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Abstract. This paper proves that the Montgomery form elliptic curves that are cheaply
transformable into short Weierstrass form by a simple change of variables (x, y) 7→ (x+α, y)
(instead of a more general affine change of variables) are precisely the curves with B = 1. The
points of order 2 and 4 on these curves are described, and it is observed that the x-coordinates
of these points are consecutive field elements. Finally, it is shown that two elliptic curves
specified (in short Weierstrass form) in the SECG standard can be transformed into B = 1
Montgomery form, and also into Edwards form.

1 Introduction

It is well-known that every elliptic curve E over a field k of characteristic p, with
p > 3, can be transformed into short Weierstrass form

y2 = x3 + ax+ b (1)

by a birational transformation over k. In [6] Montgomery considered elliptic curves
that can be written in what has since become known as Montgomery form

BY 2 = X3 + AX2 +X. (2)
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More recently Bernstein and Lange [3] initiated a study of curves that can be written
in Edwards form [5]

x̄2 + ȳ2 = 1 + dx̄2ȳ2. (3)

The special forms (2) and (3) are particularly well suited for certain computations
and many authors have used them to improve the efficiency of diverse cryptographic
applications (see, for example, [1], [2], [4], [7], and references therein). In general,
however, a transformation between elliptic curve forms requires passage to a finite
extension of k, the cost of which can outweigh any advantages the special forms
might otherwise afford. (For example, it is unlikely one would consider applying
Montgomery’s method [6] to protocols based on NSA Suite B curves.)

Even when transformations between different forms exist over k, their complexity
may prove to be prohibitive for use in certain algorithms. Thus it is natural to ask
which Montgomery curves (other than y2 = x3 + x, of course) are transformable in
the simplest possible manner into short Weierstrass form over k. We consider the
simplest possible manner to mean a k-translation of the x coordinate, i.e., a map
(x, y) 7→ (x+ c, y) where c ∈ k.

In this note, we prove that the Montgomery curves which are mapped to Weier-
strass form by a translation of the x-coordinate are precisely those which are of the
form

Y 2 = X3 + AX2 +X,

which we call B = 1 Montgomery curves. Any Montgomery form (2) where B is a
square is of course isomorphic to a B = 1 Montgomery curve, so up to k-isomorphism
there are only two cases, B = 1 and B a non-square in k. If k has characteristic p,
and p ≡ 3 mod 4, then the non-square can be taken to be −1.

We also show that two such curves are specified in the SEC 2 standards [8].
These are the only curves of which the authors are aware to be both specified in
a standards document and to be transformable to Edwards form over their field of
definition. These curves are already know to be insecure.

We are aware that most, if not all, of our results are already in the literature.
The purpose of this note is to make a couple of simple observations, which we believe
have not been pointed out before.

2 The Simplest Montgomery Curves

The following is already known, see the remark afterwards. We wish to know which
Montgomery form curves can be mapped to short Weierstrass form by a map of the
form (x, y) 7→ (x+ c, y).



Proposition 1. An elliptic curve over k in Montgomery form can be mapped into
short Weierstrass form by a simple translation (x, y) = (X+α, Y ) of the x-coordinate
for some α ∈ k if and only if B = 1. If B = 1, then the displacement α is a root of
the polynomial f(x) = x3 + ax+ b.

Proof. First, suppose that EM is an elliptic curve in Montgomery form with B = 1,
i.e., that E is given by an equation of the form Y 2 = X3 +AX2 +X for some A ∈ k.
If we set α = A/3 ∈ k, then the translation (X, Y ) = (x − α, y) clearly transforms
EM into the short Weierstrass form EW

y2 = x3 + (1− 3α2)x+ (2α3 − α). (4)

Conversely, suppose that the Montgomery curve EM given by (2) is transformed
into short Weierstrass form EW as in (1) by the translation (x, y) = (X + α, Y ) for
some displacement α ∈ k. Substituting this into (2) yields

By2 = (x− α)3 + A(x− α)2 + (x− α)

and for this equation to be of the form (1), we must have B = 1 and A = 3α (multiply
(1) through by B and compare x3 and x2 terms).

