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Abstract. Generic attacks against classical (balanced) Feistel schemes,
unbalanced Feistel schemes with contracting functions and unbalanced
Feistel schemes with expanding functions have been studied in [12], [4],
[15], [16]. In this paper we study schemes where we use alternatively con-
tracting random functions and expanding random functions. We name
these schemes “Alternating Unbalanced Feistel Schemes”. They allow
constructing pseudo-random permutations from kn bits to kn bits where
k ≥ 3. At each round, we use either a random function from n bits to
(k−1)n bits or a random function from (k−1)n bits to n bits. We describe
the best generic attacks we have found. We present“known plaintext at-
tacks” (KPA) and “non-adaptive chosen plaintext attacks” (CPA-1). Let
d be the number of rounds. We show that if d ≤ k, there are CPA-1 with

2 messages and KPA with m the number of messages about 2
(d−1)n

4 . For
d ≥ k + 1 we have to distinguish k even and k odd. For k even, we have

m = 2 in CPA-1 and m ' 2
kn
4 in KPA. When k is odd, we show that

there exist CPA-1 for d ≤ 2k − 1 and KPA for d ≤ 2k + 3 with less
than 2kn messages and computations. Beyond these values, we give KPA
against generators of permutations.

Key words: Unbalanced Feistel permutations, pseudo-random permutations,
generic attacks on encryption schemes, Luby-Rackoff theory, Block ciphers.

1 Introduction

A Feistel scheme from {0, 1}N to {0, 1}N with d rounds is a permutation built
from round functions. When these functions are randomly chosen, we get what we
call a “Random Feistel Scheme”.“Generic attacks” on these schemes are attacks
that are valid for most of the round functions f1, . . . , fd. The most classical
Feistel schemes are when N = 2n and the fi functions are from {0, 1}n to
{0, 1}n (i.e. from n bits to n bits). Such schemes are called “balanced” Feistel
schemes and they have been studied a lot since the famous paper of M.Luby



and C.Rackoff [8] (see [10] for an overview of these results). When the number
of rounds is less than 5, there are attacks with less than 2N (= 22n) operations:
for 5 rounds, an attack with O(2n) inputs is given in [12], [13] and there in an
attack with

√
2n inputs for 3 and 4 rounds in [1] and [11]. When the functions

are permutations, attacks for 5 rounds are given in [5] and [6].
When N = kn and the round functions are from (k − 1)n bits to n bits, we

obtain what we call an Unbalanced Feistel Scheme with Contracting Functions.
Some security results on these schemes can be found in [9], [10]. In [15], generic
attacks on these schemes are given: when the number of rounds d is less than
2k− 1, there are KPA and CPA-1 with m < 2kn (here m denotes the number of
messages) and complexity less than O(2kn).

When N = kn and the round functions are from n bits to (k − 1)n bits, we
obtain what is called an Unbalanced Feistel Scheme with Expanding Functions.
These schemes and their attacks are investigated in [4], [16] and [17]. When
d ≤ 3k − 1, there exist generic attacks with a complexity and a number of
messages less than 2kn [16].

In [2], R.J. Anderson and E. Biham introduced block ciphers that use alterna-
tively expanding and contracting functions: BEAR and LION. In these schemes,
the input is divided into two parts of different lengths. Following similar ideas,
we introduce here another family of schemes which alternate contracting and ex-
panding functions. Namely the large half of the message is a multiple of the small
half of the message and we rotate the register. We define them as “Alternating
Unbalanced Feistel Schemes” (a precise definition will be given in Section 2) and
we suppose k ≥ 3. The paper is organized as follows. In section 2 and 3, we
give the notation, the definitions and we present an overview of the attacks. In
Section 4, we study the case d ≤ k: we show that there exists CPA-1 with m = 2
and if d is odd, we have KPA for d and d+1 rounds with m ' 2

(d−1)n
4 . In Section

5, we study the case when k is even and d > k: we give CPA-1 with m = 2 and
KPA with m ' 2

kn
4 for any round. In Section 6, we show that when k is odd,

k ≥ 5, there exists CPA-1 with k < d ≤ 2k − 1 and KPA with k < d ≤ 2k + 3,
such that m < 2kn and with complexity O(m) < 2kn. The results for k ≥ 5 are
summarized in Section 7. Attacks against permutations generators are studied
in Appendix A. The generic attacks for k = 3 are explained in Appendix B.

2 Notation

Our notation is very similar to [15] and [16]. We describe now one round of
an unbalanced Feistel scheme with expanding functions and one round of an
unbalanced Feistel scheme with contracting functions.

For an unbalanced Feistel scheme with expanding functions, the input is
[I1, I2, . . . , Ik] and g = (g1, g2, . . . , gk−1) is a function from n bits to (k − 1)n
bits. The output is given by [I2 ⊕ g1(I1), I3 ⊕ g2(I1), . . . , Ik ⊕ gk−1(I1), I1].

When we have an unbalanced Feistel Scheme with contracting functions and
the input is [I1, I2, . . . , Ik], we use a function f from (k − 1)n bits to n bits.
Then, the output is given by [I2, I3, . . . , Ik, I1 ⊕ f(I2, I3, . . . , Ik)].



We now describe an alternating unbalanced Feistel scheme (or shortly an
alternating scheme) for k ≥ 3 and d rounds. We will study the case where we
begin with an expanding round (the case where we begin with a contracting
round is similar; we will only mention the results). Such schemes are denoted by
Adk. We say that they produce a Adk permutation. The input is [I1, I2, . . . , Ik].
After one expanding round, we have used a function g1 = (g1

1 , . . . , g
k−1
1 ), we

get the output [Y 1, Y 2, . . . , Y k−1, I1] where Y i = Ii+1 ⊕ gi1(I1) for 1 ≤ i ≤
k − 1. Then we apply a contracting round with a function f2 and the output
is [Y 2, Y 3, . . . , Y k−1, I1, X2] where X2 = Y 1 ⊕ f2(Y 2, . . . , Y k−1, I1). Figure 1
shows the first two rounds of an alternating scheme when we begin with an
expanding round.
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Fig. 1. First two rounds of an alternating scheme

More generally, for p ≥ 1, we denote by Y p(k−1)+i, 1 ≤ i ≤ k−1, the internal
variables we obtain on the first k − 1 coordinates of the output after 2p + 1
rounds (this last round is an expanding round). Notice that after 2p+ 1 rounds,
the last coordinate of the output is Y (p−1)(k−1)+2 (i.e. the second coordinate of
the output after 2p− 1 rounds). Similarly, X2p denotes the internal variable we
get on the last coordinate after 2p rounds (here this last round is a contracting
round). This means that after 2p+ 1 rounds, we can write:




Si = Y p(k−1)+i = Y (p−1)(k−1)+i−k+2 ⊕ gi2p+1(Y (p−1)(k−1)+2), i ≤ k − 3
Sk−2 = Y p(k−1)+k−2 = Y (p−2)(k−1)+2 ⊕ gk−2

2p+1(Y (p−1)(k−1)+2)
Sk−1 = Y p(k−1)+k−1 = X2p ⊕ gk−1

2p+1(Y (p−1)(k−1)+2)
Sk = Y (p−1)(k−1)+2

where X2p = Y (p−1)(k−1)+1 ⊕ f2p(Y (p−1)(k−1)+2, . . . , Y (p−1)(k−1)+k−1,
Y (p−2)(k−1)+2). After 2p+ 2 rounds, the output is [Y p(k−1)+2, . . . , Y p(k−1)+k−1,
Y (p−1)(k−1)+2, X2p+2].

