
Pseudo-Cryptanalysis of Luffa

Keting Jia1,2, Yvo Desmedt3, Lidong Han1, Xiaoyun Wang1,2⋆

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education,
Shandong University, China

{ktjia, hanlidong}@mail.sdu.edu.cn
2 Institute for Advanced Study, Tsinghua University, China

xiaoyunwang@mail.tsinghua.edu.cn
3 Department of Computer Science, University College London, UK

y.desmedt@cs.ucl.ac.uk

Abstract. In this paper, we present the pseudo-collision, pseudo-second-preimage
and pseudo-preimage attacks on the SHA-3 candidate algorithm Luffa. The pseudo-
collisions and pseudo-second-preimages can be found easily by computing the
inverse of the message injection function at the beginning of Luffa. We explain
in details the pseudo-preimage attacks. For Luffa-224/256, given the hash value,
only 2 iteration computations are needed to get a pseudo-preimage. For Luffa-
384, finding a pseudo-preimage needs about 264 iteration computations with 267

bytes memory by the extended generalized birthday attack. For Luffa-512, the
complexity is 2128 iteration computations with 2132 bytes memory.
It is noted that, we can find the pseudo-collision pairs and the pseudo-second im-
ages only changing a few different bits of initial values. That is directly converted
to the forgery attack on NMAC in related key cases.

Key words: Luffa, pseudo-collision, pseudo-second-preimage, pseudo-preimage,
generalized birthday attack

1 Introduction

A cryptographic hash function is defined as a function that computes a fixed size mes-
sage digest from arbitrary size messages. It has been widelyused as a fundamental
primitive in many cryptographic schemes and protocols, such as electronic signature,
authentication of messages, electronic commerce and bit commitment, etc. In the past
years, the cryptanalysis of hash functions has achieved tremendous progress with the
construction of collisions. In particular, Wang et al. proposed new techniques to find
efficiently collisions on the main hash functions from the MD4 family (e.g., MD4 [8],
RIPEMD [8], MD5 [11], SHA-0 [9] and SHA-1 [10]). Moreover thetechniques can be
applied to explore the second-preimage of MD4 [12], forgeryand partial key-recovery
attacks on HMAC and NMAC [3,4]. Kelsey and Schneier [5] provided a second preim-
age attack on the iterated hash functions with Merkle-Damg˚ard strengthening, which
shows a vulnerability of the Merkle-Damgård construction. Responding to advances
in the cryptanalysis of hash functions, NIST held two hash workshops to evaluate the

⋆ Corresponding author

2 K. Jia et al.

security of its approved hash functions and to solicit public comments on its crypto-
graphic hash function policy and standard. Finally, NIST opened a public competition
to develop a new hash function called “SHA-3”, similar to thedevelopment process of
the Advanced Encryption Standard (AES). There are 64 new proposals for hash func-
tions have been submitted to the SHA-3 project, of which 51 submissions have come
into the first round. In July, 2009, NIST has selected 14 second round candidates of the
SHA-3. Luffa [2] is one of them, proposed by De Cannière, Sato and Watanabe.

In this paper, we give some cryptanalytic results of Luffa with free initial values.
The pseudo-collision and pseudo-second-preimage can be obtained easily by the mes-
sage injection function of Luffa, which only changes a few bits of the initial values.
This paper shows a pseudo-collision and pseudo-second-preimage example for Luffa-
256 and gives the actual attacks. For Luffa-224/256, only 2 iteration computations are
needed to get the pseudo-preimage. A pseudo preimage example for Luffa-256 is shown
in this paper, which only changes 2 256-bit words of the initial values with 3 256-bit
words. We use the extended generalized birthday attack [7] to compute the pseudo-
preimage of Luffa-384 with 264 iteration computations and 264 table lookups. The time
complexity and data complexity are both 2128 to get the pseudo-preimage for Luffa-512.

This paper is organized as follows. In Section 2, we list somenotations and give
a brief description of Luffa. Section 3 shows the pseudo-collision and pseudo-second-
preimage attacks on Luffa. The pseudo-preimage attacks forLuffa is given in Section
4. The improved pseudo-preimage attacks for Luffa-384/512are shown in Section 5.
Finally, we summarize our results in Section 6.

2 Preliminaries and Notations

In this section, we first list some notations used in this paper, and then give a brief
description of Luffa.

2.1 Notations

X‖Y : the concatenation of two messagesX andY.
hw(X) : thew most significant bits ofX.
lw(X) : thew least significant bits ofX.
⌊a⌋ : the greatest integer less than or equal toa.

(b0,b1, . . . ,bm)T : the transposed matrix of(b0,b1, . . . ,bm), wherebi(1≤ i ≤ m) are
column vectors.

a ≪ j : left rotation ofa by j bits.

