n) = n.

In combinatorial arguments, OGFs and EGFs abound [12] [15] and are especially
useful in counting partitions of sets. For example, let A1, A2, . . . , Ak be sets of whole
numbers. The number of all distinct ways that n identical objects can be placed into k
containers, where container j must have some number of objects that occurs in the set
Aj will be the coefficient of zn in the OGF:(∑

i∈A1

zi

)(∑
i∈A2

zi

)
· · ·

(∑
i∈Ak

zi

)
,
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a function that we will use in the proof of Lemma 2.3. Notice that the jth factor is
the OGF that represents the set Aj . There is a similar interpretation for EGFs and
products of EGFs, in terms of probability rather than strict counting. See Section 3.2
or Theorem 3.8 as an example.

A less trivial example of a combinatorial class is the class O of n-cycles of Sn, for
all n > 0, with size function `(π) = n if π ∈ Sn. In other words, size n members of O
comprise the subset of permutations of Sn where the permutation has exactly one orbit.
For any n > 0 there are n!/n or (n − 1)! of these. Thus the OGF is z + z2 + 2z3 +
6z4 +24z5 +120z6 + · · · , and the EGF is z+z2/2+z3/3+z4/4+z5/5+z6/6+ · · · .
Thus the probability that a random permutation from Sn has only one cycle is given by
the coefficients of the zn terms in the EGF. Namely, (n− 1)!/n! = 1/n.

Often, the formal power series defining OGFs or EGFs converge to functions (in
some neighborhood of 0). For example, the OGF for Z≥0 converges to 1/(1− z), and
its EGF converges to ez . The EGF for the combinatorial classO above also converges:

z +
z2

2
+
z3

3
+
z4

4
+
z5

5
+
z6

6
+ · · · = log

(
1

1− z

)
,

as can be verified by term-by-term integration of the power series for 1
1−z . The exis-

tence of such functions will facilitate multiplications and compositions.

1.2 Notation

The somewhat unusual notation of exp(C) where C is a series, means precisely substi-
tuting the entire series C for z into the Taylor expansion for ez =

∑
i≥0 z

i/i!, similar
to matrix exponentiation.

It is well-known that any permutation may be written uniquely as a product of dis-
joint cycles, up to reordering of the cycles and cyclic reordering within each cycle; in-
deed, for any given permutation π consisting of k disjoint cycles, having cycle lengths
c1, c2, c3, . . . , ck, there are exactly k!c1c2c3 · · · ck ways to reorder to obtain an equiv-
alent expression for π. Any counts we make of symmetric group elements must take
this fact into account. Note, we use the convention that if π has a fixed-point, a, then
the 1-cycle (a) is part of the expression for π as disjoint cycles. In particular, the iden-
tity of Sn is written (1)(2)(3) · · · (n). We use the term cycle-count for the number of
disjoint cycles (including all 1-cycles) in the expression of a permutation. It shall be
convenient to include in our analysis the unique permutation of no letters, which has
by convention cycle-count 0. We may view this element as the sole member of S0.

2 Strong and Weak Cycle Structure Theorems

Let A be a subset of the positive integers. We consider the class of permutations that
consist entirely of disjoint cycles of lengths in A, and denote this by P(A,Z≥0). Further-
more, if B ⊆ Z≥0, we may consider the subclass P(A,B) ⊆ P(A,Z≥0) consisting of only
those permutations whose cycle count is found in B. That is, any permutation of cycle
count not in B, or containing a cycle length not in A, are prohibited.
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The following theorems were first proven (presumably) long ago but can be found
in [12] and also [15], and it is commonly noted that the technique in general was used
by Laplace in the late 18th century. The nomenclature is however, ours.

Theorem 2.1. The Strong Cycle Structure Theorem:
The combinatorial class P(A,B) has associated EGF, P(A,B)

e (z) = β(α(z)), where

β(z) is the EGF associated to B and α(z) =
∑
i∈A

zi

i
.

However, we only need a weaker form in all but one case in this paper:

Theorem 2.2. The Weak Cycle Structure Theorem:
The combinatorial class P(A,Z≥0) has associated EGF, P(A,Z≥0)

e (z) = exp(α(z)),

where α(z) is as above: α(z) =
∑
i∈A

zi

i

This is clearly a special case of the Strong Cycle Structure Theorem with β(z) =
1 + z + z2/2! + z3/3! + z4/4! + · · · = ez (the EGF of Z≥0). Interestingly, if A = Z+,
then α(z) = z + z2/2 + z3/3 + z4/4 + z5/5 + · · · = log

(
1

1−z

)
, which provides a

verification of the theorem in this special case:

exp

(
log
(

1
1− z

))
=

1
1− z

= 1 + z + z2 + z3 + z4 + · · · ,

which is the EGF for the combinatorial class P of all permutations (together with the
unique permutation on 0 letters), as expected.

Since the proof of the strong version is not fundamentally more difficult than the
weak version, we shall provide a proof of Theorem 2.1. While this has been proven
already in [12], we feel that a more expository proof is appropriate in this context.
First, a lemma which proves the case B = {k}.

Lemma 2.3. The combinatorial class P(A,{k}) has associated EGF,

P(A,{k})
e (z) =

1
k!

