
Adaptively Secure Broadcast

Martin Hirt and Vassilis Zikas

Department of Computer Science, ETH Zurich
{hirt,vzikas}@inf.ethz.ch

Abstract. A broadcast protocol allows a sender to distribute a message through a point-to-point network to a set of
parties, such that (i) all parties receive the same message, even if the sender is corrupted, and (ii) this is the sender’s
message, if he is honest.
Broadcast protocols satisfying these properties are known to exist if and only if t < n/3, where n denotes the total
number of parties, and t denotes the maximal number of corruptions. When a setup allowing signatures is available
to the parties, then such protocols exist even for t < n.
Broadcast is the probably most fundamental primitive in distributed cryptography, and is used in almost any cryp-
tographic (multi-party) protocol. However, a broadcast protocol “only” satisfying the above properties might be
insecure when being used in the context of another protocol. In order to be safely usable within other protocols, a
broadcast protocol must satisfy a simulation-based security notion, which is secure under composition.
In this work, we show that most broadcast protocols in the literature do not satisfy a (natural) simulation-based
security notion. We do not know of any broadcast protocol which could be securely invoked in a multi-party com-
putation protocol in the secure-channels model. The problem is that existing protocols for broadcast do not preserve
the secrecy of the message while being broadcasted, and in particular allow the adversary to corrupt the sender (and
change the message), depending on the message being broadcasted. For example, when every party should broadcast
a random bit, the adversary could corrupt those parties that want to broadcast 0, and make them broadcast 1.
More concretely, we show that simulatable broadcast in a model with secure channels is possible if and only if
t < n/3, respectively t ≤ n/2 when a signature setup is available. The positive results are proven by constructing
secure broadcast protocols.

1 Introduction
1.1 Broadcast
Broadcast, as defined in the literature, allows a sender to securely distribute a message among a set of
players, where security means that (i) all honest players eventually output the same message, no matter what
the sender does (consistency), and (ii) this output is the sender’s message, if he is honest (validity).

Broadcast was introduced by Pease, Shostak, and Lamport [PSL80]. The first efficient solution was
given by Dolev and Strong [DS82]. Further research concentrated on lower bounds [FL82, FLM86], effi-
ciency [BGP89, CW92, BDDS92], round complexities [MW88, FM89, GM98], and feasibility with statis-
tical security [BPW91, PW92, PW96].

Broadcast is one of the most fundamental primitives in distributed cryptography. It is used in almost
any task that involves multiple players, like, e.g., voting, bidding, secure function evaluation, threshold key
generation, multi-party computation, etc — just to mention a few. The security of these protocols inherently
relies on the security of the underlying broadcast protocol.

1.2 Simulation-based Security
Until recently, the security of most cryptographic protocols in the literature was argued by enumerating a
number of properties that a good protocol should have, and proving that the new protocol satisfies each of
them. This approach is very risky, as firstly, history teaches that there is always at least one desired property
that was forgotten, and secondly, as illustrated by Canetti [Can00], a protocol can well satisfy all desired
properties, and still behave unexpectedly in some context. In particular, property-based protocols do not
compose securely.

A more accurate security notion is the simulation-based approach: Here, the desired behavior is defined
as an ideal functionality, and a protocol is secure if the adversary has no advantage in attacking the protocol,

as compared to attacking the functionality. Most interestingly, many simulation-based security notions allow
for composition theorems [Can00, Can03, BPW03, DM00], which essentially state that a secure protocol
remains secure when it invokes other secure protocols.

In the context of broadcast, the common property-based definition requires consistency and validity
(formally, also termination must be required). The (natural) ideal functionality for broadcast is the follow-
ing: The sender sends the message to the functionality, who forwards the received message to all play-
ers. Although broadcast protocols in the literature are argued secure only with respect to the property-
based definition, it is commonly believed that they securely realize this functionality in a simulation-
based notion. In fact, most (if not all) higher-level protocols in the literature (like VSS [CGMA85],
MPC [GMW87, BGW88, RB89], etc.) are argued secure in a hybrid model with access to an ideal broadcast
functionality, and the hope is that these protocols remain secure when the calls to the broadcast functionality
are replaced by one of the property-based protocol implementations.

1.3 Our Contributions

We show that the property-based definition of broadcast does not imply simulation-based security with the
natural functionality, not even in a stand-alone setting, not even in the secure-channels model with perfect
security.

Furthermore, we give broadcast protocols with simulation-based security in the secure-channels model
that tolerate t < n/3 (with perfect security, without further assumptions), respectively t ≤ n/2 (with statis-
tical resp. cryptographic security, when a secure signature functionality is available). Both bounds are tight.
We stress that in the secure channels model, no protocol exists that securely realizes the natural broadcast
functionality when t > n/2 (although property-based security is possible for t < n [DS82, PW92]).

The negative result can easily be illustrated by an example. Consider the following broadcast protocol:
First, the sender transmits the message to all players. Then, the players run a perfectly secure consensus
protocol on the received values [BGP89]. The resulting broadcast protocol satisfies the consistency and
validity property with perfect security when t < n/3. However, it is not a secure realization of the above
natural functionality for broadcast. The main problem is that an adaptive (and rushing) adversary first learns
the message to be broadcasted, and then, depending on the learned message, still can corrupt the sender
and make him broadcast a different message. The authors are not aware of any broadcast protocol in the
literature that does not suffer from this problem (but see related work below).

The positive result for perfect security with t < n/3 is rather straight-forward: First, the sender secret
shares the message among the players. Then, the sharing is reconstructed. The only issue is how to do a
secret-sharing without having a composable broadcast primitive. The second positive result, namely statisti-
cal and computational security for t ≤ n/2, it more involved. Note that verifiable secret-sharing exists only
for t < n/2 (but not for t = n/2).

The tightness of the bound for perfect security (t < n/3) follows directly from the impossibility of
property-based broadcast. The tightness of t ≤ n/2 is proven indirectly; we show that in any “broadcast
protocol” for 2t = n + 1, there exists a round in which the adversary (not corrupting the sender) obtains
noticeable (i.e., not negligible) information about the message, but still can corrupt the sender and change
the message.

