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Abstract. A key exchange protocol allows a set of parties to agree upon a secret session key over a
public network. Two-party key exchange (2PKE) protocols have been rigorously analyzed under various
models considering different adversarial actions. However, the analysis of group key exchange (GKE)
protocols has not been as extensive as that of 2PKE protocols. Particularly, the security attribute of
key compromise impersonation (KCI) resilience has so far been ignored for the case of GKE protocols.
We first model the security of GKE protocols addressing KCI attacks by both outsider and insider
adversaries. We then show that a few existing protocols are not secure even against outsider KCI
attacks. The attacks on these protocols demonstrate the necessity of considering KCI resilience for
GKE protocols. Finally, we give a new proof of security for an existing GKE protocol under the revised
model assuming random oracles.
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1 Introduction

A group key exchange (GKE) protocol allows a group of parties to agree upon a secret common session key
over a public network. Although there had been GKE protocols earlier, Bresson et al. [10, 8, 9] were the first
to analyze the security of GKE protocols under formal security models. These models define authenticated
key exchange (AKE) security and mutual authentication as the desired notions of security against an outsider
adversary i.e. assuming that the adversary is not part of the group. The notion of AKE-security demands
that an outsider adversary should not learn the session key while the notion of mutual authentication requires
that parties who complete the protocol execution should output identical session keys and that each party
should be ensured of the identity of the other participating parties.

Katz and Shin [18] define insider security for GKE protocols by separating the requirements of mutual
authentication in the presence of insiders into agreement and security against insider impersonation attacks.
Their definition has been revisited by Bohli et al. [3] and Bresson and Manulis [11] under different corruption
models. Bohli et al. also define the notion of contributiveness which requires that a proper subset of insiders
should not predetermine the resulting session key. Bresson and Manulis strengthen this notion by considering
strong corruptions where the ephemeral session state of an instance may also be revealed in addition to the
long-term private key of the party.

All the models above (for both outsider and insider security) assume that a party will be fully under
the control of the adversary once the party’s long-term private key is compromised. These models however
consider forward secrecy to limit the damage done by compromise of long-term private key after session
completion. Another equally important security attribute related to compromise of the long-term private key
of parties is key compromise impersonation (KCI) resilience. Informally, an adversary is said to impersonate
a party B to another party A if B is honest and the protocol instance at A accepts the session with B as
one of the session peers but there exists no such partnered instance at B [18]. In a successful KCI attack, an
adversary with the knowledge of the long-term private key of a party A can impersonate B to A. Resilience
to KCI attacks is often seen as a desired security attribute for two-party key exchange (2PKE) [22, 21].
However, it has so far been ignored for the case of group key exchange.

We argue that KCI resilience for GKE protocols is at least as important as it is for 2PKE protocols. For
this purpose we illustrate two scenarios with different setup assumptions, where a KCI attack is a threat.



We first extend the peer-to-peer file sharing system scenario given for the two-party case by Ng [24, Section
4.2.2], to the group case. In these systems each user stores some data and allows access only to users with
whom it wants to share the data. This can be achieved by executing a GKE protocol with the peers who
have read access to the data and sending them the data encrypted using the established session key. Let A
be the party who has some sensitive data. The goal of an adversary A is to access the data at A which is to
be shared only with the users who have read access. Although the compromise of A’s long-term private key
helps A to impersonate A, A may not be able to access the data locally stored at A. However, if the GKE
protocol used is vulnerable to KCI attacks, A can impersonate a party who has read access and decrypt
the data using the session key. Note that in this scenario, the GKE protocol needs to have forward secrecy.
Otherwise, compromising A’s private key will enable the adversary to obtain the session key. On the other
hand, having forward secrecy alone is not sufficient as A will be able to spoof the presence of an honest party
if the protocol is not KCI resilient as discussed above.

The second one is a server-client scenario for the application given by Bresson et al. [7]. They propose a
GKE protocol which allows a cluster of mobile devices (acting as clients) to agree upon a session key with a
wireless gateway (acting as a server). The authors suggest that the established session key can be used along
with a suitable protocol to secure IEEE 802.11 wireless networks. If the long-term private key of the gateway
is compromised, an adversary can easily impersonate the gateway and allow any mobile device to access
the wireless network. However, impersonating the gateway may be recognized by observing the logs, erasing
which may require additional administrative rights depending on how the gateway is configured. On the
other hand, if the GKE protocol is vulnerable to KCI attacks, the adversary can impersonate a legitimate
mobile device and gain access to the wireless network without being detected. We indeed present a KCI
attack on the protocol of Bresson et al. [7].