2.2 Description of Luffa

Luffa [2], a candidate algorithm for the second round of the SHA-3, was proposed by
De Cannière et al. The chaining of Luffa is a variant of a sponge function. Fig.1 depicts
the basic structure. For any message, Luffa can produce the hash values with 224, 256,
384 or 512 bits, which are denoted as Luffa-224/256/384/512respectively. The message
padding method consists of appending a single bit ‘1’ followed by the minimum bits of

Pseudo-Cryptanalysis of Luffa 3

‘0’ such that the length of the result is a multiple of 256. LetM = M0‖· · ·‖Mm−1 be a
message after padding, whereMi(0≤ i < m) are 256-bit blocks. Theiteration function
of Luffa is a composition of a message injection functionMI and a permutationP
with w 256-bit inputs, wherew = 3,4 or 5 for Luffa-224/256, Luffa-384 and Luffa-
512 respectively. The permutationP includesw permutationsQ0, Q1, . . . ,Qw−1, where
Q j is the permutation with 256-bit input,j = 0,1, . . . ,w−1. Let the input of thei−th

iteration be(H(i−1)
0 , . . . ,H(i−1)

w−1 ,Mi−1), thei−th iteration is computed as follows,

X0‖· · ·‖Xw−1 = MI(H(i−1)
0 , . . . ,H(i−1)

w−1 ,Mi−1),

H(i)
j = Q j(Xj), j = 0,1, . . . ,w−1,

where(H i
0, . . . ,H

i
w−1) is thei-th iteration output, and(H0

0 , . . . ,H0
w−1) is the initial value.

Final operations, called afinalizationare used to the chaining value(H(m−1)
0 , . . . ,H(m−1)

w−1).
For Luffa-224/256, the finalization consists of a blank iteration and a XOR operation
OF, where the blank iteration means an iteration with a fixed messageMm = 0, where0
denotes 256-bit zeros, the operationOF XORsw 256-bit values and outputs the result
256-bit value. For Luffa-384/512, the finalization includes two blank iterations and two
XOR operations, see Fig. 1. The output of Luffa-256 isZ0, the output of Luffa-512 is
Z0‖Z1. The outputs of Luffa-224 and Luffa-384 are the truncation of the Luffa-256 and
Luffa-512 respectively. Here

Zi =
w−1
⊕

j=0

H(m+i)
j , i = 0,1.

Vw−1

V0

0M 1M
m−1M

0

V1
MI

P

MI

Q

Q0

w−1

1

Q0

Qw−1

1

MI
Q Q

Q0

Qw−1

1

Z

0

MI
Q

1

Q0

Qw−1

1Q

Q0

Qw−1

1

Z

0

MI
Q

Fig. 1. The Structure of Luffa Hash Function

Message Injection Function MI The message injection functionsMI can be repre-
sented by the matrix over a fieldGF(28). The multiplication over the fieldGF(28) is
moduloφ(x) = x8 +x4 +x3 +x+1, corresponding to “0x11b”. The map from 8 32-bit

4 K. Jia et al.

words(h0, . . . ,h7) to 32 8-bit elements of the field is defined by(Σ0≤k<8hk,l xk)0≤l<32.
Let Aw×(w+1) = (a0,a1, . . . ,aw−1,aw) represent the matrix ofMI , whereai(0≤ i ≤ w)

are column vectors. Then(X0,X1, . . . ,Xw−1)
T = Aw×(w+1)◦(H0,H1, . . . ,Hw−1,M)T

. For
Luffa-224/256, w=3,

Aw×(w+1) =





0x3,0x2,0x2,0x1
0x2,0x3,0x2,0x2
0x2,0x2,0x3,0x4



 ,

where the elements 0x1, 0x2, 0x3, 0x4 correspond to polynomials 1,x,x+1,x2 respec-
tively.

For Luffa-384,

Aw×(w+1) =









0x4,0x6,0x6,0x7,0x1
0x7,0x4,0x6,0x6,0x2
0x6,0x7,0x4,0x6,0x4
0x6,0x6,0x7,0x4,0x8









.

For Luffa-512,

Aw×(w+1) =













0x0F,0x08,0x0A,0x0A,0x08,0x01
0x08,0x0F,0x08,0x0A,0x0A,0x02
0x0A,0x08,0x0F,0x08,0x0A,0x04
0x0A,0x0A,0x08,0x0F,0x08,0x08
0x08,0x0A,0x0A,0x08,0x0F,0x10













.