(∑
i∈A

zi

i

)k
.

Proof. Let A ⊆ Z+. For a given cycle-count, k, we must only include cycles of lengths
found in A. Begin with an OGF. If π ∈ Sn has k cycles, then its cycle structure
defines a partition of n identical objects into k containers, where each container cannot
have any number of objects that does not occur as a member of A. The OGF that
generates this is

(∑
i∈A z

i
)k, as stated in Section 1.1. Now, we must remember that

those objects in the containers are not identical! Think of each cycle-structure as being
a template onto which we attach the labels 1, 2, 3, 4, . . . , n in some order. A priori,
this provides a factor of n! for each partition of n, and so the coefficient of zn in
the above OGF should be multiplied by n!. The best way to accomplish this is to
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simply consider our OGF as an EGF: In our OGF, if Cn is the coeffiecient of zn, then
as EGF, n!Cn is the coefficient of zn/n!. Now, for each disjoint cycle of length i,
there are i ways of cyclically permuting the labels, each giving rise to an equivalent
representaion of the same i-cycle. Thus, we have over-counted unless we divide each
term zi by i. Finally, each rearrangement of the k cycles among themselves gives rise
to an equivalent expression for the permuation, so we must divide by k!, and our EGF
for permutations of cycle-count k with cycle-lengths in A now has the required form,
P(A,{k})
e (z) = 1

k!

(∑
i∈A z

i/i
)k. 2

The proof of Theorem 2.1 then follows easily:

Proof. Let A ⊆ Z+, B ⊆ Z≥0. Categorize all permutations in P by cycle-count. Only
permutations with cycle-counts k ∈ B will contribute to our total, so by Lemma 2.3,

P(A,B)
e (z) =

∑
k∈B

P(A,{k})
e (z) =

∑
k∈B

1
k!

(∑
i∈A

zi

i

)k
=
∑
k∈B

α(z)k

k!
= β(α(z)),

since
∑
k∈B z

k/k! is the EGF associated to B. The Weak Cycle Structure Theorem
then follows as an immediate corollary. 2

2.1 Probabilities

In cryptography and other disciplines, we are often concerned with determining whe-
ther or not a random permutation has some given property φ. We can calculate then
the OGF of the combinatorial class F of permutations with that property, and divide
term-wise with the same term from the OGF of P , the combinatorial class of all per-
mutations. But this is the same as the coefficients of the EGF of F .

This works for any specific size, but first, it might be difficult to calculate, and
second we might want to know the limit of this probability as the size goes to infinity.

Theorem 2.4. Let F ⊂ P be the combinatorial class of permutations with property φ.
Suppose further F has EGF equal to f(z). Then the limit (as n goes to infinity) of the
probability that a random permutation of size n has property φ is given by

p = lim
z→1−

(1− z)f(z)

provided that (1− z)f(z) is continuous from the left at z = 1.

Proof. Let the OGF of F be given by A0 +A1z +A2z
2 +A3z

3 +A4z
4 +A5z

5 + · · · .
Consider the following function

gn(z) =
A0

0!
+
∑

1≤i≤n

(
Ai
i!
− Ai−1

(i− 1)!

)
zi,

which when evaluated at z = 1, the sum telescopes,

=
A0

0!
+
(
A1

1!
− A0

0!

)
(1)+

(
A2

2!
− A1

1!

)
(1)2 + · · ·+

(
An
n!
− An−1

(n− 1)!

)
(1)n =

An
n!
.
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Thus gn(1) is the desired probability, for size n.
The limit g(z) = limn→∞ gn(z) = A0

0! +
∑
i≥1

(
Ai

i! −
Ai−1
(i−1)!

)
zi does not necessarily

exist for all z, but when it does, we have

g(z) = lim
n→∞

gn(z) = lim
n→∞

A0

0!
+

(
n∑
i=1

Ai
i!
zi

)
−

(
n∑
i=1

Ai−1

(i− 1)!
zi

)

= lim
n→∞

(
n∑
i=0

Ai
i!
zi

)
− z

 n∑
j=0

Aj
j!
zj


= (1− z) lim

n→∞

(
n∑
i=0

Ai
i!
zi

)
= (1− z)f(z)

Thus p = limn→∞ gn(1) = limn→∞ limz→1− gn(z) = limz→1−(1− z)f(z).
Note, we implicitly assumed that g(z) is continuous (from the left) near z = 1 in

order to reverse the order of the limits in the last step, but this will be the case in all of
our examples. 2

2.2 Expected Values

While OGFs and EGFs are very useful for the study of a one-parameter family of
constants, A0, A1, A2, A3, . . ., we often wish to work with a two-parameter family,
{As,t}s,t≥0. This is accomplished using double generating functions. The double OGF,
A(y, z) of a two-parameter family of constants, {As,t} is defined to be the formal sum:

A(y, z) =
∞∑
s=0

∞∑
t=0

As,ty
szt,

and the EGF Ae(y, z) is defined to be the formal sum:

Ae(y, z) =
∞∑
s=0

∞∑
t=0

As,t
(s+ t)!

yszt.

For our purposes, we will be interested in a combinatorial class of permutations
categorized not only by the order of the symmetric group Sn in which the permutation
lies, but also by the number of fixed points that the permutation possesses.