1.4 Related Work

At first glance, our constructions of simulation-based broadcast look similar to simultaneous broad-
cast [CGMA85, CR87, Gen00]. However, the goal of the latter is to satisfy an additional property, not
to achieve simulation-based security. Recently, Hevia [Hev06] proposed a universal composable simultane-
ous broadcast protocol. However, as all previous protocols in this line of research, also this protocol uses

2

“normal” broadcast as sub-protocol, and the security analysis relies on the hope that this securely composes,
which in general is not the case.1

Recently, Lindell, Lysyanskaya, and Rabin [LLR02] have presented a broadcast protocol for t < n,
which is concurrently composable when unique session IDs are available. This result does not contradict
ours, as it is for the authenticated communication model only, where all messages sent through the network
can be read by the adversary. In particular, even in the ideal world, the adversary can read the message that
the sender sends to the broadcast functionality, and (by corrupting the sender) can also change it. Hence,
also this protocol shows this unexpected phenomena that the adversary can decide to corrupt the sender and
change the broadcast message after she has seen the broadcasted message, but this is allowed, as she could
do so also in the ideal world. In particular, when this protocol would be executed in a model with secure
channels, it would not remain secure.

2 Preliminaries

We consider the well-known secure channels model introduced in [BGW88, CCD88]: the players in
P = {p1, . . . , pn} are connected by a complete network of bilateral secure channels. The communica-
tion is synchronous, i.e., all players have synchronized clocks and there is a known upper bound on the
delivery time of any sent message. In such a synchronous model, the protocols proceed in rounds, where in
each round several players might be instructed to send messages to several other players. All the messages
sent in some round are delivered at the beginning of the next round.

2.1 The Adversary model
We consider a threshold adversary who can actively corrupt up to t players (we refer to this adversary as
t-adversary). When some player pi is actively corrupted then the adversary has full control on pi. A player
who is not corrupted is called uncorrupted or honest. Analogously, the corrupted players are also called
dishonest.

Adaptive We consider an adaptive adversary. As opposed to a static adversary who chooses the players to
corrupt at the beginning of the protocol, an adaptive adversary can corrupt additional players in the flow of
the protocol depending on messages seen so far, with the only restriction that the total number of players she
corrupts has to be at most t. As one would expect, an adaptive adversary is stronger than a static [CDD+01].
Our results confirm this belief.

Rushing We consider a rushing adversary [Can00, Can03]. Intuitively, such an adversary is allowed to first
receive all the messages sent to the corrupted players in a round, and then decide its strategy. A bit more
formally, a rushing adversary can decide in each round the order in which the messages of this round are
sent. When, in addition to being rushing, the adversary is also adaptive, then after each message which is
sent, the adversary is allowed to corrupt more players depending on the messages she has seen so far. In
particular, the adversary can, within some round, have an honest pi send a message to some corrupted pj ,
and depending on this message corrupt pi before he sends any further message. In this work, we consider an
adversary who is both rushing and adaptive.

2.2 Composable Security
Following the [Can00, Can03] methodology security of protocols is argued via the ideal-world/real-world
paradigm. In the real-world the players execute the protocol. The ideal-world is a specification of the task
which we want the protocol to implement. More concretely, in the ideal-world the players can invoke a fully
trusted party, called the functionality, denoted as F , in the following way: the player sends their input(s) to
F ; F runs its program on the received inputs (while running the program, F might receive additional inputs

1 The protocol in [Hev06] employs the verifiable secret-sharing scheme from [CDD+99], which in turn employs some broadcast
primitive which securely composes in the secure-channels model for t < n/2. So far, no such protocol is known.

3

from the players or the adversary or send values to the adversary), and returns to the players their specified
outputs. The specification of F is such that this ideal-evaluation captures, as good as possible, the goals of
the designed protocol.

Intuitively, a protocol securely realizes a functionality F , when the adversary cannot achieve more in the
protocol than what she could achieve in an ideal-evaluation of F . To formalize this statement, we assume
an environment Z which decides the inputs of all players, and, at the end of the computation, gets to see
their outputs. Z also sees the full view of the adversary A who is attacking the protocol. We denote the
view of Z for an invocation of protocol π with adversary A as EXECπ,A,Z . A protocol π t-securely realizes
functionality F when for any t-adversary A attacking protocol π, there exists an ideal-world adversary S
(also called the simulator) such that no environment Z cannot tell whether it is interacting with A and the
players running π or with S and the players running the ideal-world protocol (we denote the view of Z in
an ideal-evaluation of F as EXECF ,S,Z).

The three typical security notions are: perfect security (A is computationally unbounded, and the random
variables EXECπ,A,Z and EXECF ,S,Z are identically distributed), statistical security (A is computationally
unbounded, and EXECπ,A,Z and EXECF ,S,Z are statistically close), and computational security (A is effi-
cient, and EXECπ,A,Z and EXECF ,S,Z are computationally indistinguishable)

The F-hybrid model The power of the simulation-based definition is that it allows to argue about security
of protocols in a composable way. In particular, let π1 be a protocol which securely realizes a functionality
F1. If we can prove that π2 securely realizes a functionality F2 using ideal-calls to F1, then it follows auto-
matically that the protocol which results by replacing, in π2, the calls toF1 by invocations of π1 also securely
realizes F2. Therefore we only need to prove the security of π2 in the so-called F1-hybrid model, where the
players run π2 and are allowed to make ideal-calls to F1. For more details on composability of protocols
and a formal handling of both sequential and parallel composition (and also of universal composability), the
reader is referred to [Can00, Can03].

3 Perfect Security
In this section we consider the case of perfect security, i.e., information theoretic (i.t.) with no error prob-
ability. We show that perfectly secure broadcast tolerating a t-adversary is possible if and only if t < n/3.
Although this bound already appears in the literature, to the best of our knowledge, none of suggested
synchronous broadcast protocols for perfect security satisfies the simulation-based definition when secure-
channels and an adaptive adversary are considered. Also, in addition to handling the perfect security case,
this section serves as a good way to introduce many of our ideas.