Outsider KCI Resilience. We call a party corrupted if the long-term private key of the party is
compromised, while a protocol instance is called corrupted if the ephemeral session state of that instance is
revealed. In an outsider KCI attack scenario for GKE protocol, an adversary A is allowed to compromise
the long-term private keys of up to all parties except one. But, it is allowed neither to corrupt the protocol
instances at any of parties nor to participate in the protocol on behalf of the corrupted parties. A is an
outsider to the specific protocol execution in consideration as no session specific information is revealed.
A is considered successful in mounting a KCI attack if it can impersonate any uncorrupted party to an
uncorrupted instance at any of the corrupted parties. We consider the goal of A as an outsider is to break
the confidentiality of the session key established. Hence, we modify the existing definition of AKE-security
accordingly.

Insider KCI Resilience. A party is called an insider if the adversary corrupts the party and actively
participates in the protocol on behalf of that party. In an insider KCI attack scenario, the goal of an adversary
A is to impersonate an uncorrupted party B to an uncorrupted instance of a party A. Note that A is allowed
to compromise the long-term private key of A, while all the parties except A and B can be insiders. We
revise the existing definition of mutual authentication accordingly. It is easy to see that the revised definition
implies mutual authentication with KCI resilience in the presence of no insiders.

Boyd and González Nieto (BG) proposed a one-round GKE protocol and proved the protocol secure under
the AKE-security notion. Choo et al. [13] later presented unknown key share attacks on the BG protocol and
suggested an improvement. We show that the improved protocol is not outsider KCI resilient. We also show
that the tripartite key agreement protocol TAK-3 of Al-Riyami and Paterson [1] and the GKE protocol of
Bresson et al. [7] are not secure against outsider KCI attacks.

One way to modify the BG protocol to make it secure against KCI attacks is by applying the compiler
of Katz and Shin (KS) [18]. A KS-compiled protocol is shown to guarantee mutual authentication in the
presence of insiders. If one applies the KS-compiler to the improved BG protocol it is easy to show that the
resulting protocol will be both outsider and insider KCI resilient in the random oracle model. However the
resulting two-round protocol will not provide forward secrecy as the BG protocol itself does not have this
property. Hence, we show that the two-round protocol of Bohli et al. [3], which already has forward secrecy,
satisfies our new definitions. For the sake of completeness, we also show that this protocol is secure under
the notion of contributiveness proposed by Bresson and Manulis [11]. The contributions of this paper are:
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1. Modeling KCI attacks on GKE protocols by presenting new outsider and insider security notions
2. KCI attacks on the protocols of Boyd and González Nieto [6], Al-Riyami and Paterson [1] and Bresson

et al. [7]
3. A new proof of security for the protocol of Bohli et al. [3] in the random oracle model

Organization. In Section 2 we present new notions of AKE-security and mutual authentication considering
KCI attacks by outsiders and insiders respectively. Section 3 presents outsider KCI attacks on the improved
Boyd and González Nieto’s protocol, Al-Riyami and Paterson’s protocol and Bresson et al.’s protocol. In
Section 4, we show that the protocol of Bohli et al. [3] is insider secure i.e. that it satisfies the new notions
AKE-security and mutual authentication in addition to existing notion of contributiveness. We conclude our
paper in Section 5 with a comparison among existing GKE protocols.

2 Model

Let U = {U1, . . . , Un} be a set of n parties. The protocol may be run among any subset of these parties.
Each party is assumed to have a pair of long-term public and private keys, (PKU ,SKU ) generated during
an initialization phase prior to the protocol run. A GKE protocol π executed among n users is modeled as a
collection of n programs running at the n different parties in U . Each instance of π within a party is defined
as a session and each party may have multiple such sessions running concurrently.

Let πi
U be the i-th run of the protocol π at party U ∈ U . Each protocol instance at a party is identified

by a unique session ID. We assume that the session ID is derived during the run of the protocol. The session
ID of an instance πi

U is denoted by sidi
U . We assume that each party knows who the other participants are

for each protocol instance. The partner ID pidi
U of an instance πi

U , is a set of identities of the parties with
whom πi

U wishes to establish a common group key. Note that pidi
U includes the identity of U itself.

An instance πi
U enters an accepted state when it computes a session key sk i

U . Note that an instance
may terminate without ever entering into an accepted state. The information of whether an instance has
terminated with acceptance or without acceptance is assumed to be public. Two instances πi

U and πj
U ′ at

two different parties U and U ′ respectively are considered partnered iff (1) both the instances have accepted,
(2) sidi

U= sidj
U ′ and (3) pidi

U= pidj
U ′ .

The communication network is assumed to be fully controlled by an adversary A, which schedules and
mediates the sessions among all the parties. A is allowed to insert, delete or modify the protocol messages. If
the adversary honestly forwards the protocol messages among all the participants, then all the instances are
partnered and output identical session keys. Such a protocol is called a correct GKE protocol. In addition
to controlling the message transmission, A is allowed to ask the following queries.