Theorem 2.5. Let F ⊂ P be a combinatorial class of permutations with double EGF
a(y, z), where the coefficient of yszt/(s + t)! is the number of permutations π with
property φs such that π ∈ Ss+t. Then the limit (as n = s + t goes to infinity) of the
expected value of s such that a random permutation of size n satisfies φs is given by:

lim
z→1−

(1− z)ay(z, z)

provided (1− z)ay(z, z) is convergent and continuous from the left at z = 1.
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Proof. Let a(y, z) =
∑
s≥0
∑
t≥0 y

sztAs,t/(s+t)!. The coefficient of yszt is the prob-
ability that a random permutation of Ss+t has property φs, by construction. Consider
the partial derivative with respect to y:

ay(y, z) =
∑
s≥0

∑
t≥0

sAs,t
(s+ t)!

ys−1zt.

The probabilities are now multiplied by the corresponding value of s. Now, letting
y = z produces:

ay(z, z) =
∑
s≥0

∑
t≥0

sAs,t
(s+ t)!

zs+t−1 =
∑
n≥0

( ∑
s+t=n

sAs,t
n!

)
zn−1.

Thus, ay(z, z) is the OGF that computes the expected value of s such that a random
permutation of size n satisfies φs (shifted by one degree). Using the same technique as
in the proof of Thm 2.4, we find that

lim
z→1−

(1− z)ay(z, z) = lim
n→∞

( ∑
s+t=n

sAs,t
n!

)
.

2

3 Corollaries

Theorem 2.4 is exploited extensively in a paper by Marko R. Riedel dedicated to ran-
dom permutation statistics, but in a different context (see [15]).

Corollary 3.1. The probability that a random permutation (in the limit as the size
grows to infinity) does not contain cycles of length k is given by e−1/k.

Proof. The set A of allowable cycle lengths is Z+ − {k}, and so has EGF given by
artificially removing the term for k from the EGF of O:

z +
z2

2
+
z3

3
+ · · ·+ zk−1

k − 1
+ 0 +

zk+1

k + 1
+

zk+2

k + 2
+ · · · = log

(
1

1− z

)
− zk

k
,

and thus by the Weak Cycle Structure Theorem, the combinatorial class in question has
EGF equal to

a(z) = exp

(
log
(

1
1− z

)
− zk

k

)
=

1
1− z

e−z
k/k

Thus the probability of a random permutation (as the size tends toward infinity) not
having any cycles of length k is given by limz→1−(1− z)a(z) = e−1/k 2
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Note: On the Precision of these estimations: This result means that p→ e−
1
k when

N →∞. What about when N = 232? We can answer this question easily by observing
that the Taylor expansion of the function a(z) is the EGF and therefore gives all the
exact values of An/n!. For example when k = 4 we computed the Taylor expansion of
g(z) at order 201, where each coefficient is a computed as a ratio of two large integers.
This takes less than a second with the computer algebra software Maple [14]. The
results are surprisingly precise: the difference between the A200/200! and the limit is
less than 2−321. Thus convergence is very fast and even for very small permutations
(on 200 elements).

Returning to the proving of corollaries, let us define PA = P(Z+−A,Z≥0) and find its
EGF.

Lemma 3.2. The EGF of PA is given by exp (f(z)), where

f(z) =
∑
i6∈A

zi/i = log
(

1
1− z

)
−
∑
i∈A

zi/i

Proof. Because PA = P(Z+−A,Z≥0) we can use the Weak Cycle Structure Theorem.
The EGF of the combinatorial class of cycles with size from the set Z+−A is given by
that of O (the class of all cycles) with the “forbidden lengths” artificially set to zero,
namely ∑

i∈(Z+−A)

zi/i =
∑

0<i6∈A

zi/i = log
(

1
1− z

)
−
∑
i∈A

zi/i

The correct answer follows. 2

Corollary 3.3. LetA be a subset of the positive integers. The probability that a random
permutation (in the limit as the size grows to infinity) does not contain cycles of length
in A is: ∏

i∈A
e−1/i = e−

P
i∈A 1/i

Proof. Using Lemma 3.2 we obtain an EGF of

exp

(
log
(

1
1− z

)
−
∑
i∈A

zi/i

)
=

1
1− z

∏
i∈A

e−z
i/i

then multiplying by (1− z) and taking the limit as z → 1 gives the desired result. 2

This offers confirmation of Corollary 3.1 when substitutingA = {k}. A permutation
with no fixed points is called a derangement. Using a similar strategy, we can calculate
the probability of a derangement.

Corollary 3.4. Let π be a permutation taken at random from Sn. The probability that
π is a derangement is 1/e in the limit as n→∞.

Proof. Just apply Corollary 3.3 to the case of cycle length 1. 2
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Suppose we wish to consider if a permutation has exactly t cycles of length from a
set C ⊂ Z+, in other words, all the other cycles are of length not found in C. In that
case, we can consider such a permutation π as a product of πA and πB such that πA has
only t cycles of length found in A, and nothing else, and πB has only cycles of length
not found in A. This is termed by Flajolet and Sedgewick as a “labelled product”1 and
and a discussion of that is found in Section II.2 in [12]. The EGF of a labelled product
is merely the product of the EGFs.