The ideal functionality for broadcast FBC when synchronous secure channels are assumed is quite in-
tuitive; nevertheless, to keep our analysis complete, in the following we give a description. For simplicity
we describe the functionality in terms of an ideal-world protocol. A UC version of this functionality can be
found in the appendix.

Functionality FBC

1. ps sends his input xs to the Trusted Party (denoted as FBC).
2. FBC sends xs to every p ∈ P .

To show that the above functionality is not realized by known protocols, we observe that these protocols
follow the same paradigm: At the beginning of the protocol the sender ps sends his input xs to the players
in P \ {ps}; in a second phase the players try to establish a consistent view on the sender’s input. Clearly
all protocols which start by the sender multisending his input and then invoke a consensus protocol on the
received value, e.g., [BGP89, CW92, BDDS92], are of the above type. However, even the protocols where
the second phase is not a self-contained consensus protocol, e.g., the Dolev-Strong [DS82] or the Pfitzmann-
Waidner [PW92] broadcast, also follow the above paradigm.

4

The fact that any protocol following the above paradigm is insecure against an adaptive adversary can
be seen as follows: In any such protocol, because the adversary is rushing, she can corrupt the first player
who receives the input xs from ps and depending on the received value decide whether or not to also corrupt
the sender ps (and possibly change the broadcasted value). However, this behavior cannot be simulated, as
by the time the simulator learns xs from the functionality it is already too late to change it (the functionality
also sends it to all honest players).

A direct way to deal with the above problem is to make sure that before any player (or the adversary)
learns any information on xs, the value xs is secret shared in a robustly reconstructible way. More concretely,
when a secure Verifiable Secret Sharing (VSS) scheme is given, then one can easily construct a secure
broadcast protocol (i.e., a protocol realizing FBC) by invoking the VSS protocol with dealer ps on input
xs (where xs is reconstructed towards all players). Hence, in order to build a perfectly secure broadcast
protocol it suffices to provide a perfectly secure VSS.2

It might look that we are done, as one could use the perfectly secure VSS from [BGW88] to achieve
broadcast (for a proof of security of this VSS scheme see [BGW88, Can00]). But this is not quite true. The
reason is that [BGW88] (and all other known VSS schemes with perfect security) use broadcast as a compo-
nent. If we instantiate this component by one of the known broadcast protocols then we can no longer argue
about the security of the full construction using composability. Nevertheless, we show in the following that
replacing all broadcasting of values in the [BGW88] VSS scheme by invocations to the [BGP89] broadcast
protocol3 does not cause any loss of security; we shall denote this VSS scheme by VSS(BGP)

BGW .

The security of VSS(BGP)
BGW is argued in two steps. In a first step, we show that although the [BGP89]

broadcast protocol, denoted in the following as BCBGP, does not securely realize FBC, it does realize a
weaker functionality, denoted as FUBC (we refer to this functionality as unfair broadcast). In a second step,
we show that under certain conditions (which are satisfied by the [BGW88] VSS protocol) , we can replace
FBC by FUBC without loosing security.

The functionality FUBC is described in the following. Intuitively, the difference to the functionality FBC
is that FUBC allows the adversary to first receive the sender’s ps input (even without corrupting ps) and then,
depending on the received value, decide whether or not she wants to corrupt ps and possibly modify the
broadcasted value.

Functionality FUBC

1. ps sends his input xs to the Trusted Party (denoted as FUBC).
2. FUBC sends xs to the adversary.
3. If ps is corrupted then the adversary sends a value to FUBC; FUBC denotes the received value by x′s

(if ps is not corrupted then FUBC sets x′s := xs).
4. FUBC sends x′s to every p ∈ P

Lemma 1. Protocol BCBGP perfectly t-securely realizes the functionality FUBC for t < n/3.

Proof. (sketch) As shown in [BGP89], the protocol BCBGP satisfied the property-based definition of broad-
cast (i.e., it satisfies validity, consistency, and termination). We show that it perfectly securely realizesFUBC.
Let A be an adversary attacking BCBGP; a corresponding simulator S can be built as follows: First S waits
for the input xs from FUBC. Note that, because BCBGP is fully deterministic and the players in P \{ps} have

2 The idea of using VSS to improve the properties of broadcast has also been considered in the past for achieving simultaneous
broadcast [CGMA85, CR87, Gen95, Gen00, HM05, Hev06].

3 In fact [BGP89] describes a consensus protocol. A protocol for broadcast can be constructed by having the sender send his value
to everybody and then invoke consensus on the received values.

5

no input, knowing xs allows S to perfectly simulate all the messages sent by honest players.4 S invokes A
and does the following:

1. S simulates all the players in the computation.
2. Whenever A requests to corrupt some pi ∈ P , S corrupts pi and sends (the simulated) internal state of

pi to A. From that point on, S has (the simulated) pi follow A’s instruction.
3. Whenever A sends a message to the environment Z , S forwards this message to Z .
4. At the end of the simulation, if some (simulated) uncorrupted player pi outputs xi = xs, then in the ideal

evaluation ps sends xs to FUBC (even when he is corrupted). Otherwise, i.e., if xi 6= xs, S instructs ps

to send xi to the functionality FUBC in Step 3 (the correctness property of BCBGP implies xi 6= xs only
when ps is actively corrupted.).

It is easy to verify that EXECFUBC,S,Z ≡ EXECπ,A,Z , i.e., the protocol perfectly securely realizesFUBC. ut

For the second step, we show that if a protocol has a special property, then it is safe to replace FBC by
FUBC. The property is the following: For any value v which is supposed to be broadcasted, the adversary
“knows v in advance”, i.e., there exists a deterministic strategy for this adversary to compute v based on the
contents of her view before the call to the broadcast primitive. We formalize this in the following lemma.
Note that the lemma holds for any security level and is not restricted to perfect security.5

Lemma 2. Let Π be an FBC-hybrid protocol which securely realizes a given functionality F , and let Π ′

denote the protocol which results by replacing in Π all the calls to FBC with calls to FUBC. If Π uses calls
to FBC only to broadcast values which the adversary knows in advance, then Π ′ securely realizes F .