– Execute(pid) prompts a complete execution of the protocol among the parties in pid. A is given all the
protocol messages, modeling passive attacks.

– Send(πi
U ,m) sends a message m to the instance πi

U . If the message is only pid, the instance πi
U is initiated

with partner ID pid. The response of πi
U to any Send query is returned to A.

– RevealKey(πi
U ) If πi

U has accepted, A is given the session key sk i
U established at πi

U .
– Corrupt(U) The long-term secret key SKU of U is returned to A. Note that this query returns neither

the session key (if computed) nor the internal state.
– RevealState(πi

U ) The internal state of U is returned to A. We assume that the internal state is erased
once πi

U has accepted. Hence, a RevealState query to an accepted instance returns nothing.
– Test(πi

U ) A random bit b is secretly chosen. If b = 1, A is given sk i
U established at πi

U . Otherwise, a
random value chosen from the session key probability distribution is given. Let Kb be the challenge key
given to A. Note that a Test query is allowed only on an accepted instance.

2.1 AKE Security

We present a revised notion of AKE-security by taking KCI attacks into account. As this is a notion of
outsider security, we assume that all the participants are honest i.e. all the parties execute the protocol
honestly.
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The notion of freshness is central to the definition of AKE-security. We define the notion of freshness
by considering KCI attack scenarios based on a corresponding notion for two-party key exchange given by
Krawczyk [21]. Informally, a session is considered fresh if the session key is not trivially compromised.

Freshness. An instance πi
U is fresh if the following conditions hold:

1. the instance πi
U or any of its partners has not been asked a RevealKey after their acceptance

2. the instance πi
U or any of its partners has not been asked a RevealState before their acceptance

3. If πj
U ′ is a partner of πi

U and A asked Corrupt(U ′), then any message that A sends to πi
U on behalf of

πj
U ′ must come from πj

U ′ intended to πi
U .

The last condition requires that the adversary be an outsider, i.e. it must be passive for any partner that it
corrupts.

Definition 1 (AKE-Security with KCI resilience). An adversary Aake against the AKE-security notion is
allowed to make Execute, Send, RevealState, RevealKey and Corrupt queries in Stage 1. Aake makes a Test
query to an instance πi

U at the end of Stage 1 and is given a challenge key Kb as described above. It can
continue asking queries in Stage 2. Finally, Aake outputs a bit b′ and wins the AKE security game if (1)
b′ = b and (2) the instance πi

U that was asked Test query remained fresh till the end of Aake ’s execution. Let
SuccAake

be the success probability of Aake in winning the AKE security game. The advantage of Aake in
winning this game is AdvAake

= |2 ·Pr[SuccAake
]− 1|. A protocol is called AKE-secure if AdvAake

is negligible
in the security parameter k for any polynomial time Aake .

The definition of freshness takes care of the KCI attacks as it does allow Aake to corrupt the owner of
the test protocol instance. Note that if the adversary is active with respect to a partner to the test instance
πi

U , then that party cannot have been corrupted, otherwise πi
U is not fresh. The definition also takes forward

secrecy into account as it allows Aake to obtain the long-term private keys of all the parties. In this case,
Aake must be passive with respect to all partners of πi

U .

2.2 Mutual Authentication

Katz and Shin [18] first presented a definition of insider security that models impersonation attacks and
ensures agreement on the session key in the presence of insiders. Bohli et al. [3] revisited this notion in weak
corruption model, where session state is not revealed. They also presented insider attacks on the protocols of
Katz and Yung [19] and Kim et al. [20] that violate integrity of the protocols. Later, Bresson and Manulis [11]
unified the insider security notions of Katz and Shin into their definition of mutual authentication. They
also considered session state reveal queries separately from the corrupt queries. We strengthen the definition
of Bresson and Manulis by considering KCI attacks by insiders.

Definition 2 (Mutual Authentication with KCI resilience). An adversary Ama against the mutual authen-
tication of a correct GKE protocol π is allowed to ask Execute, Send, RevealState, RevealKey and Corrupt
queries. Ama violates the mutual authentication property of the GKE protocol if at some point during the
protocol run, there exists an uncorrupted instance πi

U (although the party U may be corrupted) that has
accepted with a key ski

U and another party U ′ ∈ pidi
U that is uncorrupted at the time πi

U accepts such that

1. there is no instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) or

2. there is an instance πj
U ′ with (pidj

U ′ , sidj
U ′) = (pidi

U , sidi
U ) that has accepted with skj

U ′ 6= ski
U .