Let m denotes the number of messages. For 1 ≤ i ≤ m and 1 ≤ t ≤ k, Iti
denotes the coordinate of rank t of the input of the message number i. We use
the same notation on the output [S1

i , . . . , S
k
i ] and on the internal variables.

KPA will mean “known plaintext attacks” and CPA-1 “non-adaptive chosen
plaintext attacks”.

Remarks:
1.We will not introduce full adaptive attacks or chosen plaintext and chosen
ciphertext attacks since we have not found anything significantly better than
CPA-1 and KPA on Adk.
2.We consider k ≥ 3, since for k = 2, such schemes are not interesting: the I2

part of the input still remains I2.

3 Overview of the Attacks

We present attacks that allow us to distinguish a Adk permutation from a random
permutation. Depending on the number of rounds, it is possible to find some rela-
tions between the input and output variables. These relations hold conditionally
to equalities of some internal variables due to the structure of the Feistel scheme.
Our attacks consist in using m plaintext/ciphertexts pairs and in counting the
number N of couples of these pairs that satisfy the relations between the input
and output variables. We then compare NAd

k
, the number of such couples we

obtain with an alternating scheme, with Nperm, the corresponding number for a
random permutation. The attack is successful, i.e. we are able to distinguish a Adk
permutation from a random permutation if the difference |E(NAd

k
)−E(Nperm)|

is much larger than both standard deviations σperm and σAd
k
, where E denotes

the expectancy function. In order to compute these values, we need to take into
account the fact that the structures obtained from the m plaintext/ciphertext
t-uples are not independent. However their mutual dependence is very small. To
compute σperm and σAd

k
, we will use this well-known formula (see [3], p.97), that

we will call the “Covariance Formula”: if x1, . . . xn are random variables, then
V (
∑n
i=1 xi) =

∑n
i=1 V (xi) + 2

∑n−1
i=1

∑n
j=i+1

[
E(xi, xj)− E(xi)E(xj)

]
.

4 Generic Attacks on Ad
k with d ≤ k

In this section, we suppose that d ≤ k and we describe CPA-1 and KPA. If we
have m messages, the input of message number i is denoted by [I1

i , I
2
i , . . . , I

k
i ].



The output produced by applying either a random permutation or a Adk permu-
tation is denoted by [S1

i , S
2
i , . . . , S

k
i ]. We always start with an expanding round.

We will perform our attacks on Sk after an odd number of rounds. Then since
we apply a contracting round, the same attacks will be valid on Sk−1 for the
next round. After one round, we have Sk = I1 and after 2 rounds, Sk−1 = I1.
This gives an attack with one message. We just check if Sk = I1 (or and after 2
rounds, Sk−1 = I1). For a random permutation, this happens with probability
1
2n and with an alternating scheme the probability is 1. In order to give the next
attacks, we now state the basic property that we need.

The basic Property:
After 2p − 1 rounds and 2p ≤ k − 2, the second coordinate of the output is
Y (p−1)(k−1)+2 = I2p+1⊕G2p−1(I1, I3, . . . , I2p−1) where G2p−1 is a function that
depends only on I1, I3, . . . , I2p−1.

Proof of the basic Property
The proof proceeds by induction in p. It is easy to see that for p = 1, we have
Y 2 = I3 ⊕ g2

1(I1). Also for p = 2, we get Y (2−1)(k−1)+2 = Y k+1 = I5 ⊕ g4
1(I1)⊕

g2
3(Y 2) = I5 ⊕G3(I1, I3).

More generally, it is easy to check that after 2p− 1 rounds, the second coor-
dinate of the output is given by Y (p−1)(k−1)+2 = I2p+1 ⊕ g2p

1 (I1)⊕ g2p−2
3 (Y 2)⊕

. . . ⊕ g2
2p−1(Y (p−2)(k−1)+2) and if we apply the induction hypothesis, we can

write: Y (p−1)(k−1)+2 = I2p+1 ⊕G2p−1(I1, I3, . . . , I2p−1) as claimed.

The Attacks:
We will use the basic property to give a CPA-1 on A2p+1

k with 2 messages.
Here we have: Sk = Y (p−1)(k−1)+2. We choose these messages such that I1

1 = I1
2 ,

I3
1 = I3

2 , I5
1 = I5

2 , . . ., I2p−1
1 = I2p−1

2 and we test if Sk1 ⊕I
2p+1
1 = Sk2 ⊕I

2p+1
2 . This

property happens with probability 1 when we are testing a A2p+1
k permutation

and with probability about 1
2n with a random permutation. This gives a CPA-

1 with only 2 messages. As usual, we can transform this CPA-1 in a KPA.
When m ' 2

pn
2 , from the birthday paradox, we will get with a good probability

i < j satisfying I1
i = I1

j , I3
i = I3

j , I5
i = I5

j , . . ., I2p−1
i = I2p−1

j and we test
again if Ski ⊕ I

2p+1
i = Skj ⊕ I

2p+1
j . We obtain a KPA with O(2

pn
2 ) messages and

complexity. After 2p+2 rounds, we can perform the same CPA-1 and KPA with
Sk−1 instead of Sk since we apply a contracting round. We perform these attacks
until we reach round k. Notice that the attack on Akk uses Sk−1 if k is even and
Sk if k is odd. Also m = 2 for CPA-1 and m ' 2

(k−1)n
4 for KPA.

Here the internal variable Y (p−1)(k−1)+2 is the Xor of several terms whose first
one is I2p+1. This leads us to introduce the following definition in order to
generalize this fact.

Definition 1 Let Ii any coordinate of the input. The “chain generated by Ii”
is the sequence of internal variables whose expression begins with Ii.



5 Generic Attacks on Ad
k when k = 2l is even and

d ≥ k + 1

After k+1 rounds, we have Sk = Y (l−1)(k−1)+2 = I1⊕gk−2
3 (Y 2)⊕gk−4

5 (Y k+1)⊕
. . . ⊕ g2

k−1(Y (l−2)(k−1)+2) and if we apply the basic property, we know that
Y (l−2)(k−1)+2 = Ik−1 ⊕ gk−1

1 (I1) ⊕ . . . ⊕ g2
k−3(Y (l−3)(k−1)+2). This shows that

Y (l−1)(k−1)+2 depends only of I1, I3, . . . , Ik−1. Again, we have a CPA-1 with
2 messages. We just choose 2 messages such that I1

1 = I1
2 , I3

1 = I3
2 , I5

1 = I5
2 ,

. . ., Ik−1
1 = Ik−1

2 and we test if Sk1 = Sk2 . With an alternating scheme, this
will happen with probability 1 and with a random permutation with probability
about 1

2n . Then as usual, we obtain a KPA in O(2
ln
2 ) = O(2

kn
4 ) messages and

complexity. After k + 2 rounds, the same attacks work on Sk−1.
After k+3 rounds, we have: Sk = Y l(k−1)+2 = Y 2⊕gk−2

5 (Y k+1)⊕gk−4
7 (Y 2k)⊕

. . .⊕g2
k−1(Y (l−1)(k−1)+2). Again Y l(k−1)+2 is a function of I1, I3, . . . Ik−1 and we

have a CPA-1 with 2 messages and a KPA with O(2
kn
4 ) messages and complexity.