Now under the translation (X, Y ) = (x− α, y), (0, 0) ∈ EM 7→ (α, 0) and for the
latter point to be on EW , we must have f(α) = 0.

Remark 1. This proposition may be viewed as a corollary of the proof of the related
result [7, Prop.1] which states that the general Montgomery curve (2) is transformable
into short Weierstrass form (1) (by an affine transformation) over k if and only if the
following two conditions are satisfied:

• f(x) = x3 + ax+ b has at least one rootα ∈ k, and for this root

• 3α2 + a is a quadratic residue in k.

(5)

3 The Low Order Torsion of B=1 Montgomery Curves

Recall that a point P on an elliptic curve E is a torsion point of order n (possibly
defined over the algebraic closure k̄) if nP = 0 and n > 0 is the least such integer with
this property. In this section we give explicit formulae for the Weierstrass coordinates
of the points of order 2 and 4 on a B=1 Montgomery curve. Our results provide an
explanation of the rather surprising configuration of these points on the “random”
SECG standard curves presented in the next section.

For the remainder of this section, let EW be an elliptic curve in Weierstrass form
(4) (where α ∈ k) which is k-isomorphic to a B=1 Montgomery curve.



Points of Order 2

The points of order 2 on a curve in Weierstrass coordinates are those points on the
curve with y = 0. Factoring the right hand side of (4) as

(x− α)(x2 + αx− 2α2 + 1), (6)

we see that (α, 0) is always a point of order 2 defined over k on EW .
Considering the other two roots of the cubic (6), we observe that(

−α±
√

9α2 − 4

2
, 0

)
are the remaining points of order 2 and they are defined over k only when 9α2− 4 is
a quadratic residue.

Points of Order 4

The x-coordinates of the points of order 4 on EW are given by the roots of the fourth
division polynomial ψ4 that are not also roots of the second division polynomial ψ2.
On our B=1 curve given in short Weierstrass form by (4), we have

ψ4/2ψ2(x) =x6 + 5(1− 3α2)x4 + 20(2α3 − α)x3 − 5(9α4 − 6α2 + 1)x2

+ 4α(6α4 − 5α2 + 1)x− 5α6 + 5α4 + α2 − 1.

This polynomial factors as

(x− α + 1)(x− α− 1)
[
x4 + 2αx3 + 6(1− 2α2)x2 − 2α(3− 7α2)x+ (1− 5α4)

]
showing that α ± 1 are x-coordinates of points of order 4. Substituting x = α+1
into (4) gives y2 = 3α + 2, so we see that

(
α+1,±

√
3α + 2

)
are points of order 4

and are defined over k when 3α+2 is a quadratic residue. Similarly, we find that(
α−1,±

√
3α− 2

)
are points of order 4 defined over k when 3α−2 is a quadratic

residue.

In particular, we have the

Proposition 2. On a B= 1 Montgomery curve in short Weierstrass form (4), the
displacement α is the x-coordinate of a point of order 2 defined over k. Furthermore,
α+1, resp. α−1, is the x-coordinate of a point of order 4 that is defined over k when
3α+2, resp. 3α−2, is a quadratic residue.



4 Montgomery and Edwards Coordinates For Two SECG
Curves

In this section we show that the two “verifiably random” curves secp112r2 and
secp128r2 in the SEC 2 standard [8], which were originally specified there in short
Weierstrass form, are in fact Montgomery curves with B=1. We also show that these
two curves may be transformed into Edwards form (3) by simple linear fractional
transformations over their respective ground fields (not a new result) and we give
the transformation.