Let SuccAma
be the success probability of Ama in winning the mutual authentication game. A protocol is said

to provide mutual authentication in the presence of insiders if SuccAma
is negligible in the security parameter

k for any polynomial time Ama .

4



The difference between the above definition and that of Bresson and Manulis is that we allow Ama to
obtain the long-term private key of Ui, but Ama is not allowed to execute the protocol on Ui’s behalf.
Ama is considered successful in an insider KCI attack against Ui if it violates above definition of mutual
authentication.

It is easy to see that if a protocol does not satisfy earlier definitions [18, 3, 11], it also does not satisfy
Definition 2. Many existing protocols [3, 11] which are proven secure under the definitions in the corresponding
papers also seem to satisfy our definition. Note that this is not the general case as the adversary in our
definition clearly has additional power.

2.3 Contributiveness

To ensure complete covering of insider security notions we present below the notion of contributiveness
by Bresson and Manulis [11]. A GKE protocol secure under this notion resists the key control attacks by
Pieprzyk and Wang [25] where a proper subset of insiders tries to predetermine the resulting session key.

Definition 3 (Contributiveness). An adversary Acon against the contributiveness of correct GKE protocol
π is allowed ask Execute, Send, RevealKey, RevealState and Corrupt queries. It operates in two stages prepare
and attack as follows:

prepare. Acon queries the instances of π and outputs some state information ζ along with a key k̃.
At the end of prepare stage, a set Π is built such that Π consists of uncorrupted instances which have been

asked either Execute or Send queries.
attack. On input (ζ,Π), Acon interacts with the instances of π as in the prepare stage.

At the end of this stage Acon outputs (U, i) and wins the game if an instance πi
U at an uncorrupted party U

has terminated accepting k̃ with πi
U /∈ Π.

Let SuccAcon
be the success probability of Acon in winning the above game. A protocol is said to provide

contributiveness in the presence of insiders, if SuccAcon
is negligible in the security parameter k for any

polynomial time Acon .

3 KCI Attacks on Existing Protocols

We present KCI attacks on the protocols of Boyd and González Nieto [6], Al-Riyami and Paterson [1]
and Bresson et al. [7]. We speculate that there are many GKE protocols in the literature which are not
secure against KCI attacks. By selecting these three protocols, we are able to demonstrate the importance
of considering resilience to KCI attacks for GKE protocols under different setup assumptions. Note that the
Boyd and González Nieto protocol is a contributory GKE protocol where each party is assumed to have
equal resources. The Al-Riyami and Paterson protocol is a GKE protocol with the group size three, while
the protocol of Bresson et al. assumes a server with high computational resources and many computationally
restricted clients.

3.1 Boyd and González Nieto’s protocol [6]

Boyd and González Nieto [6] (BG) proposed a one-round GKE protocol and proved it AKE-secure in the
Bellare-Rogaway model [2] adapted to the group setting. Later, Choo et al. [13] presented an unknown key
share attack on the BG protocol in a multi-user setting. They also presented an improved BG protocol that
resists unknown key share attacks but do not give any formal security proof. We now briefly describe the
protocol.

Let U = {U1, U2, . . . , Un} be the set of participants. All the users agree upon a distinguished user for
each execution of the protocol. Without loss of generality let U1 be the distinguished user. The protocol
uses a public key encryption scheme PE = (Ke,E ,D), where Ke, E and D are the key generation, encryption
and decryption algorithms. It also uses a signature scheme Σ = (Ks,S,V), where Ks, S and V are the key
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Round 1

U1 → ∗ : U ,SSKs1
(U , EPKe2

(N1, U1), . . . , EPKen
(N1, U1))

U1 → ∗ : EPKei
(N1, U1) for 1 < i ≤ n

Ui → ∗ : Ui, Ni for 1 < i ≤ n

Key Computation

sid = U‖SSKs1
(U , EPKe2

(N1, U1), . . . , EPKen
(N1, U1))‖EPKei

(N1, U1)‖Ui‖Ni

The session key is sk
U
i = H(N1‖sid)

Fig. 1. Improved Boyd-González Nieto Protocol [13]

generation, signature and verification algorithms. Each user is issued with a key pair for each of the schemes.
Let (SK ei

,PK ei
) and (SK si

,PK si
) be the private-public key pairs for the encryption and signature schemes.

In the protocol, the distinguished user U1 chooses a nonce N1

R
← {0, 1}k and encrypts it along with its

identity for each of the other parties. U1 signs all these ciphertexts together with the set of identities of
all the users U . The set U , the signature computed and the ciphertexts are then broadcast. All the parties

Ui ∈ U , Ui 6= U1 broadcast their nonces Ni
R
← {0, 1}k along with their identities. A user computes the session

ID as the concatenation of all the outgoing and incoming protocol messages. A key derivation function H is
used to compute the session key with the nonce N1 and the session ID as input. As there is no restriction on
who should send a protocol message first, the protocol can be completed in one round. The protocol message
transmission and session key computation are presented in Figure 1. The users Ui, i 6= 1, verify the signature
of U1 and decrypt N1 before computing the session key.