More generally, by induction it is possible to show that after k + 2p − 1
rounds (1 ≤ p ≤ l − 1), the second coordinate of the output is given by
Y (l+p−1)(k−1)+2 = Y (p−1)(k−1)+2 ⊕ gk−2

2p+3(Y p(k−1)+2) ⊕ gk−4
2p+5(Y (p+1)(k−1)+2) ⊕

. . . ⊕ g2
k+2p−1(Y (l+p−2)(k−1)+2) and Y (p−1)(k−1)+2 comes from the chain gener-

ated by I2p+1. This shows that Y (l+p−1)(k−1)+2 depends only on I1, I3, . . . , Ik−1.
Now, after k+2p+1 rounds, the value becomes the last coordinate of the output
and we can perform similar attacks as previously. This phenomena is k-periodic.
This shows that when k is even and d ≥ k+1, we have a CPA-1 with only 2 mes-
sages and a KPA with O(2

kn
4 ) messages and complexity whatever the number

of rounds is.
Remark: when we begin with a contracting round instead of an expanding

round, we attack Sk for even rounds (the same attacks work on Sk−1 for odd
rounds). In the computations, the variables I2, I4, . . ., Ik appear instead of the
variables I1, I3, . . ., Ik−1. If 2d < k, we have a generic CPA-1 attack with m = 2
messages and a generic KPA attack with m ' 2

d−1
2 n. If 2d ≥ k, we still have a

CPA-1 with two messages and a KPA attack with m ' 2
k
4n random queries and

O(m) computations.

6 Generic Attacks when k = 2l + 1 is odd, k ≥ 5 and
d ≥ k + 1

We are going to study the case where k = 2l + 1, k ≥ 5 and d ≥ k + 1 (the
case k = 3 is given in Appendix B: it is possible to attack 11 rounds in CPA-1
and 12 rounds in KPA). First we will give the best CPA-1 that we have found.
Then we will investigate the KPA. Here the best KPA do not always follow from
the CPA-1. Remind that we begin with an expanding round. In order to get
the best attacks, we will use two strategies. With the first strategy, we perform
the attacks on Sk after an odd number of rounds (this gives the same attack on
Sk−1 after the following round since we apply a contracting round). We already



performed these attacks when d ≤ k. But when k is odd, after k + 3 rounds,
there are too many new internal variables on the last coordinate of the output
and this produces too many conditions. For this reason, we have to choose the
second strategy: we will use the chain generated by one well chosen coordinate of
the input. Moreover, when a chain arrives on the first coordinate of the output
after an expanding round, usually we cannot use it anymore because we apply a
contracting round to reach the coordinate of rank k and this again produces too
many internal variables. Thus we use another chain. For the CPA-1, we will use
couples of plaintext/ciphertext pairs and set conditions on some coordinates of
the input variables. Then we will test equalities between the input and output
variables. With an alternating scheme, these equalities appear at random or due
to conditions on the internal variables Y (p−1)(k−1)+i. For a random permutation,
they appear only at random. As we said in the Section 3, this will allow us to
distinguish a Adk permutation from a random permutation. For KPA, we will
impose equalities between the coordinates of the input variables and also between
the input and output variables.

6.1 CPA-1

We have seen in Section 4 that after k rounds, the CPA-1 is on Sk. Thus, the same
attack works on Sk−1 after k+ 1 rounds since we apply a contracting round and
Sk−1 = Y (l−1)(k−1)+2 = Ik ⊕ gk−1

1 (I1)⊕ gk−3
3 (Y 2)⊕ . . .⊕ g2

k−2(Y (l−2)(k−1)+2).
Consequently, with only 2 messages, we can distinguish a Ak+1

k permutation
from a random permutation.

Attacks on Ak+2
k , Ak+3

k

After k + 2 rounds, we have:

Sk = I2 ⊕ g1
1(I1)⊕ f2(Y 2, Y 3, . . . , Y k−1, I1)⊕ gk−1

3 (Y 2)⊕ gk−3
5 (Y k+1)⊕ . . .

⊕g2
k(Y (l−1)(k−1)+2)

and we have: ∀t, 2 ≤ t ≤ k − 1, Y t = It+1 ⊕ gt1(I1). This gives a CPA-1 with 2
messages. We choose our messages such that ∀t, 1 ≤ t ≤ k, t 6= 2, It1 = It2 and
we check if Sk1 ⊕ I2

1 = Sk2 ⊕ I2
2 . With an alternating scheme, this will happen

with probability 1 and with a random permutation, the probability is about 1
2n .

The same attacks works on Sk−1 instead of Sk after k+ 3 rounds since we apply
a contracting round.

Attacks on Ak+4
k , Ak+5

k

We concentrate the attack on Sk−2, i.e. we follow the chain generated by I2

since the first strategy is no more interesting:

Sk−2 = I2 ⊕ g1
1(I1)⊕ f2(Y 2, Y 3, . . . , Y k−1, I1)⊕ gk−1

3 (Y 2)⊕ gk−3
5 (Y k+1)⊕

. . .⊕ g2
k(Y (l−1)(k−1)+2)⊕ gk−2

k+3(Y (l+1)(k−1)+2)

and Sk = Y (l+1)(k−1)+2. We choose our m messages such that: ∀i, 1 ≤ i ≤
m, ∀t, 1 ≤ t ≤ k, t 6= 2, Iti = 0. We wait for the collision i < j, such



that Ski = Skj and then we test if Sk−2
i ⊕ I2

i = Sk−2
j ⊕ I2

j . From the birthday
paradox, when m ' 2

n
2 such a collision appears with a good probability. With

an alternating scheme, the probability that Sk−2
i ⊕ I2

i = Sk−2
j ⊕ I2

j is 1 and
again with a random permutation, the same probability is about 1

2n . Notice that
here we can have at most 2n different messages. After k + 5 rounds, the same
attack can be performed on Sk−3. This gives an attack with O(2

n
2 ) messages

and computations.
Attacks on Ak+6

k , Ak+7
k

Here

Sk−4 = I2 ⊕ g1
1(I1)⊕ f2(Y 2, Y 3, . . . , Y k−1, I1)⊕ gk−1

3 (Y 2)⊕ gk−3
5 (Y k+1)⊕ . . .

⊕g2
k(Y (l−1)(k−1)+2)⊕ gk−2

k+3(Y (l+1)(k−1)+2)⊕ gk−4
k+5(Y (l+2)(k−1)+2)

and Sk = Y (l+2)(k−1)+2. We choose our m messages such that: ∀i, 1 ≤ i ≤
m, ∀t, 1 ≤ t ≤ k, t 6= 2, Iti = 0. Then we count the number of (i, j), i < j
such that Ski = Skj , and Sk−4

i ⊕ I2
i = Sk−4

j ⊕ I2
j (6.1). This number N is about

m(m−1)
2·22n for a random permutation. With a Ak+6

d permutation, we have about two
times more solution since Y (l+1)(k−1)+2

i = Y
(l+1)(k−1)+2
j and Y

(l+2)(k−1)+2
i =

Y
(l+2)(k−1)+2
j imply (6.1). Thus when N is not 0, i.e. when m ' 2n, the attack

succeeds. We have the same attack on Sk−5 instead of Sk−4 after k + 7 rounds.
Notice that here we have reached the maximal number of possible messages. We
will choose another chain.