Theorem 3.5. Let π be a permutation taken at random from Sn. The probability that
π has c fixed points is 1

c!e .

Proof. Consider π = πAπB , where πA consists of exactly c fixed points, and πB is
a derangement of the remaining n − c points. We must compute the labelled product
f(z) = P({1},{c})

e · P(Z+−{1},Z≥0)
e . Thus, by the Strong and Weak Cycle Structure

Theorems,

f(z) =
zc

c!
exp

(
log
(

1
1− z

)
− z
)

=
zc

(1− z)c!
e−z

An application of Thm 2.4 provides the result:

lim
z→1−

(1− z)f(z) = lim
z→1−

zc

c!
e−1 =

1
c!e

2

3.1 On Cycles in Iterated Permutations

Theorem 3.6. Let π be a permutation in Sn. A point x is a fixed point for πk if and
only if x is a member of a cycle of length i in π, for some positive integer i dividing k.

Proof. Write π in disjoint cycle notation, and then x appears in only one cycle (hence
the name “disjoint.”) Call this cycle ψ. Since all other cycles do not contain x, then
πm(x) = ψm(x) for all integers m. Of course, ψ is of order i in Sn, thus ψi = id, the
identity element of Sn.

If x is in a cycle of length i then that means that i is the smallest positive integer
such that ψi(x) = x. Write k = qi+ r with 0 ≤ r < i. Then

x = ψk(x) = ψr(ψiq(x)) = ψr((ψi)q(x)) = ψr(idq(x)) = ψr(id(x)) = ψr(x)

so ψr(x) = x but we said that i is the least positive integer such that ψi(x) = x and
r < i. The only way this is possible is if r is not positive, i.e. it is zero. Thus k = qi or
i divides k.

There reverse assumes that i divides k so write iq = k then

ψk(x) = ψiq(x) = (ψi)q(x) = (id)q(x) = id(x) = x

2

1A labelled product can be thought of as follows. If the EGF of a(z) = b(z)c(z), where b and c are also
EGFs, then a(z) =

Pk=n
k=0

`n
k

´
bkcn−k . Here, after building our combinatorial object in class a of size n out of

‘an object’ from b of size k, and ‘an object’ from c of size n − k, we must then attach k of the n labels to the
former, and attach the remaining n− k labels to the latter. There are precisely

`n
k

´
=
` n
n−k

´
ways to do that.
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An Example Before we continue, observe what happens to a cycle of π when evalu-
ating π2. First, if the cycle is of odd length,

(x1, x2, . . . , x2c+1) 7→ (x1, x3, x5, . . . , x2c+1, x2, x4, x6, . . . , x2c)

but if the cycle is of even length,

(x1, x2, . . . , x2c) 7→ (x1, x3, x5, . . . , x2c−1)(x2, x4, x6, x8, . . . , x2c)

One can rephrase Theorem 3.6 as follows:

Corollary 3.7. Let π be a permutation from Sn. Let k be a positive integer, and let the
set of positive integer divisors of k be D. Then the set of fixed points of πk is precisely
the set of points under π in cycles of length found in D.

3.2 Limited Cycle Counts

Theorem 3.8. Let k be a positive integer, and π a permutation from Sn. The expected
number of fixed points of πk is τ(k), taken in the limit as n → ∞. Note, τ(k) is the
number of positive integers dividing k.

Proof. We shall construct a double EGF, a(y, z), where the coefficient of yszt is the
probability that the kth power of a random permutation of Ss+t has s fixed points. Let
π be a permutation taken at random from Sn. A point x is a fixed point under πk if
and only if x is a member of a cycle of order dividing k under π, via Corollary 3.6.
Thus πk has exactly t fixed points if and only if π = πAπB , where πA ∈ St consists
only of cycles of length dividing k, and πB ∈ Sn−t consists only of cycles of length
not dividing k. Let Dk be the set of all positive divisors of k. The double EGF that
counts the number of such permutations πAπB will be given by the labelled product
P(Dk,Z≥0)
e (y)·P(Z+−Dk,Z≥0)

e (z). By the Weak Cycle Structure Theorem and Lemma 3.2,
we obtain:

a(y, z) = exp

∑
i|k

yi

i

 exp

log
(

1
1− z

)
−
∑
i|k

zi

i


= exp

(
log
(

1
1− z

))
exp

∑
i|k

yi

i
−
∑
i|k

zi

i


=

1
1− z

exp

∑
i|k

yi − zi

i

 .

Theorem 2.5 provides the correct expected value. First observe that

ay(y, z) =
1

1− z
exp

∑
i|k

yi − zi

i

∑
i|k

yi−1.
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The plaintext is P0, . . . , P31 and the ciphertext is C0, . . . , C31. The internal
state after round i is given by L0+i, L1+i, L2+i, . . . , L31+i.

Li = Pi ∀i ∈ [0, 31]

Li = k
i−32 mod 64 + Li−32 + Li−16 ∀i ∈ [32, 559]

+NLF (Li−1, Li−6, Li−12, Li−23, Li−30)

Ci = Li−528 ∀i ∈ [528, 559]

where NLF stands for “non-linear function”, and is given by

NLF (a, b, c, d, e) = d+e+ac+ae+bc+be+cd+de+ade+ace+abd+abc

Figure 1. The Specification of Keeloq

Then ay(z, z) = 1
1−z exp(0)

∑
i|k z

i−1. Finally,

lim
z→1−

(1− z)ay(z, z) = lim
z→1−

∑
i|k

zi−1 =
∑
i|k

1 = τ(k).