The Permutation Q j The permutationQ j is defined as a composition of an input
tweak and 8 steps. Leta0, . . . ,a7 be the 256-bit input of theQ j , b0, . . . ,b7 be the output
of tweak. The tweak is defined as follows:

bi = ai , for 1≤ i < 4;

bi = ai ≪ j, for 4≤ i < 8.

After tweak, there are 8 steps in the permutation, and each step consists of the following
three functions: SubCrumb, MixWord and AddConstant.

SubCrumb is defined as:

x3,l‖x2,l‖x1,l‖x0,l = S(b3,l‖b2,l‖b1,l‖b0,l),0≤ l < 32,

x4,l‖x7,l‖x6,l‖x5,l = S(b4,l‖b7,l‖b6,l‖b5,l),0≤ l < 32,

whereSdenotes a S-box with 4-bit input and 4-bit output. MixWord isdefined as:

yk+4 = xk+4⊕xk, yk = xk ≪ 2,

yk = yk⊕yk+4, yk+4 = yk+4 ≪ 14,
yk+4 = yk+4⊕yk, yk = yk ≪ 10,

yk = yk⊕yk+4, yk+4 = yk+4 ≪ 1.

We do not give the description for AddConstant since it has noimpact on our crypt-
analysis. For more details about Luffa, consult [2].

Pseudo-Cryptanalysis of Luffa 5

3 Pseudo-Collision and Pseudo-Second-Preimage Attacks on
Luffa

In this section, we give some cryptanalysis for Luffa when the initial valueIV is free.
Flipping 5 bits of IV for Luffa-256 is enough to get a pseudo-collision or pseudo-
second-preimage. For Luffa-384, 7 bits ofIV are needed to be changed to get a pseudo-
collision or pseudo-second-preimage. There is a 12-bit difference in theIV to get a
pseudo-collision or pseudo-second-preimage for Luffa-512. This can be used to con-
struct the related key attack for the corresponding MACs using the secret key as initial
value.

For the message injection functionMI , the input is(w+ 1) 256-bit words, and the
output isw 256-bit words. So, it is a many-to-one function. It is easy toknow that, anyw
columns of theMI matrix consists of an invertible matrix. So there are exactly 2256 in-
puts corresponding to any given output ofMI . Given anyMI output(X0,X1, . . . ,Xw−1),
if one entry ofH0,H1, . . . ,Hw−1 andM is fixed, we can easily compute the solution
to other entries. Any pair of inputs with the same output ofMI consists of a pseudo-
collision of Luffa, that is the output difference ofMI is zero.

For Luffa-224/256, the input difference is (∆H0, ∆H1, ∆H2, ∆M), and the output
difference ofMI is (0,0,0), here0 denotes 256-bit zeros. They satisfy the following
equations.

3◦∆H0⊕2◦∆H1⊕2◦∆H2⊕∆M = 0,
2◦∆H0⊕3◦∆H1⊕2◦∆H2⊕2∆M = 0,
2◦∆H0⊕2◦∆H1⊕3◦∆H2⊕4∆M = 0.

From the equations, it is easy to get∆H0 = 0x f2◦∆M, ∆H1 = 0x f1◦∆M and∆H2 =
0x f7 ◦ ∆M. Let IV be the standard initial value, given a messageM, the message
M′ = M ⊕∆M, with another initial valueIV ′ = IV ⊕ (∆H0,∆H1,∆H2) is the pseudo-
preimage ofM, i.e. Luffa-256(IV,M)=Luffa-256(IV ′

,M′). There are only 5 bits dif-
ferent betweenIV and IV ′, which is minimum, when the message difference∆M =
(2i ,2i ,0,0,0,0,0,0), (0,2i ,2i ,0,0,0,0,0), (0,0,2i,2i ,0,0,0,0), (0,0,0,2i,2i ,0,0,0) or
(0,0,0,0,2i,2i ,0,0) for (0≤ i < 32).

Let the input difference be (∆H0, ∆H1, ∆H2, ∆H3, ∆M), and the output difference of
MI be(0,0,0,0) for Luffa-384 such that

4◦∆H0⊕6◦∆H1⊕6◦∆H2⊕7◦∆H3⊕∆M = 0,
7◦∆H0⊕4◦∆H1⊕6◦∆H2⊕6◦∆H3⊕2∆M = 0,
6◦∆H0⊕7◦∆H1⊕4◦∆H2⊕6◦∆H3⊕4∆M = 0,
6◦∆H0⊕6◦∆H1⊕7◦∆H2⊕4◦∆H3⊕8∆M = 0.