We show that the improved BG protocol in Figure 1 is not secure against KCI attacks. An attack can
be mounted by corrupting any user except the distinguished user U1. Let us assume that U2 is corrupted.
An adversary A can impersonate U1 just by replaying a message from a previous successful execution of the
protocol. The nonce selected by U1 in the replayed message can be decrypted using the private key of U2.
Thus A can easily win the AKE-security game by selecting the test session at U2.

A straightforward improvement to the protocol in Figure 1 could be by asking all users Ui 6= U1 to encrypt
their nonces with the public keys of other users and broadcast the messages. Although this thwarts the above
KCI attack on the protocol, the improved protocol cannot be proven secure under the AKE-security notion.
To see why, note that in the above attack scenario we have considered the simple case where the long-term
private key of only one user other than U1 is compromised. If we assume that more than one user (other than
U1) is corrupted, then the adversary can impersonate U1 in the same way as described above and successfully
mount a KCI attack. We leave open the task of constructing a one-round GKE protocol that resists KCI
attacks.

3.2 Al-Riyami and Paterson’s Protocol [1]

Al-Riyami and Paterson [1] proposed a series of tripartite key agreement (TAK) protocols based on Joux’s
protocol [17]. While the authors do not provide a definition of KCI resilience for a TAK protocol, they claim
that the protocol TAK-3 is secure against KCI attacks. However we below present a KCI attack on TAK-3.

The system parameters are (q, G1, GT , P, e,H), where q is a prime number, G1 and GT are groups of
order q, P is a generator of G1, e : G1 × G1 → GT is an admissible bilinear map and H is a hash function
that maps to the key space. Let (x, xP ), (y, yP ) and (z, zP ) be the private-public key pairs of three users A,
B and C respectively, where x, y, z ∈ Z

∗
q . The parties are issued certificates for their public key, which bind

an identity to the corresponding public key. Let CertA, CertB and CertC be the certificates issued for the
public keys of A, B and C respectively.

As the part of the protocol the users A, B and C select the ephemeral secret keys a, b, c
R
← Z

∗
q respectively.

The protocol message transmission and key computation is shown in Figure 2.
We now show that the protocol in Figure 2 is not KCI resilient as per our AKE-security definition.

Let us assume that the adversary A has compromised the long-term private keys x and y of the parties
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Round 1

A→ B, C : aP‖CertA

B → A, C : bP‖CertB

C → A, B : cP‖CertC

Key Computation:

A : KA = e(yP, cP )x · e(bP, zP )x · e(yP, zP )a · e(bP, cP )a

B : KB = e(aP, zP )y · e(xP, cP )y · e(xP, zP )b · e(aP, cP )b

C : KC = e(aP, yP )z · e(xP, bP )z · e(xP, yP )c · e(aP, bP )c

The session key is KABC = KA = KB = KC = e(P, P )(xy)c+(xz)b+(yz)a+abc

Fig. 2. TAK-3 protocol of Al-Riyami and Paterson with forward secrecy [1]

A and B respectively. A can impersonate an honest user C by sending a message c′P‖CertC for a known
c′ ∈ Z

∗
q . It can compute the same key that A and B computes with its knowledge of x, y and c′ as K ′ =

e(yP, c′P )x · e(bP, zP )x · e(aP, zP )y · e(aP, bP )c′ . It can now easily win the AKE-security game by selecting
a test session at either A or B.

The key derivation of TAK-3 protocol is similar to the MTI/A0 protocol [23]. Al-Riyami and Paterson
also proposed another tripartite variant TAK-4 whose key derivation is based on the MQV [22]. The two-
party protocols MTI/A0 and the MQV are secure against KCI attacks. It is interesting to see that TAK-3
protocol is vulnerable to KCI attacks while TAK-4 protocol appears to resist them.