2

4 Application to Keeloq

4.1 What is Keeloq?

Keeloq is a block cipher, with 32-bit plaintext and ciphertext blocks and a 64-bit key.
It has been used in the remote keyless entry systems of many manufacturers of au-
tomobiles, and several papers have been written about it [5] [6] [7] [8] [10] [11] [3,
Ch. 2]. [9]. It has 528 rounds, which is unusually high, and this can be written
528 = 8×64+16, a decomposition whose utility will be apparent shortly. Each round
is like a stream cipher, in the sense that the internal state is a 32-bit register, and is
shifted one bit, and a new bit is introduced. The new bit is a function of certain bits
of the internal state, and a single bit of the key, via a map described by a cubic poly-
nomial over GF(2), see for example [2] [3, Ch. 2]. The initial value of the internal
state is the plaintext, and the final value is the ciphertext. For completeness, the cipher
specification is given in Figure 1.

Also, because each round only uses 1 bit of the key (and they are used in sequence),
then after 64 rounds, the entire key has been used. Therefore, it makes sense to define
fk, a function which represents those 64 rounds. Each additional 64 rounds behaves
identically. It turns out that fk is a permutation. The remaining 16 rounds are written
as gk, which is also a permutation. Of course if either fk or gk were not permutations,
then the block cipher would not be uniquely decodable.
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Thus we can write gk(f
(8)
k (p)) = Ek(p) and this motivated the authors’ initial inter-

est in iterated permutations. Also it is noteworthy that only 16 bits of the key are used
by gk, thus only 16 bits of the key need be known or guessed to use g−1

k to “peel off”
or “undo” these 16 rounds, leaving us with f (8)

k , the eighth iterate of a permutation.

4.2 Bard’s Dissertation Attack

This attack assumes some portion of the code-book is available. So long as two fixed
points are found, the attack can succeed. One can show that if there are two plaintexts
that are fixed on the first 64 rounds of the encryption, i.e. f(p1) = p1 and f(p2) = p2,
then this is sufficient information to perform an algebraic cryptanalysis, see [3, Ch. 2]
[2, Ch. 3]. One writes polynomials for those two equalities and uses SAT-solvers to
solve them, see [4] [2, Ch. 6].

The question becomes how to obtain those pairs. First, the part of the key used in gk,
which is 16 bits in length, is simply guessed. This has success probability 2−16. Then
g−1
k can be used. This allows for (p, c), the plaintext-ciphertext pairs in the codebook to

be replaced by (p, g−1
k (c)) which are now actually (p, f (8)

k (p)). These are points fixed
by f (8)

k and so by Corollary 3.6, they are points of order {1, 2, 4, 8} for fk. Thus, the
fixed points of fk, which are useable for the cryptanalysis, are a subset of those for
f

(8)
k , which we can find.

Theorem 4.1. Let π be a random permutation from Sn. The probability that π has c1
fixed points and c2 cycles of lengths 2, 4, or 8, is given by

1
c1!c2!

(
7
8

)c2

e−15/8

Proof. Note that the set of permutations on n elements, with c1 fixed points, and c2
cycles of length 2, 4, or 8, can be thought of as a triple labelled product. The first item
in the product is from P({1},c1), the second item from P({2,4,8},c2), and the third item
from P{1,2,4,8}. We must now calculate the EGF.

The first item has α(z) = z, and β(z) = zc1/c1!, for an EGF of β(α(z)) = zc1/c1!.
The second item has α(z) = z2/2 + z4/4 + z8/8, and β(z) = zc2/c2!, therefore an
EGF of β(α(z)) = 1

c2!

[
z2/2 + z4/4 + z8/8

]c2 . Finally, the third item has EGF given
by Lemma 3.2,

exp

log

 1
1− z

−
∑
i|8

zi/i

 =
1

1− z
exp

−∑
i|8

zi/i


giving a final, total EGF of

zc1

(1− z)c1!c2!

[
z2

2
+
z4

4
+
z8

8

]c2

exp

−∑
i|8

zi/i
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η 10% 20% 30% 40% 50%
Success 0.47% 1.75% 3.69% 6.16% 9.02%

η 60% 70% 80% 90% 100%
Success 12.19% 15.58% 19.12% 22.75% 26.42%

Table 1. Success Probabilities of Bard’s Dissertation Attack

Multiplying by 1− z and taking the limit as z → 1−, via Theorem 2.4 we obtain

1
c1!c2!

[
1
2

+
1
4

+
1
8

]c2

exp(−σ(8)/8) =
1

c1!c2!
(7/8)c2e−15/8

2

The method requires c1 ≥ 2, otherwise the attack fails. This can be easily calculated
as 1− Pr{c1 = 0} − Pr{c1 = 1} ≈ 0.2642 probability of success.