By the system of equations, we can deduce∆H0 = 8◦∆M, ∆H1 = 0xa◦∆M, ∆H2 =
8◦ ∆M and ∆H3 = 0x f ◦ ∆M. There is a 7-bit difference in the initial values when
∆M = (2i,0,2i ,2i ,0,0,0,2i)(0≤ i < 32). The messageM′ = M⊕∆M with IV ′ = IV ⊕
(∆H0,∆H1,∆H2,∆H3) is the pseudo-preimage of the given messageM, that is to say
Luffa-384(IV,M)=Luffa-384(IV ′,M′).

Given the input difference of Luffa-512 (∆H0, ∆H1, ∆H2, ∆H3, ∆H4, ∆M) and
the output difference ofMI (0,0,0,0,0), we can compute that∆H0 = 0xbe◦ ∆M,

6 K. Jia et al.

∆H1 = 0x3c◦∆M, ∆H2 = 0x25◦∆M, ∆H3 = 0x17◦∆M and∆H4 = 0x75◦∆M from
the following equations.

0x f ◦∆H0⊕0x8◦∆H1⊕0xa◦∆H2⊕0xa◦∆H3⊕0x8◦∆H4⊕∆M = 0,
0x8◦∆H0⊕0x f ◦∆H1⊕0x8◦∆H2⊕0xa◦∆H3⊕0xa◦∆H4⊕0x2∆M = 0,
0xa◦∆H0⊕0x8◦∆H1⊕0x f ◦∆H2⊕0x8◦∆H3⊕0xa◦∆H4⊕0x4∆M = 0,
0xa◦∆H0⊕0xa◦∆H1⊕0x8◦∆H2⊕0x f ◦∆H3⊕0x8◦∆H4⊕0x8∆M = 0,

0x8◦∆H0⊕0xa◦∆H1⊕0xa◦∆H2⊕0x8◦∆H3⊕0x f ◦∆H4⊕0x10∆M = 0.
When∆M = (0,2i

,2i
,2i

,0,2i
,0,0), (2i

,2i
,0,0,2i

,0,0,2i) or (0,0,2i
,0,0,2i

,2i
,2i) for

(0≤ i < 32), the number of bits with difference in the initial value is least, which is 12.
Table 1 shows a pseudo-second-preimageexample for the messageM0 = (0xaaaaaaaa,

0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa, 0xaaaaaaaa).
From the above description, only a few bits are needed to be changed to get a colli-

sion pair or the second-preimage for a given message. It is obvious that we can directly
construct the forgery attack on NMAC based on Luffa in the related key case, for the
NMAC replaces the fixedIV in hash function with a secret key[1]. The NMAC function,
on input messageM and a pair of independent keys (K1,K2), is defined as:

NMAC(K1,K2)(M) = H(K1,H(K2,M)).

WhenH is the Luffa hash function, a forgery messageM⊕∆M with the same NMAC
value as the messageM in the related key case is given:

Lu f f a(K1,Lu f f a(K2,M)) = Lu f f a(K1,Lu f f a(K2⊕∆IV,M⊕∆M)).

Where∆M and∆IV satisfyMI(∆IV,∆M) = 0.

4 The Pseudo-Preimage Attack on Luffa

For Luffa-256, given a hash valueZ0, the adversary can compute a pseudo-preimage
with the following process. An example is shown in Table 2 with Z0 = 0.

1. SelectY0, Y1 arbitrary, and getY3 = Z0⊕Y0⊕Y1.
2. ComputeX0 = Q−1

0 (Y0), X1 = Q−1
1 (Y1), X2 = Q−1

2 (Y2).
3. Because the messageM = 0 for the blank iteration, the adversary can compute

MI−1(X0,X1,X2) as follows,




H0

H1

H2



 =





0x3,0x2,0x2
0x2,0x3,0x2
0x2,0x2,0x3





−1

◦





X0

X1

X2



 .

4. For the chaining variablesH0, H1, H2, the adversary can obtainX0 = Q−1
0 (H0),

X1 = Q−1
1 (H1), X2 = Q−1

2 (H2).
5. For (X0,X1,X2), the adversary computers(IV ′

1, IV
′
2,M) with the fixedIV0 by the

following equations,




IV ′
1

IV ′
2

M



 =





0x2,0x2,0x1
0x3,0x2,0x2
0x2,0x3,0x4





−1

◦





X0⊕ (3◦ IV0)
X1⊕ (2◦ IV0)
X2⊕ (2◦ IV0)



 .

Pseudo-Cryptanalysis of Luffa 7

6. Output(IV0, IV ′
1, IV

′
2,M) which is the pseudo-preimage ofZ0, i.e.,

Luffa-256(IV ′,M) = Z0.