Proof. (sketch) Let A′ be an adversary attacking Π ′ in the FUBC-hybrid model. We show how to construct
an adversary A attacking Π in the FBC-hybrid model such that ExecZ,A′,Π′ ≡ ExecZ,A,Π . This is sufficient
as then we can use the simulator for A (which is guaranteed to exist by the security of Π) as a simulator
for A′. A behaves exactly as A′ except in the invocations of FUBC: when FUBC is to be called, in order to
simulate the first message of FUBC towards A′ (corresponding to the broadcasted value) A computes the
value to be broadcasted (using the deterministic strategy on his view which is guaranteed to exist by the fact
that she knows the broadcasted value in advance)6 and sends this value to A′. A′ is now allowed to corrupt
the sender and (possibly) change the value he is supposed to broadcast. A acts accordingly and then invokes
FBC. It is straightforward to verify that ExecZ,A′,Π′ ≡ ExecZ,A,Π . ut

We point out that the [BGW88] VSS protocol satisfies the pre-condition of Lemma 2. Indeed, the proto-
col uses broadcast only for the complaints and the accusations issued by players and for the dealer to reply
to them. By careful inspection of the protocol one can verify that all these broadcasted values can be com-
puted from the view of the adversary before they are broadcasted. Because this VSS is secure for t < n/3,
combining Lemmas 1 and 2 we get the following corollary.

Corollary 1. If t < n/3 then there exists a protocol which perfectly t-securely realizes the functional-
ity FBC.

Remark 1. Although replacing FBC by FUBC did not affect the security of [BGW88] VSS, this is not in
general true for any protocol using broadcast. In fact, even when the broadcasted message is uniformly and
independently chosen (intuitively this implies that the adversary gets not information by learning it) it is not

4 In fact, for any adversary A, S can generate exactly the same messages as the uncorrupted players would if the protocol would
be run with this adversary.

5 However, for the case of computational security we will have to require that the strategy of the adversary to compute the value
which is to be broadcasted is efficient.

6 Wlog we can assume that A′ forwards his entire view to A [Can00, Can01].

6

always the case that we can do this replacement. For example, consider the protocol where each player pi in
turns broadcasts a uniformly random bit and the output is the vector of the broadcasted bits. If broadcasting
is done by FUBC then the adversary can corrupt the pi’s (up to t players in total) who are about to broadcast
0 and change the broadcasted value to 1. This will create a bias towards 1 in the output distribution, which
cannot be simulated if FBC is used for broadcasting, as the bits are chosen randomly. Note that this is not a
simultaneous-broadcast problem, as the we do not require that the adversary’s decisions are independent of
what the honest players broadcast.

To complete this section we show that t < n/3 is tight for perfectly secure broadcast. We use the
following impossibility result from [LSP82, KY84, FLM86] (for a nice proof see also [Fit03]).

Lemma 3 ([LSP82, KY84, FLM86, Fit03]). If t ≥ n/3 then there exists no protocol which simultaneously
satisfies correctness, consistency, and termination, even in the presence of a non-adaptive adversary.

The impossibility proof for the functionality FBC follows directly from the above lemma and the fact
that any protocol securely realizing FBC has to satisfy the given three properties.

Corollary 2. If t ≥ n/3 then there exists no protocol which perfectly t-securely realizes the functionality
FBC.

We point out that Lemma 3, hence also the impossibility for FBC, holds even for the cases of computa-
tional and statistical security when no setup is available. This implies the following:

Corollary 3. If t ≥ n/3 and no setup is available then there exists no protocol which computationally
t-securely realizes the functionality FBC. The statement holds also for statistical security.

4 Statistical and Computational Security (with a trusted setup)
In this section we consider the cases of statistical security, i.e., information theoretic with negligible error-
probability, and computational security. For these security notions, it is widely believed that when a setup
allowing digital signatures is assumed, then broadcast is possible for an arbitrary number of cheaters (i.e.,
t < n), e.g., by using the Dolev-Strong broadcast protocol [DS82] for computational security or us-
ing [PW92] for statistical security. We show that this folklore belief is wrong when an adaptive adversary is
considered. We already argued in the previous section that the Dolev-Strong broadcast protocol is not adap-
tively secure. In this section we show that the condition t ≤ n/2 is necessary and sufficient for broadcast
both for computational and statistical security.

We start by proving the sufficiency of the condition t ≤ n/2; this is done by providing a protocol which
securely realizes FBC. We handle the two security notions, i.e., computational and statistical, in parallel. In
our protocol, the players will need to digitally sign messages they send. This is modeled by assuming that
the protocol has access to an ideal functionality for digital signatures FSIG (for definition and properties of
such a functionality see [Can03]).

4.1 The Broadcast Protocol
Our approach is analogous to the case of perfect security, namely we first show that there exists a secure
realization of FUBC for t ≤ n/2, and then use Lemma 2 to derive a protocol for FBC from an FUBC-hybrid
protocol. However, this last step is more involved than simply using a statistically secure VSS protocol
satisfying the preconditions of Lemma 2. Indeed, all known protocols for statistical VSS are only secure for
t < n/2 which is stronger than t ≤ n/2. Before describing how to overcome this difficulty we state the
following lemma which will allow us to use ΠDS as a secure realization of FUBC. The proof is along the
lines of the proof of Lemma 1; the only difference is that the simulator needs also to simulate the digital
signatures of honest players in a run of the protocol, which is guaranteed to be able to do by the definition
of FSIG.7

7 The idea that when using [DS82] with i.t. secure signatures we get an i.t. secure broadcast protocol appears also in [PW92, Fit03].

7

Lemma 4. Protocol ΠDS perfectly t-securely realizes FUBC for t < n in the FSIG-hybrid model, where the
signatures are replaced by calls to an ideal signature functionality FSIG.