Second, suppose that η is the fraction of the code-book available. Then any given
fixed point is found with probability η in the known part of the code-book, and so at
least two will be found with probability

1−
(
c1

0

)
η0(1− η)c1 −

(
c1

1

)
η1(1− η)c1−1 = 1− (1− η)c1−1 [1− (c1 + 1)η]

and so the following η and success probabilities can be found, generated by Theo-
rem 3.5 and listed in Table 4.2. Note, these are absolute probabilities, not probabilities
given c1 ≥ 2.

Using Maple, one can also calculate exactly when the probability of having the two
fixed points in the η fraction of the code-book is one-half. This is at η = 63.2%
remarkably close to the empirical calculation in [3, Ch. 2].

Note that while finding two fixed points of fk is enough to break the cipher, using
SAT-solvers as noted above, the fixed points of f (8)

k are still an annoyance. Our post-
processed code-book will have all the fixed points of f (8)

k in it, and at worst we must
try all pairs.

If π has c1 fixed points, and c2 cycles of length 2, 4, or 8, then π8 has at most c1 +8c2
fixed points, as each cycle of length 2 produces 2, of length 4 produces 4, and of length
8 produces 8. Thus of the c2 cycles of length 2, or 4, or 8, at most 8c2 fixed points
are produced. This means in the code-book we have at most c1 + 8c2 fixed points, or
(c1 + 8c2)(c1 + 8c2 − 1)/2 pairs of them. At absolute worst, we have to check all of
them. The expected value of the number of pairs, given c1 ≥ 2 can be calculated with
Maple, and is 113/2 − 105/e ≈ 17.87. As each pair takes less than a minute, this is
not the rate-determining step.

The post-processing of the code-book will take much more time, η232 Keeloq en-
cryptions, but this is still much smaller than brute-forcing the 264 keys.
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4.3 The Courtois-Bard-Wagner Attack

Again, in this attack (first published in [11]), we will iterate over some portion of the
code-book. One property of the cipher Keeloq, is that only one bit is changed per
round. Thus the last sixteen rounds, represented by gk(x), only affect sixteen bits
of the ciphertext. Thus, if x is a fixed point of f (8)

k , then 48 out of the 64 bits will
match, compared between the plaintext and the ciphertext. One can easily scan for this
property.

This matching property will always occur for a fixed point of f (8)
k , but it happens by

coincidence with probability 2−16. Therefore, the number of code-book entries with
this property will be the number of fixed points of f (8)

k , plus an expected 2−16232 = 216

“red herrings”. What is remarkable, is that [11] contains a formula for the 16 key bits
that would cause the effect if it were because the plaintext were a fixed point (i.e. not
a coincidence). Therefore, each code-book entry with the matching property can be
tagged with a 16-bit potential sub-key.

As it turns out, the 16-sub key, as well as any single plaintext-ciphertext pair that is
a fixed point of fk, not merely of f (8)

k , is enough to mount an algebraic attack. Thus we
have the following steps. Let c3 denote the number of fixed points of f (8).

(1) Check all 232 code-book entries for the matching property.

(2) Of these (roughly 216 + c3) plaintext-ciphertext pairs, compute the sub-key that
they imply.

(3) For each plaintext-ciphertext pair with the property, set up an algebraic cryptanal-
ysis problem with the one pair, assuming it is a fixed point of f , and assuming the
sub-key is correct.

(4) If an answer is obtained, verify assumptions. If assumptions turned out to be false,
or if the problem is “unsatisfiable”, go to Step 3.

Sorting upon this sub-key between Step 2 and Step 3 would reveal which are the
likely pairs, as the same sub-key will tag all the fixed points of fk and f (8)

k . We expect
each of the 216 “red-herrings” to be tagged with uniformly randomly distributed poten-
tial sub-keys. Therefore, in the first very few Step 3 and Step 4 executions, we would
obtain the key.

What is needed for success? First, that fk have at least one genuine fixed point. This
occurs with probability 1 − 1/e, as proven in Corollary 3.4, and is roughly 0.6321.
Second, the expected amount of work in Step 1 is at most 232 Keeloq Encryptions, and
a more precise estimate is found in [11]. Third, Step 2 is negligible. Fourth, for Step 3
and Step 4, we must execute these stages for each potential sub-key. Given the model
of the previous attack, and using Theorem 4.1, we can obtain a bound on the expected
number of repetitions of Steps 3 and 4. This is upper-bounded by the expected value
of c1 + 8c2 given that c1 > 0. Using Maple, this comes to 113/2 − 46/e ≈ 39.58,
the difference being that we now allow c1 = 1, which was previously forbidden. Of
course, without the sorting explained in the previous paragraph, the expected number
of Step 3 and Step 4 executions would be around 215.
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5 Highly Iterated Ciphers

Here we present two attacks, which while no where near practical feasibility, present
surprising results that the authors did not anticipate.

Suppose there were three naïve cryptography students, who choose to use 3-DES
iterated2 approximately one million times, because they are told that this will slow
down a brute force attacker by a factor of one million. Alice will choose 1,000,000
iterations, Bob will choose 1,081,079 iterations and Charlie will choose 1,081,080 it-
erations. Intuitively, one would not expect these three choices to have significantly
different security consequences.