There arew−1 256-bit words changed of the initial value withw 256-bit words.
For Luffa-384, the hash value consists ofZ0 cascaded with the 128 most significant

bits ofZ1, and
Z1 = Z1,0‖Z1,1‖Z1,2‖Z1,3‖Z1,4‖Z1,5‖Z1,6‖Z1,7,

whereZ1,i for 0≤ i < 8 are 32-bit words. The adversary randomly chooses(H0,H1,H2),
and getsH3 = H0⊕H1⊕H2⊕Z0, computesZ′

1 using the finalization function.
If the equationZ′

1,0‖Z′
1,1‖Z′

1,2‖Z′
1,3 = Z1,0‖Z1,1‖Z1,2‖Z1,3 holds, letY0 = H0,Y1 =

H1,Y2 = H2. The adversary can now compute(IV ′
0, IV

′
1, IV

′
2, IV

′
3) and messageM0 which

has the same hash valueZ0‖Z1,0‖Z1,1‖Z1,2‖Z1,3, using the similar method with Luffa-
256. The total complexity is 2128 iteration computations.

For Luffa-512, the complexity is 2255 using a similar attack.

5 Improved Pseudo-Preimage Attacks on Luffa-384/512

In this section, we introduce an algorithm to improve the pseudo-preimage attack on
Luffa-384/512 by the extended generalized birthday attackwhich is used to solve a
system of equations, proposed by Schnorr [6]. Thek-dimensional generalization of the
birthday problem is, givenk listsL0, L1, . . ., Lk−1 independently at random from{0,1}n,
to findk elementsxi ∈ Li for 0≤ i ≤ k−1 such thatx0⊕x1⊕·· ·⊕xk−1 = 0. Wagner’s
algorithm [7] builds a binary tree starting from the input listsL0, L1, . . ., Lk−1. The time
complexity and data complexity are botht ·2

n
1+t , wheret = ⌊log2 k⌋.

5.1 The Extended Generalized Birthday Attack

We give a brief description of Wagner’s generalized birthday attack in the following.
Wagner’s Algorithm.

1. The adversary constructs 2t setsS0
0, S0

1, . . ., S0
2t−1, wheret = ⌊log2k⌋, S0

i = {x j
i |

x j
i ∈ Li , j = 0,1, . . . ,2

n
1+t −1} for 1≤ i < 2t −1 andS0

2t−1 = {x j
2t−1⊕x2t ⊕·· ·⊕xk |

x j
2t−1 ∈ L2t−1, j = 0,1, . . . ,2

n
1+t −1}, wherexl ∈ Ll for l = 2t , . . . ,k−1.

2. The adversary searches 2
n

1+t element pairsx j
2i ∈S0

2i , xk
2i+1 ∈S0

2i+1 with the same low
n

1+t bits by the birthday attack. Construct 2t−1 new setsS1
i , i = 0,1, . . . ,2t−1− 1,

whereS1
i = { x j

2i ⊕xk
2i+1 | the low n

1+t bits are zeros}.

3. Form= 2 to t −1, the adversary searches 2
n

1+t pairsx j
2i ∈ Sm−1

2i andxk
2i+1 ∈ Sm−1

2i+1
with them-th low n

1+t bits same. Construct 2t−m new setsSm
i , i = 0,1, . . . ,2t−m−1,

whereSm
i = { x j

2i ⊕xk
2i+1 | the lowm· n

1+t bits are zeros}.

4. The adversary searches a pairx j
0 ∈ St−1

0 , xk
1 ∈ St−1

1 , s.t.x j
0⊕xk

1 = 0.

8 K. Jia et al.

The above algorithm can find one solutionx0,x1, . . . ,xk−1 such thatx0⊕x1 · · ·⊕xk−1 = 0
with time complexity and data complexity being botht ·2

n
1+t .

Now consider the solution to the following two equations instead of one equation.

f1(x1)⊕ f2(x2)⊕·· ·⊕ fk(xk) = c1, (1)

g1(x1)⊕g2(x2)⊕·· ·⊕gk(xk) = c2, (2)

where fi andgi (1 ≤ i ≤ k) are random functions,fi : 2m → 2n1, gi : 2m → 2n2. The
equations (1) and (2) can be solved together by the extended generalized birthday attack
[6] described in the following.

It is easy to construct the following equation from equations (1) and (2):

(f1(x1)‖g1(x1))⊕ (f2(x2)‖g2(x2))⊕·· ·⊕ (fk(xk)‖gk(xk)) = c1‖c2. (3)

For the new equation (3), the Wagner’s algorithm can be applied to obtainx1, . . . ,xk.

The data and time complexity ist ·2
n1+n2

1+t , wheret = ⌊log2k⌋ andm≥ n1+n2
1+t .