To implement the second step, namely construct the FUBC-hybrid protocol, we use as starting point the
VSS from [CDD+99]. In [CDD+99] IC-signatures are used to ensure that some pj who receives a value
v from some pi can, at a later point, publicly prove that pi indeed send him v. Because IC-signatures are
secure only when t < n/2, in this work we use digital signatures for the same purpose. The signatures are
generated and verified by calls to the assumed digital signatures functionality FSIG. We point out that the
signed message should include enough information to uniquely identify for which message in the flow of
the protocol the signature was issued (e.g., a unique message ID associated with every message sent in the
protocol). Depending on whether the calls to FSIG are instantiated by a computationally or an i.t. secure
signature-scheme, our broadcast protocol will achieve computational, respectively i.t. security.

In the following, we first describe our sharing, which is along the lines of [CDD+99], and specify some
useful security properties, and then we describe and analyze our broadcast protocol.

Secret Sharing Following the terminology of [CDD+99], we say that a vector v = (v1, . . . , vm) ∈ Fm is
d-consistent, if there exists a polynomial p(·) of degree d such that p(i) = vi for i = 1, . . . ,m. A value s is
said to be d-shared among the players in P when every (honest) player pi ∈ P holds a degree-d polynomial
gi(·) and for each pj ∈ P pi also holds pj’s signature on gi(j), where the following condition holds: there
exists a degree-d polynomial q(·) with q(0) = s and gi(0) = q(i) for all pi. The polynomials g1(·), . . . , gn(·)
along with the corresponding signatures constitute a d-sharing of s.

We describe the protocols HD-Share (the HD stands for Honest Dealer) and Reconstruct which allow
for a dealer pD to d-share a value s, and for public reconstruction of a shared value, respectively.

The protocol HD-Share is along the lines of the sharing protocol from [CDD+99]. We describe
HD-Share (see next page) in the {FSIG,FBC}-hybrid model, i.e., HD-Share uses calls to FBC for broad-
casting and calls to FSIG for signature generation and verification. To ensure that the output of HD-Share
matches the form of our sharing, i.e., every honest pi holds a degree-d polynomial gi(·) and signatures from
all other players, we do the following: for every message transmission, the receiver pj confirms when he re-
ceives a well-formed message from pi or, otherwise, pj complains and pi is expected to answer the complaint
by broadcasting the message. If some pi is publicly caught to misbehave, e.g., by broadcasting a malformed
message, then pi is disqualified. Because dishonest players cannot be forced to sign the messages they send,
we make the following convention: when pi is disqualified, then every player takes a default value, denoted
as ⊥, to be pi’s signature on any message (⊥ will always be accepted as valid signature of disqualified play-
ers on any message). The proof of the lemma is along the lines of the security analysis in [CDD+99] and is,
therefore, moved to the appendix.

Lemma 5. Protocol HD-Share invoked in the {FBC,FSIG}-hybrid model has the following properties. Pri-
vacy: The view of any d-adversary attacking the protocol can be perfectly simulated. (This property ensures
that no information about s leaks to a d-adversary); Honest-dealer correctness: When the dealer is honest
until the end of HD-Share then the output is a d-sharing of s. Furthermore, in all calls to FBC, the adversary
“knows in advance” the value to be broadcasted.

To reconstruct a sharing the protocol Reconstruct is invoked. The idea is the following: every pi an-
nounces his share and the corresponding signatures from the players in P; if some signature is invalid or the
the announced share is not d-consistent, then pi is excluded from the reconstruction, otherwise his share-
polynomial is interpolated; The zero-coefficients of the share-polynomials of the players that have not been
excluded are used to reconstruct the shared value. Depending on the actual choice of d the sharing might
not uniquely define a value. In any case the players adopt the value which is output by the interpolation
algorithm. The consistency of the output is guaranteed as it is decided on publicly seen values.

8

Protocol HD-Shared (pD, s)
1. The dealer pD chooses a uniformly random bivariate polynomial f(·, ·) of degree d in each variable,

such that f(0, 0) = s. For each pi ∈ P :
(a) For j = 1, . . . , n : pD sends pi the values si,j = f(i, j) and sj,i = f(j, i) along with his

signature on them; pi denotes the received values as s
(i)
i,j , s

(i)
j,i , sigpD

(s(i)
i,j), and sigpD

(s(i)
j,i).

(b) pi broadcasts a complaint if any of the vectors
(
s
(i)
i,1, . . . , s

(i)
i,n

)
and

(
s
(i)
1,i, . . . , s

(i)
n,i

)
is not d-

consistent or for some value no valid signature was received.
(c) pD answers each complaint by broadcasting the values he sent to pi in Step 1a. If pD broadcasts

a message of the wrong form or invalid signatures then pD is disqualified; otherwise pi adopts
the broadcasted messages as the messages he should have received in Step 1a.

2. For each pi ∈ P:
(a) For j = 1, . . . , n : pi sends s

(i)
i,j to pj along with his signature sigpi

(s(i)
i,j) and the dealer’s

signature sigpD
(s(i)

i,j).
(b) Each pj ∈ P broadcasts a complaint if he did not receive a message along with valid signatures

from pi and pD in Step 2a.
(c) pi answers each complaint by broadcasting (s(j)

i,j , sigpD
(s(j)

i,j), sigpj
(s(i)

i,j)). If pi does not broad-
cast a message or any of the signatures is invalid then pi is disqualified, every player replaces all
pi’s signatures by ⊥, and pj sets s

(j)
i,j := s

(i)
i,j ; otherwise pj adopts the broadcasted messages as

the messages he should have received in Step 2a.
3. Every pi checks if he received a s

(j)
i,j from some pj in Step 2 which is inconsistent with his own

view of si,j , i.e., s
(j)
i,j 6= s

(i)
i,j , and if so, broadcasts

(
s
(i)
i,j , s

(j)
i,j , sigpD

(s(i)
i,j), sigpD

(s(j)
i,j)

)
; every player

verifies that s
(j)
i,j 6= s

(i)
i,j and that the signatures are valid and if so pD is disqualified.a

a The signature includes information to uniquely identify for which message in the flow of the protocol it was generated, e.g.
a unique message ID, and also includes a unique session ID.