Attacks on Ak+2p
k , Ak+2p+1

k , 8 ≤ 2p < k − 1 and A2k−1
k .

We will follow the chain generated by Ik which gives the best results and
concentrate the attack on Sk−2p. We have:

Sk−2p = Ik ⊕ gk−1
1 (I1)⊕ . . .⊕ g2

k−2(Y (l−2)(k−1)+2)⊕ gk−2
k+2(Y l(k−1)+2)⊕

gk−4
k+4(Y (l+1)(k−1)+2)⊕ . . . ⊕ gk−2p

k+2p(Y (l+p−1)(k−1)+2)

where Sk = Y (l+p−1)(k−1)+2. We choose m messages such that ∀i, 1 ≤ i ≤
m, ∀t, 0 ≤ t ≤ l − 1, I2t+1

i = 0. This implies that m ≤ 2(l+1)n. We then count
the number of (i, j), i < i such that: Ski = Skj , and Sk−2p

i ⊕Iki = Sk−2p
j ⊕Ikj (6.2).

With a random permutation, we have: Nperm = m(m−1)
2·22n + O( m2n ). We explain

this kind of computation in Appendix C. It is shown that the standard deviation
is about the square root of the mean value. With an alternating scheme, (6.2)
is also implied by ∀s, l ≤ s ≤ l + p − 1,∀i, ∀j, Y s(k−1)+2

i = Y
s(k−1)+2
j . Then

NAk+2p
k
' m(m−1)

2·22n +m(m−1)
2·2pn . We explain with an example in Appendix D, how to

compute the mean value and the standard deviation which is in O( m2n ). So we can
distinguish a Ak+2p

k permutation from a random permutation when the difference
of the two mean values is greater than both standard deviations. This gives the
condition: m2

2pn ≥ m
2n , i.e. m ' 2(p−1)n. Again the same attack is valid on Sk−1

after k+2p+1 rounds since we apply a contracting round. Then we can perform
this kind of attacks until, using the chain generated by Ik, we reach round 2k−1



where we have: S1 = Ik⊕gk−1
1 (I1)⊕. . .⊕g2

k−2(Y (l−2)(k−1)+2)⊕gk−2
k+2(Y l(k−1)+2)⊕

. . .⊕g1
2k−1(Y (2l−1)(k−1)+2). This gives a CPA-1 with m ' 2(l−1)n. Then we apply

a contracting round and there is no more CPA-1 since this will produce too many
equalities between the new internal variables that appear (with all the possible
chains).

6.2 KPA

For k + 1 rounds, the best KPA comes from the CPA-1 on Sk−1. This gives a
KPA with m ' 2

(k−1)n
4 = 2

ln
2 . After k+2 rounds, we will use the chain generated

by Ik.
Attacks on Ak+2

k , Ak+3
k

After k + 2 rounds, we have:

Sk−2 = Ik ⊕ gk−1
1 (I1)⊕ . . .⊕ g2

k−2(Y (l−2)(k−1)+2)⊕ gk−2
k+2(Y l(k−1)+2)

where Sk = Y l(k−1)+2. We wait for collisions i < j, such that ∀t, 0 ≤ t ≤
l − 1, I2t+1

i = I2t+1
j and Ski = Skj and we test if Sk−2

i ⊕ Iki = Sk−2
j ⊕ Ikj . With

an alternating scheme this will happen with probability 1 and with a random
permutation with probability 1

2n . From the birthday paradox, these collisions

happen with a good probability when m ' 2
(l+1)n

2 and O(2
(l+1)n

2 ) computations.
After k + 3 rounds, we apply the same attack on Sk−3.

Attacks on Ak+2p
k , Ak+2p+1

k , 2p < k − 1 and A2k−1
k

After k + 2p rounds with k − 2p > 1, we have

Sk−2p = Ik ⊕ gk−1
1 (I1)⊕ . . .⊕ g2

k−2(Y (l−2)(k−1)+2)⊕ gk−2
k+2(Y l(k−1)+2)⊕ . . .

⊕gk−2p
k+2p(Y (l+p−1)(k−1)+2)

where Sk = Y (l+p−1)(k−1)+2. We will count the number of (i, j), i < j such that

∀t, 0 ≤ t ≤ l − 1, I2t+1
i = I2t+1

j , Ski = Skj and Sk−2p
i ⊕ Iki = Sk−2p

j ⊕ Ikj (6.3)

With a random permutation, we have: E(Nperm) ' m(m−1)
2·2(l+2)n +O( m

2
(l+2)n

2
). With

an alternating scheme, we get: E(NAk+2p
k

) ' m(m−1)
2·2(l+2)n + m(m−1)

2·2(l+p)n since (6.3) is also

implied by ∀t, 0 ≤ t ≤ l − 1, I2t+1
i = I2t+1

j , ∀s, l ≤ s ≤ l + p− 1, Y s(k−1)+2
i =

Y
s(k−1)+2
j . All the computations are similar to those performed in Appendices

C and D. We can distinguish when m2

2(l+p)n ≥ m

2
(l+2)n

2
i.e. m ≥ 2

(l+2p−2)n
2 . The

same attack works after k + 2p+ 1 rounds since we apply a contracting rounds.
After 2k − 1 rounds, we have:

S1 = Ik ⊕ gk−1
1 (I1)⊕ . . .⊕ g2

k−2(Y (l−2)(k−1)+2)

⊕gk−2
k+2(Y l(k−1)+2)⊕ . . .⊕ gk−2p

k+2p(Y (l+p−1)(k−1)+2)⊕ . . .⊕ g1
2k−1(Y (2l−1)(k−1)+2)



and we have a KPA with m ' 2
(3l−2)n

2 and O(2
(3l−2)n

2 ) computations.
Attacks on A2k

k , A2k+1
k

After 2k rounds, since we apply a contracting round, there are two many
new internal variables with the chain generated by Ik and this chain does not
give any more an interesting KPA. We are using now the chain generated by I2.
Then, after 2k rounds, we have:

S2 = I2 ⊕ g1
1(I1)⊕ f2(Y 2, Y 3, . . . , Y k−1, I1)⊕ . . .⊕ g2

k(Y (l−1)(k−1)+2)⊕

gk−2
k+4(Y (l+1)(k−1)+2)⊕ . . .⊕ g3

2k−1(Y (2l−1)(k−1)+2)

where Sk−1 = Y (2l−1)(k−1)+2 and ∀t, 2 ≤ t ≤ k − 1, Y t = It+1 ⊕ gt1(I1). We
will count the number of (i, j), i < j such that

∀t, 1 ≤ t ≤ k, t 6= 2, Iti = Itj , S
k−1
i = Sk−1

j and S2
i ⊕ I2

i = S2
j ⊕ I2

i (6.4)

With a random permutation, we have: E(Nperm) ' m(m−1)
2·2(k+1)n +O( m

2
(k+1)n

2
). With

an alternating scheme, (6.4) is also implied by

∀t, 1 ≤ t ≤ k, t 6= 2, Iti = Itj and ∀s, l + 1 ≤ s ≤ 2l − 1, Y s(k−1)+2
i = Y

s(k−1)+2
j

This gives about m2

2(k+l−2)n more solutions. We can distinguish if m2

2(k+l−2)n ≥
m

2
(k+1)n

2
, i.e. when m ' 2(2l−2)n.