It is clear that, the algorithm can be extended to solve more equations.

f (1)
1 (x1)⊕ f (1)

2 (x2)⊕·· ·⊕ f (1)
k (xk) = c1,

f (2)
1 (x1)⊕ f (2)

2 (x2)⊕·· ·⊕ f (2)
k (xk) = c2,

...

f (l)
1 (x1)⊕ f (l)

2 (x2)⊕·· ·⊕ f (l)
k (xk) = cl ,

where f (i)
j : 2m → 2ni are random functions,0≤ i ≤ l , and 0≤ j ≤ k. The data and time

complexity ist ·2
n1+n2+···+nt

1+t , wheret = ⌊log2k⌋ andm≥ n1+n2+···+nt
1+t .

5.2 The Improved Pseudo-Preimage Attack on Luffa-384

Let (H0,H1,H2,H3,0) be the input of the last blank iteration function, and(X0,X1,X2,X3)
be the output of itsMI . The hash value isZ0‖Z̄1, whereZ̄1 = Z1,0‖Z1,1‖Z1,2‖Z1,3. Then

h128(Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)) = Z̄1. (4)

From the message injection functionMI , we know that(H0,H1,H2,H3)
T = A−1

4×4(X0,

X1,X2,X3)
T , whereA4×4 is the first 4 column vectors of the matrixA4×5, i.e.,

A4×4 =









0x4,0x6,0x6,0x7
0x7,0x4,0x6,0x6
0x6,0x7,0x4,0x6
0x6,0x6,0x7,0x4









.

It’s inverse matrix is

A−1
4×4 =









0x20,0x43,0x84,0x11
0x11,0x20,0x43,0x84
0x84,0x11,0x20,0x43
0x43,0x84,0x11,0x20









.

Pseudo-Cryptanalysis of Luffa 9

FromH0⊕H1⊕H2⊕H3 = Z0, we can prove that,

X0⊕X1⊕X2⊕X3 = Z′
0, (5)

whereZ′
0 = 0x3◦Z0.

Obviously, it is necessary for us to find the solution(X0,X1,X2,X3) to make equa-
tions (4) and (5) hold together. We search the solution by theextended generalized
birthday attack and some specific properties of Luffa. The algorithm is as follows.

1. The adversary constructs four sets such that,

S0 = {X0 | X0 ∈ {0,1}n
, l192(X0) = c0},

S1 = {X1 | X1 ∈ {0,1}n
, l192(X1) = c0⊕ l192(Z

′
0)},

S2 = {X2 | X2 ∈ {0,1}n
, l192(X2) = c1},

S3 = {X3 | X3 ∈ {0,1}n
, l192(X3) = c1},

wherec0, c1 are two 192-bit constants, and each set includes 264 elements. It is
clear that,

l192(X0⊕X1⊕X2⊕X3) = l192(Z
′
0),

whereXi ∈ Si for 0≤ i ≤ 3.
2. The adversary searches the solution(X0,X1,X2,X3) satisfying the following two

equations by the extended generalized birthday attack.

h64(X0⊕X1⊕X2⊕X3) = h64(Z
′
0),

h128(Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)) = Z̄1,

whereXi ∈ Si , i = 0,1,2,3. It is clear that, The solution(X0,X1,X2,X3) guarantees
the equations (4) and (5) hold together.

3. For(X0,X1,X2,X3), the adversary can calculate(IV0, IV ′
1, IV

′
2, IV

′
3) and the message

M, and get the pseudo-preimage using the similar pseudo-preimage attack on Luffa-
256.

There are 264 Q0, Q1, Q2, Q3 computations and 264 table lookups in the above
algorithm. So the total complexity is about 264 iteration computations and 267 bytes
memory.

5.3 The Improved Pseudo-Preimage Attack on Luffa-512

For Luffa-512, let(H0,H1,H2,H3,H4,0) be the input of the last blank iteration function,
and(X0,X1,X2,X3,X4) be the output ofMI . Then

Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)⊕Q4(X4) = Z1. (6)

10 K. Jia et al.

For the message injection functionMI , we know that,(H0,H1,H2,H3,H4)
T = A−1

5×5(X0,

X1,X2,X3,X4)
T , whereA5×5 is the first 5 column vectors of the matrixA5×6, i.e.,

A5×5 =













0x f,0x8,0xa,0xa,0x8
0x8,0x f,0x8,0xa,0xa
0xa,0x8,0x f,0x8,0xa
0xa,0xa,0x8,0x f,0x8
0x8,0xa,0xa,0x8,0x f













.

Its inverse matrix is

A−1
5×5 =













0xc7,0x8b,0x f4,0x f4,0x8b
0x8b,0xc7,0x8b,0x f4,0x f4
0x f4,0x8b,0xc7,0x8b,0x f4
0x f4,0x f4,0x8b,0xc7,0x8b
0x8b,0x f4,0x f4,0x8b,0xc7













.