Protocol Reconstruct
1. Each pi ∈ P broadcasts (si,1, . . . , si,n) along with the corresponding signatures

sigp1
(si,1), . . . , sigpn

(si,n); if any of the broadcasted signatures is invalid or if the broad-
casted vector is not d-consistent, then pi is disqualified. Otherwise a polynomial gi(·) is defined by
interpolating the components of the vector.

2. Let P“ok” = {pi1 , . . . , pi`} denote the set of non-disqualified players. The values gi1(0), . . . , gi`(0)
are used to interpolate a polynomial g′(·) and every player outputs g′(0).

Lemma 6. Protocol Reconstruct invoked to the {FBC,FSIG}-hybrid model outputs (the same) y ∈ F to-
wards every player. Furthermore, if d < n− t (where t is the number of corrupted players) and the input is
a d-consistent sharing of some s, then y = s.

We next describe our broadcast protocol for t ≤ n/2. The idea is to have the sender ps share his input
xs by a degree-(t − 1) sharing using HD-Share with d = t − 1 and subsequently invoke Reconstruct
on the output of HD-Share. The intuition is the following: When ps is honest until the end of HD-Share,
then HD-Share outputs a (t − 1)-sharing of xs (Lemma 5: honest-dealer correctness); as t ≤ n/2 implies
d = t− 1 < n− t, Lemma 6 guarantees that Reconstruct will output xs. Hence, the only way the adversary
can change the output to some s′ 6= s is by corrupting ps during (or before) protocol HD-Share. As there
are at most t corrupted players, if the adversary wishes to corrupt ps then she can corrupt at most t − 1 of
the remaining players; as a (t − 1)-adversary gets no information on xs (Lemma 5: privacy), this decision,
i.e., whether or not to corrupt ps, has to be taken independently of xs, which is a behavior that can be easily
simulated.

9

As already mentioned, both HD-Share and Reconstruct use calls to FBC for broadcasting. In order to
replaceFBC byFUBC, we need to make sure that the precondition of Lemma 2 is satisfied (i.e., the adversary
“knows in advance” all broadcasted values). For protocol HD-Share this is guaranteed by Lemma 5. How-
ever, the values which are broadcasted in Reconstruct are not necessarily known to the adversary in advance.
We resolve this by a technical trick, namely we introduce a dummy step between HD-Share and Reconstruct
where every player sends to every other player his output from protocol HD-Share. Observe that this modifi-
cation might give an advantage to the adversary only when she has not corrupted ps by the end of HD-Share,
as otherwise she knows all the outputs. But in this case at the end of HD-Share the output is already fixed
to xs and even giving the adversary access to the full transcript does not allows her to change the output.
For completeness we include a description of our broadcast protocol and state its achieved security. Due to
space restrictions the formal security proof has been moved to the appendix.

Protocol Broadcast (ps, xs)
1. Invoke HD-Sharet−1(ps, xs); if ps is disqualified then every player outputs a default value, e.g., 0

and halts.
2. (dummy step) Every pi ∈ P sends his output from HD-Share to every pj ∈ P .
3. Invoke Reconstruct on the output of HD-Share.

Lemma 7. Protocol Broadcast perfectly t-securely realizes the functionality FBC in the {FUBC,FSIG}-
hybrid model, for t ≤ n/2.

Combining the above lemma with Lemma 4 we get the following.

Corollary 4. If t ≤ n/2 and a statistically (resp. computationally) secure signature scheme is available then
there exists a protocol which statistically (resp. computationally) t-securely realizes the functionality FBC.

To complete this section, we show that the condition t ≤ n/2 is necessary for adaptively secure syn-
chronous broadcast both for i.t. and for computational security. The idea of the proof is the following:
Because the adversary can corrupt half of the players in P \ {ps}, she can be the first to learn noticealbe
information on the dealers input, before the honest players in P \ {ps} jointly learn noticable information.
Depending on this information the adversary can corrupt the sender and, with overwhelming probability,
change the output to some other value. However this behaviour cannot be simulated. A detailed proof can
be found in the appendix.

Lemma 8. There exists no protocol which computationally t-securely realizes the functionality FBC for
t > n/2. The statement holds also for statistical security.

5 Conclusions
We considered the problem of securely realizing broadcast in the secure-channels model. In this model, it has
been shown that there exist protocols satisfying the property-based definition of broadcast and tolerating a
t-adversary, if and only if t < n/3 when perfect security is considered. For unconditional and computational
security, when a setup allowing digital signatures is given, the corresponding bound is t < n.

We showed that, when a rushing and adaptive adversary is considered, known broadcast protocols do
not realize the natural ideal functionality for broadcast in the secure-channels model. As a result, if one
replaces the broadcast invocations in any of the known muli-party protocols for the secure-channels model,
e.g., [BGW88, RB89, CDD+99], by one of the known broadcast protocols, the security of the resulting
protocol cannot be argued using the composition theorems.

We described protocols which securely realize the (natural) ideal functionality for broadcast for each
of the three security notions. For the case of perfect security, we showed that the tight bound matches the
corresponding bound for the property-based definition, i.e., t < n/3. However, for the cases of statistical
and computational security (with setup assumptions) the necessary and sufficient bound is t ≤ n/2.

10

References
[BDDS92] A. Bar-Noy, D. Dolev, C. Dwork, and H. R. Strong. Shifting gears: Changing algorithms on the fly to expedite

Byzantine agreement. Information and Computation, 97(2):205–233, 1992.
[BGP89] P. Berman, J. Garray, and J. Perry. Towards optimal distributed consensus. In FOCS ’89, pp. 410–415, 1989. Full

version in Computer Science Research, 1992.
[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant dis-

tributed computation. In STOC ’88, pp. 1–10, 1988.
[BPW91] B. Baum-Waidner, B. Pfitzmann, and M. Waidner. Unconditional Byzantine agreement with good majority. In

STAC ’91, volume 480 of LNCS, pp. 285–295, 1991.
[BPW03] M. Backes, B. Pfitzmann, and M. Waidner. A universally composable cryptographic library, 2003.
[Can00] R. Canetti. Security and composition of multiparty cryptographic protocols. Journal of Cryptology, 13(1):143–202,

2000.
[Can01] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In FOCS 2001, pp.