As stated in [3], more than 25% (perhaps 30-40%) of elliptic curves over k in
short Weierstrass form are k-isomorphic to a curve in Edwards form. An extension
of Edwards form, called twisted Edwards form, covers more curves in Weierstrass
form and is known to cover exactly the class of Montgomery curves. See [2] for a
discussion of the relations between (twisted) Edwards and Montgomery.

The characteristic primes in the two SECG examples below are 3 mod 4. In this
case, p ≡ 3 mod 4, a Weierstrass curve can be transformed to Montgomery form if
and only if the curve has a point of order 4. So it is already known that the curves
below can be transformed into Montgomery form, however we are pointing out that
the transformation has the simplest possible form, and giving the explicit formulae.

These two curves are already considered to be insecure. Their group orders are
112-bit and 128-bit, which is too small. Also they are not “twist secure.”.

secp112r2

(See [8, Section 2.2.2]) This curve, defined over k = GF ((2128−3)/76439), is given in
short Weierstrass form (1) with

a = 1970543761890640310119143205433388,

b = 1660538572255285715897238774208265.

Set α=3610075134545239076002374364665933 ∈ k.

secp128r2

(See [8, Section 2.3.2]) This curve, defined over k = GF (2128−297−1), is given in
short Weierstrass form (1) with

a = 284470887156368047300405921324061011681,

b = 126188322377389722996253562430093625949.



In this case, choose α=311198077076599516590082177721943503641 ∈ k.

For each of these curves, the translation (x, y) 7→ (X + α, Y ) with the indicated
choice of displacement α transforms the given Weierstrass equation into the Mont-
gomery form (2) with B = 1 and A= 3α. The values 3α−2 are quadratic residues
in their respective fields, the values 3α + 2 are not. Taking β to be a square root of
3α−2 in the appropriate field, it is easy to check that the transformation

(x̄, ȳ) =

(
β(x− α)

y
,
x+ 1− α
x− 1− α

)
maps secp112r2 (resp. secp128r2) into Edwards form (3) with d = (3α+2)/(3α−2).

5 Conclusion

We have seen that the two propositions of the present paper apply to the SECG
curves secp112r2 and secp128r2. This answers a question raised by the third author
who wondered how likely it was that a curve chosen “verifiably at random” would
have a fourth division polynomial that vanished on three consecutive field elements.
In [8], it was asserted that these curves were chosen “so that scalar multiplication
of points on the associated elliptic curve can be accelerated using Montgomery’s
method [6]”. In light of Prop. 1, we somewhat wildly speculate that at least one
additional (and unspecified) design criterion was applied in the choice of these curves,
namely the condition B = 1, in order to minimize the cost of change of coordinate
transformations between the Montgomery and Weierstrass forms.

When one intends to use the Montgomery form for computational efficiency, one
would like “cheap” change of coordinate transformations between the Montgomery
and Weierstrass forms since parameters, keys, signatures, key agreement data, etc.
are normally presented or exchanged in Weierstrass coordinates. A similar statement
applies to Edwards form, which recent work [1], [3] has shown may be faster than
other forms in software and hardware implementations. Also, Edwards form gives
better security with respect to side channel analysis.

In any case, the following brief SAGE script should allow the reader to check that
α−1, α, α+1 are indeed roots of ψ4 for the curve secp112r2, as assured by Prop. 2.

p = 4451685225093714772084598273548427

k = GF(p)
a = k(1970543761890640310119143205433388)
b = k(1660538572255285715897238774208265)



s = sqrt((1− a)/3)
if 2 ∗ s^3− s == b :

alpha = s

else:

alpha = −s
E = EllipticCurve([a, b])
(alpha− 1, 1) in E.division polynomial(4).roots()
(alpha, 1) in E.division polynomial(4).roots()
(alpha + 1, 1) in E.division polynomial(4).roots()

With the appropriate inputs p, a and b, the same script verifies the result of
Prop. 2 for secp128r2.

Acknowledgement. We thank Tanja Lange for helpful comments on an earlier
version.
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