SinceH0⊕H1⊕H2⊕H3⊕H4 = Z0, we obtain

X0⊕X1⊕X2⊕X3⊕X4 = Z′
0, (7)

whereZ′
0 = 0x f ◦Z0.

We can search a solution to equations (6) and (7) by the extended generalized birth-
day attack and some specific properties of Luffa.

1. The adversary constructs four sets such that,

S0 = {X0 | X0 ∈ {0,1}n
, l128(X0) = c0},

S1 = {X1 | X1 ∈ {0,1}n
, l128(X1) = c0⊕ l128(Z

′
0)},

S2 = {X2 | X2 ∈ {0,1}n
, l128(X2) = c1}

S3 = {(X3,X4) | X3,X4 ∈ {0,1}n
, l128(X3⊕X4) = c1},

wherec0, c1 are two 128-bit constants, and each set includes 2128 elements. It is
clear that,

l128(X0⊕X1⊕X2⊕X3⊕X4) = l128(Z
′
0).

2. The adversary searches a solution(X0,X1,X2,X3,X4) satisfying the following two
equations by the extended generalized birthday attack.

h128(X0⊕X1⊕X2⊕X3⊕X4) = h128(Z
′
0),

Q0(X0)⊕Q1(X1)⊕Q2(X2)⊕Q3(X3)⊕Q4(X4) = Z̄1,

whereXi ∈Si , i = 0,1,2 and(X3,X4)∈S3. It is clear that, The solution(X0,X1,X2,X3,X4)
guarantees equations (6) and (7) hold.

3. For(X0,X1,X2,X3,X4), the adversary can calculate(IV0, IV ′
1, IV

′
2, IV

′
3, IV

′
4) and the

messageM, and get the pseudo-preimage using the similar pseudo-preimage attack
on Luffa-256.

The total complexity is about 2128 iteration computations and 2132 bytes memory.

Pseudo-Cryptanalysis of Luffa 11

6 Conclusion

In this paper, we give pseudo-collision, pseudo-second-preimage and pseudo-preimage
attacks on Luffa, one of the second round candidates of SHA-3. For any given output
of the message injection functionMI , it is easy to get the input toMI using the inverse
operation ofMI . So we can find pseduo-collisions and pseudo-second-preimages easily
for Luffa by applying theMI property. It is noted that, the pseudo-collisions and pseudo-
second-preimages only with a few different bits are easily searched. The attack can be
directly converted to a forgery attack on NMAC with related keys.

Especially, we focus on the the pseudo-preimage attack on Luffa. For Luffa-224/256,
the attack can find the the pseudo-preimage only with 2 iteration computations. It takes
about 264 iteration computations and 267 bytes memory to search a pseudo-preimage
for Luffa-384, and search a pseudo-preimage with 2128 iteration computations and 2132

bytes memory for Luffa-512 with the extended generalized birthday attack.

Acknowledgements. We would like to thank the anonymous reviewers for their valu-
able comments on this paper. This work is supported by the National “973” Program
of China (Grant No.2007CB807902) and Tsinghua University Initiative Scientific Re-
search Program (2009THZ01002). For the second author, a part of this work was done
while funded by EPSRC EP/C538285/1, by BT(as BT Chair of Information Security)
and while visiting Tsinghua University funded by 2007CB807902.

References

1. Bellare, M., Canetti R., Krawczyk H.: Keying Hash Functions for Message Authentication.
In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 1–15.Springer, Heidelberg (1996)

2. Cannière, C. D., Sato, H., Watanabe, D.: Hash function Luffa Specification.
http://csrc.nist.gov/groups/ST/hash/sha-3/Round1/documents/Luffa.zip. (2008)

3. Contini, S., Yin, Y. L.: Forgery and Partial Key-RecoveryAttacks on HMAC and NMAC
Using Hash Collisions. In: Lai, X., Chen, K. (eds.): ASIACRYPT 2006. LNCS, vol. 4284,
pp. 37–53. Springer, Heidelberg (2006)

4. Fouque, P.-A., Leurent, G., Nguyen, P. Q.: Full Key-Recovery Attacks on HMAC/NMAC-
MD4 and NMAC-MD5. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 13–30.
Springer, Heidelberg (2007)

5. Kelsey, J., Schneier, B.: Second Preimages onn-Bit Hash Functions for Much Less than 2n

Work. In: Cramer, R. (ed.): EUROCRYPT 2005, LNCS, vol. 3494,pp. 474–490. Springer,
Heidelberg (2005)

6. Schnorr, C.P., Enhancing the Security of Perfect Blind DL-Signatures. Information Sciences.
176(i10), pp.1305-1320 (2006)