15–17, 2001.
[Can03] R. Canetti. Universally composable signatures, certification and authentication. Cryptology ePrint Archive, Report

2003/239, 2003. http://eprint.iacr.org/.
[CCD88] D. Chaum, C. Crépeau, and I. Damgård. Multiparty unconditionally secure protocols (extended abstract). In

STOC ’88, pp. 11–19, 1988.
[CDD+99] R. Cramer, I. Damgård, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations secure against

an adaptive adversary. In EUROCRYPT ’99, volume 1592 of Lecture Notes in Computer Science, pp. 311–326,
1999.

[CDD+01] R. Canetti, I. Damgaard, S. Dziembowski, Y. Ishai, and T. Malkin. On adaptive vs. non-adaptive security of multi-
party protocols. In Eurocrypt 2001, volume 2045 of Lecture Notes in Computer Science, pp. 262–279, 2001.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret sharing and achieving simultaneity in the
presence of faults. In FOCS ’85, pp. 383–395, Washington, DC, USA, 1985.

[CR87] B. Chor and M. Rabin. Achieving independence in logarithmic number of rounds. In PODC ’87, pp. 260–268,
New York, NY, USA, 1987. ACM.

[CW92] B. A. Coan and J. L. Welch. Modular construction of a Byzantine agreement protocol with optimal message bit
complexity. Information and Computation, 97(1):61–85, Mar. 1992.

[DM00] Y. Dodis and S. Micali. Parallel reducibility for information-theoretically secure computation. In Advances in
Cryptology — CRYPTO 2000, volume 1880 of LNCS, pp. 74–92, 2000.

[DS82] D. Dolev and H. Strong. Polynomial algorithms for multiple processor agreement. In STOC ’82, pp. 401–407,
1982. Full version in SIAM Journal on Computing, 12(4):656–666, 1983.

[Fit03] M. Fitzi. Generalized Communication and Security Models in Byzantine Agreement. PhD thesis, ETH Zurich,
Mar. 2003. Reprint as vol. 4 of ETH Series in Information Security and Cryptography, ISBN 3-89649-853-3,
Hartung-Gorre Verlag, Konstanz, 2003.

[FL82] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency. Information Processing
Letters, 14(4):183–186, 1982.

[FLM86] M. Fischer, N. Lynch, and M. Merritt. Easy impossibility proofs for distributed consensus problems. Distributed
Computing, 1:26–39, 1986.

[FM89] P. Feldman and S. Micali. An optimal probabilistic algorithm for synchronous Byzantine agreement. In Automata,
languages and programming, volume 372 of Lecture Notes in Computer Science, pp. 341–378, 1989.

[Gen95] R. Gennaro. Achieving independence efficiently and securely. In PODC ’95, pp. 130–136, New York, NY, USA,
1995. ACM.

[Gen00] R. Gennaro. A protocol to achieve independence in constant rounds. IEEE Trans. Parallel Distrib. Syst., 11(7):636–
647, 2000.

[GM98] J. A. Garay and Y. Moses. Fully polynomial Byzantine agreement for n > 3t processors in t + 1 rounds. SIAM
Journal on Computing, 27(1):247–290, Feb. 1998.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game — a completeness theorem for protocols
with honest majority. In STOC ’87, pp. 218–229, 1987.

[Hev06] A. Hevia. Universally composable simultaneous broadcast. In SCN 2006, pp. 18–33, 2006.
[HM05] A. Hevia and D. Micciancio. Simultaneous broadcast revisited. In PODC ’05, pp. 324–333, New York, NY, USA,

2005. ACM.
[KY84] A. Karlin and A. Yao. Manuscript, 1984.
[LLR02] Y. Lindell, A. Lysyanskaya, and T. Rabin. On the composition of authenticated Byzantine agreement. In STOC 2002,

pp. 514–523, 2002.
[LSP82] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals problem. ACM Transactions on Programming

Languages and Systems, 4(3):382–401, 1982.

11

[MW88] Y. Moses and O. Waarts. Coordinated traversal: (t + 1)-round Byzantine agreement in polynomial time. In
FOCS ’88, pp. 246–255, 1988.

[PSL80] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the presence of faults. Journal of the ACM,
27(2):228–234, Apr. 1980.

[PW92] B. Pfitzmann and M. Waidner. Unconditional Byzantine agreement for any number of faulty processors. In
STACS ’92, Lecture Notes in Computer Science, pp. 339–350, 1992.

[PW96] B. Pfitzmann and M. Waidner. Information-theoretic pseudosignatures and Byzantine agreement for t >= n/3.
Technical report, IBM Research, 1996.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In STOC ’89, pp.
73–85, 1989.

12

Appendix

Functionality FBC

1. Upon receiving an input (Broadcast, sid, xs) from ps record xs.
2. Upon receiving a message (ReceiveOutput, sid) from some party pi, if xs was recorded send

xs to pi.

Functionality FUBC

1. Upon receiving an input (Broadcast, sid, xs) from ps record xs.
2. Upon receiving a message (ReceiveOutput, sid) from some party pi, if xs was recorded send

xs to pi.
3. Upon receiving a message (Modify, sid, x′s) from the adversary if ps has been corrupted, and xs

was recorded and is not yet written on the tape of some uncorrupted player, then change the recorded
value to x′s.

Lemma 5. Protocol HD-Share invoked in the {FBC,FSIG}-hybrid model has the following properties. Pri-
vacy: The view of any d-adversary attacking the protocol can be perfectly simulated. (This property ensures
that no information about s leaks to a d-adversary); Honest-dealer correctness: When the dealer is honest
until the end of HD-Share then the output is a d-sharing of s. Furthermore, in all calls to FBC, the adversary
“knows in advance” the value to be broadcasted.