After 2k+ 1 rounds, since we apply an expanding round, we introduce a new
internal variable Sk = Y (2l)(k−1)+2 and we obtain a KPA with m ' 2(2l−1)n.
Notice that this chain is now on the first coordinate of the output.

Attacks on A2k+2
k , A2k+3

k

After 2k+2 rounds, the chain generated by I2 is on the coordinate of rank k of
the output and we have applied a contracting round. Again, there are too many
new internal variables. We now use the chain generated by I4 and we perform the
attack on S2. Using similar computations, we get E(Nperm) ' m(m−1)

2·2(k)n +O( m

2
kn
2

).

With an alternating scheme, there are about m2

2(k+l−1)n more solutions. We can
distinguish if m2

2(k+l−1)n ≥ m

2
kn
2

, i.e. when m ' 2(2l− 1
2 )n.

After 2k+ 3 rounds, since we apply an expanding round, we introduce a new
internal variable Sk = Y (2l+1)(k−1)+2 and we obtain a KPA with m ' 2(2l+ 1

2 )n

and O(m) computations. Beyond 2k + 3 rounds, we will attack generators of
permutations and not a single permutation. This is done in Appendix A.

Remarks:

1. We can attack the chains beginning by I2 and I4 since the internal variables
which are taken as inputs for f2 and f4 do not depend on all the coordinates
of input variables. We have then more conditions on the input variables and
less conditions on the internal variables and the attacks succeed.

2. If we begin with a contracting round instead of an expanding round, the
computations and the attacks are quite similar, but we can attack only 2k−2
rounds in CPA-1 and 2k + 2 rounds in KPA as long as we use a single
permutation.



7 Summary of the Results for k odd, d ≤ 2k + 3 and
k ≥ 5

All the results for k odd, d ≤ 2k + 3 and k ≥ 5 are summarized in the following
table.

Table 1. Summary of the complexity of the best attacks on Ad
k against one permu-

tation, k = 2l + 1, k ≥ 5. After 2k + 3 rounds, we need to attack a generator of
permutations and not only a single permutation.

d KPA CPA-1 d KPA CPA-1

1, 2 1 1 k + 6, k + 7 2
(l+4)n

2 2n

3, 4 2
n
2 2 k + 2p, k + 2p + 1 2

(l+2p−2)n
2 2(p−1)n

...
...

...
...

...
...

2p + 1, 2p + 2 2
pn
2 2 2k − 1 2

(3l−2)n
2 2(l−1)n

...
...

... 2k 2(2l−2)n)

k, k + 1 2
ln
2 2 2k + 1 2(2l−1)n

k + 2, k + 3 2
(l+1)n

2 2 2k + 2 2(2l− 1
2 )n)

k + 4, k + 5 2
(l+2)n

2 2
n
2 2k + 3 2(2l+ 1

2 )n)

8 Conclusion

Classical Feistel schemes, unbalanced Feistel schemes with contracting functions,
and unbalanced Feistel schemes with expanding functions have been widely stud-
ied. In this paper, we focused on less known Feistel schemes, the alternating ones.
More particularly, we presented attacks against these schemes. We demonstrated
that they are completely unsecure when k is even: it is possible to attack any
round with 2 messages in CPA-1 and about 2

kn
4 messages in KPA. When k is

odd, we can attack 2k − 1 rounds in CPA-1 and 2k + 3 rounds in KPA with
less than 2kn messages and computations. For k = 3, it is possible to attack
more rounds than with expanding (8 rounds) or contracting (6 rounds) func-
tions. When k odd and k ≥ 5, these schemes for CPA-1, seem to have the same
level of security than unbalanced contracting schemes. However with alternating
schemes, we need less memory to store the internal functions than with only
contracting functions. An open question is the security of these schemes.
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A Attacks with more than 2kn computations

Until now we have studied Alternating Unbalanced Feistel schemes with ran-
dom functions. In practice, for example in designing block ciphers we need to
consider generators of pseudo-random permutations. In this section, we will de-
scribe attacks against a generator of permutations (and not only against a single
permutation randomly generated by a generator of permutations), i.e. we will
be able to study several permutations generated by the generator. This allows
more than 2kn computations.

A.1 Attack by the Signature

Using the following theorem, it is easy to see that an alternating permutation
has an even signature.

Theorem 1 Let Ψ be an alternating Feistel permutation from {0, 1}α+β to
{0, 1}α+β with round functions from {0, 1}β to {0, 1}α. Then if α ≥ 2 and β ≥ 1,
Ψ has an even signature.

The proof of this theorem follows from Theorem 1 of the extended version
of [16] (see [14]). Let f be a permutation from kn bits to kn bits. Then using
O(2kn) computations on the 2kn input/output values of f , we can compute the

signature of f . To achieve this we just compute all the cycles ci of f , f =
α∏
i=1

ci

and use the formula: signature(f) =
α∏
i=1

(−1)length(ci)+1. The consequence is that

it is possible to distinguish a generator of Adk from a generator of truly random
permutations from kn bits to kn bits after O(2kn) computations on O(2kn)
input/output values.

Remark: to compute the signature of a permutation g we need however to
know all the input/outputs of g (or all of them minus one, since the last one can
be found from the others if g is a permutation).

A.2 Attacks of Ad
k generators for k ≥ 5 and odd

After 2k + 4 rounds, we are going to attack generators of permutations. We
describe KPA. Let µ be the number of permutations that we will use. We will
concentrate the attack on S2, i.e. we use the chain generated by I6:
S2 = I6⊕g5

1(I1)⊕g3
3(Y 2)⊕g1

5(Y k+1)⊕f6(Y 2k, Y 2k+1, . . . , Y 2(k−1)+(k−1), Y k+1)
⊕gk−1

7 (Y 2k)⊕gk−3
9 (Y 3(k−1)+2)⊕. . .⊕g2

k+4(Y (l+1)(k−1)+2)⊕gk−2
k+8(Y (l+3)(k−1)+2)

⊕ . . .⊕ g3
2k+3(Y (2l+1)(k−1)+2) where Sk−1 = Y (2l+1)(k−1)+2.