7. Wagner, D.: A generalized birthday problem. In: Yung, M. (ed.): CRYPTO 2002, LNCS, vol
2442, pp. 288–304. Springer, Heidelberg (2002)

8. Wang, X., Lai, X., Feng, D. et al.: Cryptanalysis of the hash functions MD4 and RIPEMD. In:
Cramer, R. (ed.): Eurocrypt 2005, LNCS, vol 3494, pp. 1–18. Springer, Heidelberg (2005)

9. Wang, X., Yu, H., Yin, Y. L.: Efficient collision search attacks on SHA-0. In: Shoup, V. (ed.):
CRYPT 2005, LNCS, vol 3621, pp. 1–16. Springer, Heidelberg (2005)

10. Wang, X., Yin, Y. L., Yu, H.: Finding collisions in the full SHA-1. In: Shoup, V. (ed.): CRYPT
2005, LNCS, vol 3621, pp. 17–36. Springer, Heidelberg (2005)

12 K. Jia et al.

11. Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Cramer, R. (ed.): Euro-
crypt 2005, LNCS, vol 3494, pp. 19–35. Springer, Heidelberg(2005)

12. Yu, H., Wang, G., Zhang, G. et al.: The second-preimage attack on MD4. In: Desmedt, Y. et
al. (eds.): CANS 2005, LNCS, vol 3810, pp. 1–12. Springer, Heidelberg (2005)

Appendix

In the appendix,we give two examples for the pseudo-second-preimage and pseudo-
preimage.

IV0 0x6d251e69 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV1 0xc3b44b95 0xd9d2f256 0x70eee9a0 0xde099fa3 0x5d9b0557 0x8fc944b3 0xcf1ccf0e 0x746cd581
IV2 0xf7efc89d 0x5dba5781 0x04016ce5 0xad659c05 0x0306194f 0x666d1836 0x24aa230a 0x8b264ae7
M0 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa
IV ′

0 0x6d251e68 0x44b051e0 0x4eaa6fb5 0xdbf78464 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV ′

1 0xc3b44b95 0xd9d2f256 0x70eee9a0 0xde099fa2 0x5d9b0557 0x8fc944b3 0xcf1ccf0e 0x746cd581
IV ′

2 0xf7efc89d 0x5dba5780 0x4016ce5 0xad659c05 0x306194f 0x666d1836 0x24aa230a 0x8b264ae7
M′

0 0xaaaaaaab 0xaaaaaaab 0xaaaaaaaa aaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa 0xaaaaaaaa
X0 0xe6333b1e 0x96d8e9f6 0x24d83129 0x6aa44be3 0x4da482a5 0x0a0bbb57 0x3d1e5ae2 0x71efd72c
X1 0x48a26ee2 0xa110e0ea 0x1a9cb73d 0xc5f0fa8f 0xd4bc0d49 0x15d7d210 0x1c0714d5 0xdb751216
X2 0x7cf9edea 0x2578453d 0xc4d998d2 0xb69cf929 0x208bbbfb 0x56d9243f 0xf7b1f8d1 0x243f8d70

Table 1. A Pseudo-second-preimage for Luffa-256

IV0 0x6d251e69 0x44b051e0 0x4eaa6fb4 0xdbf78465 0x6e292011 0x90152df4 0xee058139 0xdef610bb
IV ′

1 0x6a366118 0x3ee79df6 0x39643181 0x60793777 0x8ddc9066 0x1d50cebd 0xb1cfd39b 0x967da4e4
IV ′

2 0x9622ac99 0xb752bbbb 0xd256db58 0x73db6cac 0x9ae49b27 0xeb1666b4 0x805027ed 0x8176bfc6
M 0x7c08aa09 0x52f9e2bf 0x27ce6bb9 0x11af8970 0x22c8478d 0x9eebde0e 0x78ae77ef 0xdafc7fa8
H0 0xd42f102f 0x94316735 0xec5bb8a2 0xceb338ee 0x6d35036f 0x85d4ba8c 0xc9a85c96 0xed839a52
H1 0x70238338 0x4461e9a7 0xa3012529 0xb6a10e0f 0xdfdf5bc0 0x2fd50d38 0xe98ddd20 0xf90f4fe9
H2 0xe0d87b07 0x5704423f 0xb8ba00ed 0xeaa52759 0x8bc1b72b 0xc5720d53 0x41cde665 0x1288c8fc
Z0 0 0 0 0 0 0 0 0

Table 2. A Pseudo-preimage for Luffa-256

	Pseudo-Cryptanalysis of Luffa
	Keting Jia, Yvo Desmedt, Lidong Han, Xiaoyun Wang