However, assuming that the 3-DES cipher for a random key behaves like a randomly
chosen permutation from S264 , these permutations will have

τ(1, 000, 000) = 49 τ(1, 081, 079) = 2 τ(1, 081, 080) = 256

fixed points which allows for the following distinguisher attack. It is noteworthy that
Charlie’s number is the lowest positive integer x to have τ(x) = 256, while Bob’s
number (only one less) is prime, and thus has τ(x− 1) = 2. This enables the dramatic
difference in vulnerability to the attack.

In a distinguishing attack, the attacker is presented either with a cipher, or with a
random permutation from the set of those with the correct domain. Randomly iterate
through 1/64 of the plain-space. If a fixed point is found, guess that one is being given
a user cipher. If no fixed point is found, guess random.

In the case of Alice’s implementation, there will be an expected value of ≈ 0.766
fixed points. In the case of Bob’s, 1/32 expected fixed points. In the case of Char-
lie’s, 4 expected fixed points. A random permutation would have 1/64 expected fixed
points. Thus, we can see that Charlie’s would be easily distinguishable from a random
permutation, but Bob’s much less so. Against Alice, the attack could definitely still be
mounted but with an intermediate probability of success. To make this notion precise,
we require the probability distribution of the number of fixed points of πk. In fact, one
can prove the following

Theorem 5.1. Let π ∈ Sn be a permutation chosen at random, then the cth term of the
following EGF

exp

∑
i|k

yi − 1
i


is the probability that πk has exactly c fixed points.

Proof. Consider the double EGF of Theorem 3.8, a(y, z) = 1
1−z exp(

∑
i|k

yi−zi

i ).
Recall, the coefficient of yszt is the probability that πk ∈ Ss+t has s fixed points.
Now, for any given s, we can find the probability that πk ∈ Sn has s fixed points (in
the limit as n → ∞), by evaluating limz→1−(1 − z)a(y, z). The result is the EGF
exp(

∑
i|k

yi−1
i ). 2

2Since the brute force attack is the optimal attack known at this time, it is perhaps not completely unreason-
able. The classic UNIX implementations encrypt with a variant of DES 25 times, for example [13, Ch. 8].
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However, the above requires us to have 256 terms inside of the exponentiation, for
there are 256 positive integers dividing 1,081,080, and we will need to know the co-
efficient of the cth term for at least 1000 terms. Therefore, we are compelled to leave
this as a challenge for the computer algebra community.

Meanwhile, we performed the following experiment. We generated 10,000 random
permutations π from S10,000 and raised π to the kth power for the values of k listed.
Then we calculated c, the number of fixed points of πk, and determined if a search of
the first 1/64th of the domain would reveal no fixed points. That probability is given by

(1− c/n)n/64 ≈ e−c/64

and taking the arithmetic mean over all experiments, one obtains
No fixed points One or more

k = 1 0.985041 0.014959 Random
k = 1000000 0.797284 0.202716 Alice
k = 1081079 0.984409 0.015591 Bob
k = 1081080 0.418335 0.581665 Charlie

Perhaps this is unsurprising, as in the case of Charlie, we expect 256 fixed points,
and so it would be surprising if all of those were missing from a part of the domain
equal to 1/64th of the total domain in size. On the other hand, for Bob we expect only
2 fixed points, and it is exceptional that we find one by accident.

Finally, we observe that if there is an equal probability of an adversary being pre-
sented with a random cipher from S264 or 3-DES in the key of one of our three users,
iterated to their exponent, then the success probability of the attacker would be for Al-
ice 59.39%, for Bob 50.03%, and for Charlie 78.34%. Note in each case, we check
only 264/64 = 258 plaintexts, and so this attack is 2112/258 = 254 times faster than
brute-force.

A General Maxim: If a permutation must be iterated for some reason, then it should
be iterated a prime number of times, to avoid fixed points.

5.1 A Key Recovery Attack

Consider the cipher given by

Fk1,k2(p) = Ek1(E
(n)
k2

(Ek1(p))) = c

where k1 and k2 are keys, andE is encryption with a block cipher (letDk(c) = p denote
decryption). If E is DES and n = 1, then this is the “triple DES” construction. Here,
we consider that E is AES-256 as an example, and n is Charlie’s number, 1081080.
Then F is a block cipher with 512-bit key and 128-bit plaintext block. We will refer to
k1 as the outer key, and k2 as the inner key.

Suppose an attacker had an oracle for F that correctly encrypts with the correct
k1 and k2 that the target is using. Call this oracle φ(p). Observe that Gk3(x) =
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Dk3(φ(Dk3(x))) will have Gk3(x) = E
(n)
k2

(x) if and only if k3 = k1. Thus if we
can correctly guess the outer key, we have an oracle for the nth iteration of encryption
under the inner key. If k3 6= k1, then provided thatEk1 is computationally indistinguish-
able from a random permutation from S2128 when k1 is chosen uniformly at random (a
standard assumption) then Gk3(x) also behaves as a random permutation.

Thus, for k1 = k3, we can expect Gk3(x) to behave like Charlie’s cipher in the
previous section, and for k1 6= k3, we can expect Gk3(x) to behave like a random
permutation in the previous section.

Let one run of the distinguishing attack signify guessing all possible k3 values, and
executing the previous section’s attack for each key. If “random” is indicated (i.e. no
fixed point found), then we reject the k3 but if “real” is indicated (i.e. at least one fixed
point found), then we add k3 to a “candidate list.”