It is possible to show that ∀u, 2 ≤ u ≤ k − 4, Y 2(k−1)+u depends on I1, I3, I5

and It, 7 ≤ t ≤ k. Moreover Y 2(k−1)+k−3, Y 2(k−1)+k−3, Y 2(k−1)+k−1 depend to
all the input coordinates. The attack proceeds as follow: we count the number
of (i, j), i < j such that I1

i = I1
j , I

3
i = I3

j , I
5
i = I5

j , ∀t, 7 ≤ t ≤ k, Iti =
Itj , Sk−1

i = Sk−1
j and S2

i ⊕ I6
i = S2

j ⊕ I6
i (A1). When we are testing a random



permutation, we have: Nperm ' µ m2

2·22ln +O(
√
µ m

2ln ). For Adk, we have that I1
i =

I1
j , I

3
i = I3

j , I
5
i = I5

j , ∀t, 7 ≤ t ≤ k, Iti = Itj and ∀s, l ≤ s ≤ 2l + 1, s 6=
l + 2, Y s(k−1)+2

i = Y
s(k−1)+2
j , ∀u, k − 3 ≤ u ≤ k − 1, Y 2(k−1)+u

i = Y
2(k−1)+u
j

imply (A1). We obtain: NAd
k
' µ m2

2·22ln + m2

2·2(3l+2)n . Thus we can distinguish

the two generators when m2

2(3l+2)n ≥
√
µ m

2ln , i.e. when µm2 ≥ 2(4l+4)n. When
m = 2kn = 2(2l+1)n, this gives µ = 22 and the complexity is λ = µ ·m = 2(2l+3)n.
After 2k + 5 rounds, the chain beginning with I6 is now on the first coordinate
of the output, and since we have applied an expanding round we have one more
internal variable Sk = Y (2l+2)(k−1)+2. A similar attack gives µ = 24 and the
complexity λ = µ ·m = 2(2l+5)n.

After 2k + 6 rounds, we cannot keep the attacks on the chain generated
by I6. We have a contracting round and the chain becomes the coordinate of
rank k of the output. Then it is easy to check that λ is multiplied by a factor
of 2(2l−1)n. The chain beginning with I8 which is S2 will give the best attack.
More generally, it is easy to see that for rounds 2k + 2p and 2k + 2p + 1, the
chain generated by I2p+2 gives the best attacks with λ = 2(2l+5p−7)n and λ =
2(2l+5p−5)n respectively. Here we have that the internal variables Y (p−1)(k−1)+u

that appear at round 2p satisfy: ∀u, 2 ≤ u ≤ 2l− 2p+ 3, Y (p−1)(k−1)+u depend
on I1, I3, I5, . . . , It, 2p + 1 ≤ t ≤ k. Moreover ∀u, 2l − 2p + 2 ≤ u ≤ k − 1,
Y (p−1)(k−1)+u, depend on all the coordinates of the input.

For rounds 3k − 3 and 3k − 2, we use the chain generated by Ik−1. Then
λ = 3(7l−12)n and λ = 3(7l−10)n. For rounds 3k − 1 and 3k, we use the chain
generated by I1 for example (here there are several possibilities) and we obtain:
λ = 2(7l−8)n and λ = 2(7l−6)n. Then from round 3k + 1 to round 4k − 1, the
chain generated by Ik gives the best attacks. For rounds 4k and 4k + 1, we use
the chain generated by I2 and finally for 4k+ 2 and 4k+ 3, we choose the chain
generated by I4. Then it is 2k-periodic and we can iterate the choices of the
chains. All the values of λ are multiplied by a factor of 2(8l−4)n for each period.

For k ≥ 5 and odd the results are given in table 2.

B Attacks on Ad
3

In this section, we explain briefly how to deal with the case k = 3. Here in fact,
we can attack more rounds than in the general case: 11 rounds in CPA-1 instead
of 2k − 1 = 5 rounds and 12 rounds in KPA instead of 2k + 3 = 9. This comes
from the fact that in an expanding round, we only have 2 internal variables.
Moreover, in all the attacks we studied, the CPA-1 can be transformed to KPA.
Sometimes there exists other KPA, but they do not give a better result.

The attacks are quite similar to those used for k ≥ 5. Up to round 8, we
perform the attacks alternatively on S3 and S2. For rounds 9, 10 and 12, we use
the chain generated by I2 and for round 11, we choose the chain generated by
I3. After 13 rounds, we attack generators of permutations and we always take
the chain generated by I2. Then the phenomena is 6-periodic. The results are
summarized in the table 3.



Table 2. Summary of the complexity of the best attacks on Ad
k against generators of

permutations, k = 2l + 1, k ≥ 5. After 2k + 4 rounds, it is 2k-periodic. If we suppose
that for d rounds with 2k + 4 ≤ d ≤ 4k + 3, the value is 2tn, then for d + p(2k), the
value is given by 2[t+p(8l−4)]n.

d KPA d KPA

2k + 4 2(2l+3)n 3k 2(7l−6)n

2k + 5 2(2l+5)n 3k + 1 2(7l−6)n

2k + 6 2(2l+8)n 3k + 2, 3k + 3 2(7l−5)n

2k + 7 2(2l+10)n
...

...

2k + 2p 2(2l+5p−7)n 3k + 2p, k + 2p + 1 2(7l−2p−7)n

2k + 2p + 1 2(2l+5p−5)n 4k − 1 2(9l−7)n

...
... 4k 2(10l−9)n)

3k − 3 2(7l−12)n 4k + 1 2(10l−7)n

3k − 2 2(7l−10)n 4k + 2 2(10l−6)n

3k − 1 2(7l−8)n 4k + 3 2(10l−4)n

Table 3. Summary of the complexity of the best attacks on Ad
3 against one permuta-

tion. After 12 rounds, we need to attack a generator of permutations and not only a
single permutation.

d KPA CPA-1 d KPA

1, 2 1 1 13 + 6p 2(3+4p)n

3, 4 2
n
2 2 14 + 6p 2(4+4p)n

5, 6 2n 2 15 + 6p 2(5+4p)n

7, 8 2
3n
2 2

n
2 16 + 6p 2(5+4p)n

9,10 22n 2n 17 + 6p 2(6+4p)n

11 2
5n
2 22n 18 + 6p 2(6+4p)n

12 2
5n
2

C Computation of the standard deviation for random
permutations

In this section, we will explain how to compute E(Nperm) and σ(Nperm) after
k+ 8 rounds, where k = 2l+ 1, in CPA-1. For any round, the computations are
similar and we obtain that the standard deviation is about the square root of
the mean value. The input is [I1, . . . , Ik] and the output is [S1, . . . , Sk]. In the
case of random permutations, we consider m messages such that ∀i, 1 ≤ i ≤
m, ∀t, 0 ≤ t ≤ l− 1, I2t+1

i = 0 and we suppose that k ≥ 9 and m ≤ 2(l+1)n. We
want to count the number of (i, j), i < j such that Ski = Skj and Sk−8

i ⊕ Iki =
Sk−8
j ⊕ Ikj (C.1). We introduce the following random variables:{

δi,j = 1 if Ski = Skj and Sk−8
i ⊕ Iki = Sk−8

j ⊕ Ikj
δi,j = 0 otherwise



Then Nperm =
∑
i<j δi,j and E(Nperm) =

∑
i<j E(δi,j). We have: E(δi,j) =

Prh∈Bkn

[
Ski = Skj and Sk−8

i ⊕ Iki = Sk−8
j ⊕ Ikj

]
where Bkn is the set of all

permutations from kn bits to kn bits. If Iki = Ikj , then E(δi,j) = 2(k−2)n−1
2kn−1

and if

Iki 6= Ikj , then E(δi,j) = 2(k−2)n

2kn−1
. Let α be the number of (i, j) such that Iki = Ikj .