3.3 Bresson et al.’s Protocol [7]

Round 1:

1. Each Ui selects xi
R
← Z

∗

q , computes yi = gx
i , αi = yxi and σ1 = SSK i

(yi)
2. Each Ui sends (yi, σi) to the server S

Round 2:

1. The base station first verifies all the incoming signatures.
2. It then computes αi = yx

i , initializes a counter c ∈ {0, 1}k1 and the shared secret key K = H0(c‖α1‖ . . . ‖αn)
3. It also computes for each party Ui, Ki = K ⊕H1(c‖αi)
4. S sends (c, Ki) to the user Ui for all i ∈ [1, n]

Key Computation:

1. Each user computes K = Ki ⊕H1(c‖αi)
2. The session key is computed by the server and the parties as sk = H(K‖Gc‖S)

Fig. 3. Bresson et al.’s GKE protocol [7]

In the protocol of Bresson et al. [7], a group of n parties computes a common session key with a mobile
gateway S acting as a server. The system parameters are (q, G, g,H,H0,H1, k0, k1), where q is a prime
number chosen based on a security parameter k, G is a finite cyclic group of order q, g is an arbitrary
generator of G. The hash functions H,H0 and H1 map to bit strings of length k, k0 and k1 respectively. The

server is assumed to have a private-public key pair (x, y = gx) where x
R
← Z

∗
q . It also assumed to know the

group of parties Gc with whom it communicates. Each party Ui is issued a private-public key pair (SK i,PK i)
for a signature scheme Σ = (Ks,S,V). The protocol execution is described in Figure 3.

We now show that the protocol in Figure 3 is not secure against KCI attacks as per Definition 1. If an
adversary A obtains the long-term private key x of the server S, it can impersonate any honest user in Gc
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to S as follows: A simply replays a message (yi, σi) of party Ui from an earlier successful execution of the
protocol. The server sends back (c,Ki). A can compute the shared secret K as K = Ki ⊕H1(c‖αi) where
αi is computed as yx

i with its knowledge of the private key x. Thus it can win the AKE-security game by
choosing a test session at S.

4 An insider secure GKE protocol

Bohli et al. [3] showed that the protocol of Kim et al. [20] was insecure in the presence of insiders and then
modified the protocol as shown in Figure 4. The improved protocol was shown to satisfy their definitions of
outsider and insider security. We briefly review the protocol here.

Let {U1, . . . , Un} be the set of parties who wish to establish a common group key. It is assumed that the
parties are ordered in a logical ring with Ui−1 and Ui+1 being the left and right neighbors of Ui for 1 ≤ i ≤ n,
U0 = Un and Un+1 = U1. During the initialization phase, a cyclic group G of prime order q, an arbitrary
generator g of G and the description of a hash function H that maps to {0, 1}k are chosen. Each party is
assumed to have a long-term private and public key pair for a public key signature scheme. Figure 4 outlines
the execution of the protocol after initialization.

At a high level, the protocol in Figure 4 embeds the protocol of Boyd and González Nieto [6] in the first
round of Burmester and Desmedt [12] (BD) protocol with the Katz and Yung [19] signature-based compiler
applied. However, there are non-trivial and crucial changes done to the resulting protocol to enable it to
achieve forward secrecy and contributiveness. As in the Boyd and González Nieto [6] (BG) protocol the
parties choose their shares ki’s in the first round and all except one party send their shares in plain with
the message broadcast in Round 1. Unlike the BG protocol, the nth user (or the distinguished user) sends
only a commitment to its share instead of encrypting it with the long-term public keys of other users. The
parties compute pair-wise CDH components using the yi’s sent in the first round similar to the BD protocol.
These ephemeral values are used to encrypt the share of the distinguished user in the second round, which
can be decrypted by the other users using the pair-wise CDH components they have computed. This enables
the protocol to achieve forward secrecy unlike the BG protocol. The session key is finally computed in a way
similar to the BG protocol using the shares from all the users, which guarantees contributiveness unlike the
BD protocol [25]. The signature based authentication ensures security against impersonation attacks.

We now show that the protocol in Figure 4 is KCI resilient as per our new definitions and also contributory
as per the definition of Bresson and Manulis [11].

Theorem 1. The protocol in Figure 4 is AKE-secure as per Definition 1 assuming that the CDH assumption

holds in G, the signature scheme is UF-CMA secure and that H is a random oracle. The advantage of Aake

is upper bounded by

2

(

n2AdvCMAΣ +
(3qs + qr)

2

2k
+

q2
s

2k
+ nqsqrSuccCDH +

qsqr

2k

)

where n is the number of participants, AdvCMAΣ is the advantage of a polynomial adversary against the UF-

CMA security of the signature scheme, SuccCDH is the probability of solving CDH in G and k is the security

parameter. qs and qr are the upper bounds on the number of Send and random oracle queries respectively

that Aake can ask.

Proof. We give the proof in a sequence of games. Let Si be the event that Aake wins the AKE-security game
in Game i and τi be the advantage of Aake in Game i i.e. τi = |2 · Pr[Si]− 1|.