After one run of this distinguishing attack, we would have a candidate list of outer
keys of expected size

(0.014959)(2256 − 1) + (0.581665)(1)

where the success probabilities are given in the previous section, for the attack on
Charlie.

If we repeat the distinguisher attack on these candidate keys, taking care to use a
distinct set of plaintexts in our search, the success probabilities will be the same. This
non-overlapping property of the plaintext search could be enforced by selecting the six
highest-order bits of the plaintext to be the value of n. After n runs, we would expect
the list to contain

(0.014959)n(2256 − 1) + (0.581665)n(1)

candidate keys.
Of course, the true k3 = k1 key will be present with probability 0.581665n. Next, for

each key kc on the candidate list, we will check all possible 2256 values of k2 (denoted
kx), via checking if

p = φ(Dkc(D
(n)
kx

(Dkc(p))))

which will be true if kx = k2 and kc = k1. This check should be made for roughly
4–6 plaintexts, to ensure that the match is not a coincidence. This necessity arises
from the fact that the cipher has a 512-bit key and 128-bit plaintext. We will be very
conservative, and select 6.

The number of encryptions required for the n runs is

(1081080 + 4)(
2128

64
)(2256 + (0.014959)(2256) + (0.014959)2(2256) +

(0.014959)3(2256) + · · ·+ (0.014959)n(2256))

= (1081080 + 2)(2378)
1− (0.014959)n+1

1− 0.014959

= 2398.06579···(1− 0.014959n+1)
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and for the second stage

(6)(2)(2 + 1081080)(2256)(0.014959n)(2256) = (2535.6290···)(0.014959n)

= 2535.6290−6.062842n

for a success probability of (0.581665)n.
Using Maple, we find that n = 23 is optimal, leaving a candidate list of 2116.555···

possible keys, and requiring 2398.41207··· encryptions, but with success probability
(0.581665)23 ≈ 2−17.98001···. A brute-force search of the 2512 possible keys would
have (6)(2)(1081082)2512 encryptions to perform, or 2535.629007···. Naturally, if a suc-
cess probability of 2−17.98001··· were desired, then only 2517.649··· encryptions would be
needed for that brute-force search.

Therefore this attack is 2119.237 times faster than brute-force search.

6 Conclusions

In this paper, we presented a known theorem on the probabilities of random permuta-
tions having given cycle structures and cycle counts, along with several useful corol-
laries. To demonstrate the applicability of this technique to cryptanalysis, we have
taken two attacks which were heretofore presented at least partially heuristically, and
made them fully rigorous. It is hoped that other attacks which rely upon detecting
these probabilities via experimentation will be made rigorous as well, by calculation
via EGFs and OGFs. We also hope that we have demonstrated the utility of analytic
combinatorics in general, as well as EGFs and OGFs in particular.

We also presented a new attack, on very highly iterated permutations. While the sce-
nario is not reasonable, and it is only a distinguisher attack, it is also interesting that the
τ function occurs here. If a permutation should be highly iterated, it should be iterated
a prime number of times. However, the choice of 25 on the part of UNIX designers was
not bad, as τ(25) = 3. We also extended this to a key-recovery attack, in an unusual
context. It is unclear in what situations such large numbers of iterations would occur,
but from a pure mathematical point of view, the additional security granted by prime
iteration counts is interesting.
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A.1 The Sigma Divisor Function

Lemma A.1. The sum
∑
i|k 1/i = 1

kσ(k) where both i and k are positive integers, and
where σ(k) is the divisor function (i.e. the sum of the positive integers which divide k).

Proof. ∑
i|k

1/i =
k

k

∑
i|k

1/i =
1
k

∑
i|k

k/i =
1
k

∑
i|k

i =
1
k
σ(k)

2

Corollary A.2. Let π be a permutation taken at random from Sn. The probability that
πk is a derangement is e−σ(k)/k, in the limit as n→∞.

Proof. Let D be the set of positive integers dividing k. From Corollary 3.7, we know
that x is a fixed point of πk if and only if x is in a cycle of length found in D for π.

We will use Corollary 3.2, with A = D. We obtain the probability is e−
P

i∈D 1/i,
and Lemma A.1 gives the desired result. 2

Note that substitutingA = {1} into the above yields the same result as Corollary 3.4.

A.2 Apéry’s Constant

Corollary 3.3 provides an amusing connection with Riemann’s zeta function. Recall,
for complex s, the infinite series,

∑
n≥1 1/ns defines the “zeta function” ζ(s), provided

the series converges.

Corollary A.3. The probability that a random permutation (in the limit as the size
grows to infinity) does not contain cycles of square length is:

e−
P

i≥1 1/i2 = e−ζ(2) = e−π
2/6 ≈ 0.19302529,

or roughly 1/5.

Corollary A.4. The probability that a random permutation (in the limit as the size
grows to infinity) does not contain cycles of cube length is: e−ζ(3) ≈ 0.30057532

Note, ζ(3) is known as Apéry’s Constant [1], and occurs in certain quantum electro-
dynamical calculations, but is better known to mathematicians as being the probability
that any three integers chosen at random will have no common factor dividing them all
[16].
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