If we choose α = m(m−1)
2·2n +O( m√

2n
), we obtain:

m(m−1)
2·22n

(
1 + 1

2kn + 1
22kn + O( 1

23kn )
)
≤ E(Nperm) ≤ m(m−1)

2·22n + O( m

2(k+ 1
2 )n

). Thus

E(Nperm) ' m(m−1)
2·22n . We now compute the standard deviation. V (δi,j) = E(δ2i,j)−

E(δi,j)2 = E(δi,j)− E(δi,j)2. When Iki = Ikj , we obtain:
V (δi,j) = 1

22n

(
1− 1

22n + 3
2kn − 2

2(k+2)n + 5
22kn

)
+O( 1

2(3k+2)n )+ 1
2kn − 2

2kn +O( 1
23kn ).

This gives: V (δi,j) ' 1
22n

(
1− 1

22n

)
. When Iki 6= Ikj , we have:

V (δi,j) = 1
22n

(
1− 1

22n + 1
2kn − 2

2(k+2)n + 1
22kn + 1

2(2k+2)n

)
+O( 1

2(3k+2)n ). and again
V (δi,j) ' 1

22n

(
1− 1

22n

)
. This implies that

∑
i<j V (δi,j) ' m(m−1)

2·22n

(
1− 1

22n

)
.

We now use the formula: V (Nperm) = V (
∑
i<j δi,j) =

∑
i<j V (δi,j) +∑

i<j,q<r,(i,j)6=(q,r)

[
E(δi,j δq,r)− E(δi,j)E(δq,r)

]
.

First, we consider the case where i, j, q, r are pairwise distinct. If Iki 6= Ikj
and Ikq 6= Ikr , we have E(δi,j)E(δq,r) = 1

24n

(
1+ 2

2kn + 3
22kn −O( 1

23kn )
)
. If Iki 6= Ikj

and Ikq = Ikr , then E(δi,j)E(δq,r) = 1
24n

(
1 − 1

2(k−2)n + 2
2kn − 2

2(2k−2)n + 3
22kn −

3
2(3k−2)n +O( 1

23kn )
)
. If Iki = Ikj and Ikq = Ikr , we obtain E(δi,j)E(δq,r) = 1

24n

(
1−

2
2(k−2)n + 2

2kn + 1
2(2k−4)n − 4

2(2k−2)n + 3
22kn + 2

2(3k−4)n − 6
2(3k−2)n + O( 1

23kn )
)
. In

order to compute E(δi,j δq,r) we have to separate the computations into four
cases. We describe the main one: Iki 6= Ikj , Ikq 6= Ikr and Iki ⊕ Ikj ⊕ Ikq ⊕ Ikr 6= 0.
For the other cases, the computations are similar. We denote by C the total
number of possibilities for the output. Then C = 2kn(2kn−1)(2kn−2)(2kn−3).
We have now to compute B the number of outputs [S1

i , . . . , S
k
i ], [S1

j , . . . , S
k
j ],

[S1
q , . . . , S

k
q ] and [S1

r , . . . , S
k
r ] that satisfy the above relations (C.1). We have 2kn

possibilities for [S1
i , . . . , S

k
i ]. When this output is fixed, then we have 2(k−2)n

possibilities for [S1
j , . . . , S

k
j ]. Then we have to fix the two other outputs. First, we

suppose that Skq 6= Ski . Here, there are (2n−1)2(k−1)n2(k−2)n = 2(2k−3)n(2n−1)
possibilities for [S1

q , . . . , S
k
q ] and [S1

r , . . . , S
k
r ]. Then we have to consider the case

where Skq = Ski . Here, there are five subcases. Cases 1, 2, 3, and 4 are Sk−8
q =

Sk−8
i ⊕ Ikq ⊕ Ikr , Sk−8

q = Sk−8
j ⊕ Ikq ⊕ Ikr , Sk−8

q = Sk−8
i or Sk−8

q = Sk−8
j and for

each of these cases, there are 2(k−2)n(2(k−2)n − 1) possibilities for [S1
q , . . . , S

k
q ],

[S1
r , . . . , S

k
r ]. The last case is when we have eliminated the previous cases and this

gives (2n − 4)2(k−2)n2(k−2)n possibilities for [S1
q , . . . , S

k
q ], [S1

r , . . . , S
k
r ]. Finally,

we obtain B = 2(4k−4)n
(
1− 4

2kn

)
and since E(δi,j δq,r) = B

C , we get:
E(δi,j δq,r) = 1

24n

(
1 + 2

2kn + 1
22kn +O( 1

23kn )
)

and E(δi,j δq,r)−E(δi,j)E(δq,r) =
1

24n

(
− 2

22kn +O( 1
23kn )

)
. The computations in the other cases are similar and we

obtain for the case where i, j, q, r are pairwise distinct a term in O( m4

24n·2(2k−2)n ).
Then we have to study the case where in {i, j, q, r} there are exactly 3 different
values. We obtain a term in O( m3

2(k+2)n ). Finally, we get V (Nperm) = m(m−1)
2·22n +



O(m
2

24n )+O( m4

24n·2(2k−2)n )+O( m3

2(k+2)n ). The first two terms correspond to the sum
of the variances of δi,j , the third term corresponds to the covariances of four
distinct indices i, j, q, r and the last term to the covariances of 4-tuples of indices
with one in common. For m ≥ 22n and m ≤ 2(l+1)n, we obtain V (Nperm) '
m(m−1)

2·22n and the standard deviation is about the square root of the mean value
as claimed.

D Computation of the standard deviation for Ak+8
k

We still suppose that k ≥ 9, k = 2l + 1 and we want to compute E(NAk+8
k

) and
σ(NAk+8

k
). The input is [I1, . . . , Ik] and the output is [S1, . . . , Sk]. We have m

messages such that ∀i, 1 ≤ i ≤ m, ∀t, 0 ≤ t ≤ l − 1, I2t+1
i = 0 (∗) and we

want to compute the number of (i, j), i < j satisfying: Ski = Skj and Sk−8
i ⊕

Iki = Sk−8
j ⊕ Ikj (D.1) where Sk−8 = Ik ⊕ gk−1

1 (I1) ⊕ gk−3
3 (Y 2) ⊕ . . . ⊕

g2
k−2(Y (l−2)(k−1)+2)⊕ gk−2

k+2(Y l(k−1)+2)⊕ gk−4
k+4(Y (l+1)(k−1)+2)⊕

gk−6
k+6(Y (l+2)(k−1)+2) ⊕ gk−8

k+8(Y (l+3)(k−1)+2) and Sk = Y (l+3)(k−1)+2. Since we

have condition (∗) on the inputs, (D.1) is equivalent to (D.2): Y (l+3)(k−1)+2
i =

Y
(l+3)(k−1)+2
j and gk−2

k+2(Y l(k−1)+2
i )⊕gk−4

k+4(Y (l+1)(k−1)+2
i )⊕gk−6

k+6(Y (l+2)(k−1)+2
i ) =

gk−2
k+2(Y l(k−1)+2

j )⊕gk−4
k+4(Y (l+1)(k−1)+2

j )⊕gk−6
k+6(Y (l+2)(k−1)+2

j ). There are two dif-
ferent possibilities:

1. ∀s, l ≤ s ≤ l + 3, Y s(k−1)+2
i = Y

s(k−1)+2
j .