We use the following game hopping technique suggested by Dent [14] for indistinguishability games and
recently used by Boyd et al. [5]. Consider an event E that may occur during Aake ’s execution such that E is
detectable by the simulator, E is independent of Si, Game i and Game i + 1 are identical unless E occurs,
and Pr[Si+1|E] = 1

2
. Then we have:
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Round 1:

Computation

1. Each Ui chooses ki
R
← {0, 1}k, xi

R
←Zq and computes yi = gxi . Un additionally computes H(kn)

2. Each Ui except Un sets MI
i = ki‖yi, while Un sets MI

n = H(kn)‖yn

3. Each Ui computes a signature σI
i on MI

i ‖pidi.

Broadcast Each Ui broadcasts MI
i ‖σ

I
i .

Check Each Ui checks all signatures σI
j of incoming messages MI

j ‖σ
I
j for j 6= i

Round 2:

Computation

1. Each Ui computes tL
i = H(yxi

i−1), tR
i = H(yxi

i+1), Ti = tL
i ⊕ tR

i and sidi = H(pid‖k1‖ . . . ‖kn−1‖H(kn)).

Un additionally computes maskn = kn ⊕ tR
n .

2. Each Ui except Un sets MII
i = Ti‖sidi while Un sets MII

n = maskn‖Tn‖sidn

3. Each Ui computes a signature σII
i on MII

i .
Broadcast Each Ui broadcasts MII

i ‖σ
II
i .

Check

1. Each Ui verifies the incoming the signatures σII
j on the corresponding message MII

j for each j ∈

[1, n] and j 6= i also checks that T1 ⊕ · · · ⊕ Tn
?
= 0 and sidi

?
= sidj

2. Each Ui for i < n, extracts kn = maskn ⊕ T1 ⊕ · · · ⊕ Ti−1 ⊕ tL
i and checks the commitment H(kn) sent

in Round 1 for the kn extracted.
Key Computation

Each Ui computes the session key ski = H(pidi‖k1‖ . . . ‖kn)

Fig. 4. GKE protocol of Bohli et al. [3]

Pr[Si+1] = Pr[Si+1|E] Pr[E] + Pr[Si+1|¬E] Pr[¬E] (1)

=
1

2
Pr[E] + Pr[Si|¬E] Pr[¬E] (2)

=
1

2
(1− Pr[¬E]) + Pr[Si] Pr[¬E] (3)

=
1

2
+ Pr[¬E]

(

Pr[Si]−
1

2

)

(4)

Hence τi+1 = 2|Pr[Si+1]−
1

2
| = 2|Pr[¬E]

(

Pr[Si]−
1

2

)

| (5)

= Pr[¬E]τi (6)

Game 0. This is the original AKE-security game as per the Definition 1. By definition we have

AdvAake
= |2 · Pr[S0]− 1| = τ0 (7)

Game 1. This is the same as the previous game except that the simulation fails if an event Forge occurs.
Hence

|Pr[S1]− Pr[S0]| ≤ Pr[Forge] (8)

τ0 = |2 · Pr[S0]− 1| ≤ |2 · Pr[S0]− 2 · Pr[S1]|+ |2 · Pr[S1]− 1| (9)

≤ 2Pr[Forge] + τ1 (10)

The event Forge occurs when Aake issues a Send query with a message of the form (Mi, σi) such that Ui

is not corrupted and the message has previously not been an output of an instance at Ui. Note that in

9



a KCI attack, Aake corrupts up to n− 1 parties but it has to remain passive on behalf of the corrupted
users. Hence Forge represents successful forgery of honest users’ signatures.
If this event occurs we can use Aake to forge a signature for a given public key in a chosen message
attack as follows: The given public key is assigned to one of the n parties. All other parties are initialized
as normal according to the protocol. All queries to the parties can be easily answered by following the
protocol specification since all secret keys are known, except for the private key corresponding to the
public key of the forgery attack game. In the latter case the signing oracle that is available as part of
the chosen message attack can be used to simulate the answers.
The probability of Aake not corrupting this party is ≥ 1

n
. The probability of Aake outputting a valid

forgery on behalf of this user is also ≥ 1

n
. Hence AdvCMAΣ ≥

1

n2 · Pr[Forge]. Rewriting the equation we
have

Pr[Forge] ≤ n2 · AdvCMAΣ (11)

Game 2. This game is the same as the previous game except that the simulation fails if an event Collision
occurs.

|Pr[S2]− Pr[S1]| ≤ Pr[Collision] (12)

τ1 = |2 · Pr[S1]− 1| ≤ |2 · Pr[S1]− 2 · Pr[S2]|+ |2 · Pr[S2]− 1| (13)

≤ 2Pr[Collision] + τ2 (14)

The event Collision occurs when the random oracle H produces a collision for any of its inputs. Each
Send query requires at most 3 queries to the random oracle. Hence the total number of random oracle
queries are bounded by (3qs + qr). The probability of Collision is