Proof. (sketch) The privacy of HD-Share can be argued along the lines of [CDD+99]. Nevertheless we give
a sketch of the simulator. Simulating the signatures is of no issue as the functionality FSIG allows S to
choose the actual signature. For the remaining values we consider two cases: (1) the adversary A does not
corrupt pD, and (2)A corrupts pD. In Case 1, the shares of the corrupted players are simulated by S chosing
uniformly random and independent values (if pi and pj are both corrupted then S makes sure that s(i)

i,j = s(j)

i,j

and s(i)

j,i = s(j)

j,i). The acusations and the answers can be easily simulated given the (simulated) view and the
stategy of A. In Case 2, as soon as A requests to corrupt pD, S learns the input xD. It is straight-forward to
see that in that case S can simulate all the remaining values in the adverary’s view (in fact, because no other
player has input, S can simulate the full transcript including even the views of honest players). The honest-
dealer correctness property is proved as follows: When the dealer is honest, then only values which lie on
the actual polynomial f(·, ·) appear in the output of honest players. Moreover, every honest pi holds all the
signatures he should hold, as otherwise pi would have complained in Step 5 and exposed the inconsistency.
Therefore, the output will be a d-sharing of the dealers value. ut

Lemma 6. Protocol Reconstruct invoked to the {FBC,FSIG}-hybrid model outputs (the same) y ∈ F to-
wards every player. Furthermore, if d < n− t (where t is the number of corrupted players) and the input is
a d-consistent sharing of some s, then y = s.

Proof. (sketch) As the output is decided based on values which are announce by FBC, all players output the
same value y. Furthermore, when d < n−t then there are at least t+1 honest players. When additionally the
input is a d-consistent sharing then the values which the honest players have signed uniquely define all the
share-polynomials gi(·). As FSIG never verifies as valid a signature of a value which was not signed by the
corresponding player, the adversary cannot announce a polynomial other that gi(·) for any pi ∈ P . Hence,
every corrupted pi either announces the correct value or is disqualified. However, the honest players always

13

announce the correct values, hence the correct polynomials are interpolated. Because there are at least d + 1
honest players there will always be at least d+1 values to interpolate the correct g′(·) and recover the shared
value. ut

Lemma 7. Protocol Broadcast perfectly t-securely realizes the functionality FBC in the {FUBC,FSIG}-
hybrid model, for t ≤ n/2.

Proof. (sketch) By inspection of the protocol on can verify that the preconditions of Lemma 2 are satisfied
for every value which is broadcasted. Therefore we can use FUBC for broadcasting values. The security
of our protocol is argued as follows: First observe that in any point of the protocol, if the simulator S
learns xs, then for any strategy of the adversary A, S can perfectly simulate all the remaining values in the
transcript, namely the values which should still appear in the view of A and the values appearing in the view
of honest players.8 We consider three cases: Case 1. The sender ps is correct until the end of (the simulated)
HD-Share: as soon as (the simulation of) HD-Share is complete, the simulator allows ps to give his input to
FBC, receives xs as his output and uses it to simulate the full transcript. Case 2. The adversary corrupts ps in
(the simulated) HD-Share (this implies that at most t−1 players in P \{ps} can be corrupted): the simulator
does not invoke FBC yet, but learns xs from the adversary; this way S can simulate the full transcript; denote
by y the output of some (simulated) honest player; S instructs ps to send y to the FBC in the ideal evaluation.
Case 3. The adversary corrupts t of the players in P \ {ps} during (the simulated) HD-Share: For as long
as at most t − 1 players are corrupted, Lemma 5 ensures that the simulator can perfectly simulate without
knowledge of xs. At the point when the adversary requests to corrupt the t-th player, the simulator knows
that the output of Broadcast will be xs (since A can no loger corrupt ps); S allows ps to give his input to
FBC, and, as in Case 1, S receives xs and can now simulate the full transcript. ut

Lemma 8. There exists no protocol which computationally t-securely realizes the functionality FBC for
t > n/2. The statement holds also for statistical security.

Proof. To arrive at a contradiction, assume that there exists a computationally (resp. statistically) t-secure
SFE protocol Π . Wlog, assume that ps uses Π to broadcast a uniformly random xs. For every round i,
protocol Π implicitly assigns to every set P ′ ⊆ P a probability PrP ′,xs,Π,i, which is the probability of
the best efficient adversary corrupting P ′ to output xs based only on her view on Π up to round i. For all
P ′ ⊆ P \ {ps} this probability is negligible if i is the first round of Π and overwhelming if i is the last
round of Π . As the total number of rounds in Π is polynomial, for each P ′ ⊆ P \ {ps} there exists a round
iP ′ where this probability from negligible becomes noticeable, i.e., not negligible. The adversary corrupts
the set A ⊆ P \ {ps} with |A| = t − 1 such that iA = min{iP ′ | P ′ ⊆ P ∧ |P ′| ≤ t − 1}. In round iA,
the adversary gets the values which are sent to corrupted players and runs the best (efficient) protocol for
the players in A to compute xs; denote be x′ the ouput of this protocol (by our assumption, x′ = xs with
noticeable probability). Let F1/2 denote the set of first |F|/2 (in any ordering) elements in F. If x ∈ F1/2 then
the adversary acts as a passive adversary (i.e., all corrupted players are instructed to correctly execute their
protocol). Otherwise, i.e., if x 6∈ F \ F1/2, then the adversary actively corrupts ps and forces all the actively
corrupted players to crash before sending any message in round i; as |P \ A| ≤ t − 1, with overwhelming
probability the output of the honest players will be in F \ {x}. With this strategy the adversary achieves that
when x 6∈ F \ F1/2 the output of Π is different than xs with noticeable probability. However the simulator
cannot simulate this behaviour as he has to decide whether or not to corrupt ps independent of ps’s input. ut

8 As in the case of Lemma 4 the FSIG functionality guarantees that the signatures can be simulated.

14