2. Y (l+3)(k−1)+2
i = Y

(l+3)(k−1)+2
j , (Y l(k−1)+2

i , Y
(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) 6=

(Y l(k−1)+2
j , Y

(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
j ) and

gk−2
k+2(Y l(k−1)+2

i )⊕ gk−4
k+4(Y (l+1)(k−1)+2

i )⊕ gk−6
k+6(Y (l+2)(k−1)+2

i ) =

gk−2
k+2(Y l(k−1)+2

j )⊕ gk−4
k+4(Y (l+1)(k−1)+2

j )⊕ gk−6
k+6(Y (l+2)(k−1)+2

j ).

If we study Y l(k−1)+2, Y (l+1)(k−1)+2, Y (l+2)(k−1)+2, Y (l+3)(k−1)+2, we obtain
that these internal variables are uniformly distributed random variables. Thus
the probability to obtain Case 1 is 1

24n . For Case 2, the probability is given by
1
2n (1 − 1

23n ) 1
2n = 1

22n − 1
25n . If the δi,j are defined as in Appendix C, we ob-

tain: E(δi,j) = 1
22n + 1

24n − 1
25n . Since NAk+8

k
=
∑
i<j δi,j , we get: E(NAk+8

k
) =

m(m−1)
2

(
1

22n + 1
24n − 1

25n

)
. Now we want to compute the standard deviation:

V (δi,j) = E(δ2i,j)− E(δi,j)2 = E(δi,j)− E(δi,j)2

V (δi,j) = 1
22n − 2

25n − 2
26n + 2

27n + 1
28n − 2

29n + 1
210n

We will use again the covariance formula. Here we have:
E(δi,j)E(δq,r) = 1

24n + 2
26n − 2

27n + 1
28n − 2

29n + 1
210n and we now have to com-

pute E(δi,j δq,r). Again we first consider the case where i, j, q, r are pairwise
distinct. We have several cases. The first one is Y (l+3)(k−1)+2

i = Y
(l+3)(k−1)+2
j ,

Y
(l+3)(k−1)+2
q = Y

(l+3)(k−1)+2
r and

(Y l(k−1)+2
i , Y

(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) = (Y l(k−1)+2

j , Y
(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
j )



(Y l(k−1)+2
q , Y

(l+1)(k−1)+2
q , Y

(l+2)(k−1)+2
q ) = (Y l(k−1)+2

r , Y
(l+1)(k−1)+2
r , Y

(l+2)(k−1)+2
r )

The probability is 1
28n .

The second case is Y (l+3)(k−1)+2
i = Y

(l+3)(k−1)+2
j , Y (l+3)(k−1)+2

q = Y
(l+3)(k−1)+2
r

and
(Y l(k−1)+2
i , Y

(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) = (Y l(k−1)+2

j , Y
(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
j )

(Y l(k−1)+2
q , Y

(l+1)(k−1)+2
q , Y

(l+2)(k−1)+2
q ) 6= (Y l(k−1)+2

r , Y
(l+1)(k−1)+2
r , Y

(l+2)(k−1)+2
r )

and
gk−2
k+2(Y l(k−1)+2

q )⊕ gk−4
k+4(Y (l+1)(k−1)+2

q )⊕ gk−6
k+6(Y (l+2)(k−1)+2

q ) =

gk−2
k+2(Y l(k−1)+2

r ) ⊕ gk−4
k+4(Y (l+1)(k−1)+2

r ) ⊕ gk−6
k+6(Y (l+2)(k−1)+2

r ). and the similar
case when we exchange (i, j) and (q, r). The probability is given by 1

26n − 1
29n .

The third case is Y (l+3)(k−1)+2
i = Y

(l+3)(k−1)+2
j , Y (l+3)(k−1)+2

q = Y
(l+3)(k−1)+2
r

and
(Y l(k−1)+2
i , Y

(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) 6= (Y l(k−1)+2

j , Y
(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
j )

(Y l(k−1)+2
i , Y

(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) = (Y l(k−1)+2

q , Y
(l+1)(k−1)+2
q , Y

(l+2)(k−1)+2
q )

(Y l(k−1)+2
j , Y

(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
i ) = (Y l(k−1)+2

r , Y
(l+1)(k−1)+2
r , Y

(l+2)(k−1)+2
r )

and
gk−2
k+2(Y l(k−1)+2

i )⊕ gk−4
k+4(Y (l+1)(k−1)+2

i )⊕ gk−6
k+6(Y (l+2)(k−1)+2

i ) =

gk−2
k+2(Y l(k−1)+2

j )⊕ gk−4
k+4(Y (l+1)(k−1)+2

j )⊕ gk−6
k+6(Y (l+2)(k−1)+2

j )
and the similar case when we exchange (i, j) and (q, r). The probability is given
by 1

29n − 1
212n .

The last case is Y (l+3)(k−1)+2
i = Y

(l+3)(k−1)+2
j , Y (l+3)(k−1)+2

q = Y
(l+3)(k−1)+2
r

and
(Y l(k−1)+2
i , Y

(l+1)(k−1)+2
i , Y

(l+2)(k−1)+2
i ) 6= (Y l(k−1)+2

j , Y
(l+1)(k−1)+2
j , Y

(l+2)(k−1)+2
j )

(Y l(k−1)+2
q , Y

(l+1)(k−1)+2
q , Y

(l+2)(k−1)+2
q ) 6= (Y l(k−1)+2

r , Y
(l+1)(k−1)+2
r , Y

(l+2)(k−1)+2
r )

and we have eliminated the previous cases and
gk−2
k+2(Y l(k−1)+2

i )⊕ gk−4
k+4(Y (l+1)(k−1)+2

i )⊕ gk−6
k+6(Y (l+2)(k−1)+2

i ) =

gk−2
k+2(Y l(k−1)+2

j )⊕ gk−4
k+4(Y (l+1)(k−1)+2

j )⊕ gk−6
k+6(Y (l+2)(k−1)+2

j ) gk−2
k+2(Y l(k−1)+2

q )⊕
gk−4
k+4(Y (l+1)(k−1)+2

q )⊕gk−6
k+6(Y (l+2)(k−1)+2

q ) = gk−2
k+2(Y l(k−1)+2

r )⊕gk−4
k+4(Y (l+1)(k−1)+2

r )⊕
gk−6
k+6(Y (l+2)(k−1)+2

r ). The probability is 1
24n− 2

27n + 1
210n + 2

213n . Finally in the case
where i, j, q, r are pairwise distinct we obtain E(δi,j δq,r)−E(δi,j)E(δq,r) = 2

29n−
2

210n − 2
212n + 2

213n . When we have only 3 different values in {i, j, q, r} we obtain
with similar computations: E(δi,j δq,r)−E(δi,j)E(δq,r) = 1

26n − 1
27n − 1

29n + 1
210n .

This gives: V (NAk+8
k

) = m(m−1)
2·22n

(
1− 1

23n − 2
24n + 2

25n − 1
26n + 2

27n − 1
210n

)
+

O(m
4

29n ) +O(m
3

26n ).

E Conclusion on Ak+8
k

The computations in Appendices C and D show that when m ' 23n, we have:
σ(Nperm) ' m

2n , σ(NAk+8
k

) ' m
2n and |E(Nperm) − E(NAk+8

k
)| ' m(m−1)

2·24n . This

shows that we can distinguish a Ak+8
k permutation from a random permutation

when m(m−1)
2·24n ≥ m

2n i.e. m ' 23n as wanted.