Pr[Collision] ≤
(3qs + qr)

2

2k
(15)

Game 3. This game is the same as the previous game except that the simulation fails if an event Repeat
occurs. Hence

|Pr[S3]− Pr[S2]| ≤ Pr[Repeat] (16)

τ2 = |2 · Pr[S2]− 1| ≤ |2 · Pr[S2]− 2 · Pr[S3]|+ |2 · Pr[S3]− 1| (17)

≤ 2Pr[Repeat] + τ3 (18)

The event Repeat occurs when an instance at a party Ui chooses a nonce ki that was chosen by another
instance at Ui. As there are a maximum qs instances that may have chosen a nonce ki, we have

Pr[Repeat] ≤
q2
s

2k
(19)

Game 4. This game is the same as the previous game except that at the beginning of the game a value
s̄ is chosen at random in {1, . . . , qs}, where qs is an upper bound to the maximum number of protocol
sessions activated by the adversary. s̄ represents a guess as to the protocol session in which the adversary
is going to be tested. If the adversary does not choose the s̄th session to ask the Test query, then the
guess it wrong and the game is aborted.
The probability of aborting due to an incorrect choice of s̄ is 1− 1/qs . This event could be detected in
the previous game if it also chose s̄ in the same way. Therefore from Equation 6 we have

τ4 =
1

qs

τ3 =⇒ τ3 = qsτ4 (20)
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Game 5. This game differs from the previous game in how the Send queries are answered in the test session.
Note that in this test session, the adversary is an outsider and moreover is passive with respect to all
the parties. An active adversary producing valid signatures on behalf of uncorrupted parties would have
caused Game 1 to halt.
In round 1 of the test session in Game 5, all messages yi are chosen at random from G. In round 2, all
tRi (= tLi+1) are assigned random values from {0, 1}k. All other computations are performed as in Game
4.
Since H(·) is modeled as a random oracle, the only way that any adversary can distinguish between
Game 4 and 5 is if for at least one value of i it queries y

xi+1

i (= yxi

i+1
) to the random oracle, where xi

and xi+1 are discrete logs of yi and yi+1 respectively. Let Ask be such an event.

|Pr[S5]− Pr[S4]| ≤ Pr[Ask] (21)

τ4 = |2 · Pr[S4]− 1| ≤ |2 · Pr[S4]− 2 · Pr[S5]|+ |2 · Pr[S5]− 1| (22)

≤ 2Pr[Ask] + τ5 (23)

If Ask occurs, we can use Aake to solve the CDH problem in G. Given a CDH instance (g,A = ga, B = gb),
this can be plugged into a simulation of Game 5 as follows. Firstly, choose at random a party in the
test session Ui. Then for the test session assign yi = A and yi+1 = B. If the event Ask occurs, the
probability that a randomly chosen entry Z, from the random oracle table is a pair-wise CDH is at least
1

qr

. Further, the probability of Z being the correct solution to the given instance (g, ga, gb) is at least 1

n
.

Hence, SuccCDH ≥ 1

nqr

Pr[Ask]. Rewriting the equation we have

Pr[Ask] ≤ nqrSuccCDH (24)

Game 6. This game is the same as the previous game except that in the test session the game halts if Aake

asks a H-query with the corresponding input (pidi‖k1‖ . . . ‖kn).
Because the protocol messages in round 2 of the test session carry no information about kn, the best any
adversary can do is to guess kn with a probability 1

2k . Hence, the probability that Aake asks the right
H-query for the test session is at most qr

2k .

|Pr[S6]− Pr[S5]| ≤
qr

2k
(25)

τ5 = |2 · Pr[S5]− 1| ≤ |2 · Pr[S6]− 2 · Pr[S6]|+ |2 · Pr[S6]− 1| (26)

≤ 2
qr

2k
+ τ6 (27)

If the adversary does not query the random oracle H on the correct input, then the adversary has no
advantage in distinguishing the real session key from a random one and so

τ6 = 0.

By combining equations 7 to 25, we have the claimed advantage of Aake , which is negligible in k.

Theorem 2. The protocol in Figure 4 satisfies mutual authentication as per Definition 2 assuming that the

signature scheme is UF-CMA secure and that H is a random oracle. The advantage of Ama is upper bounded

by

n2 · AdvCMAΣ +
(3qs + qr)

2

2k
+

q2
s

2k

where n is the number of participants, AdvCMAΣ is the advantage of a polynomial adversary against the

UF-CMA security of the signature scheme and k is the security parameter. qs and qr are the upper bounds

on the number of Send and random oracle queries respectively that Ama can ask.
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Proof. We give the proof in a sequence of games. Let Si be the event that Ama violates the mutual authen-
tication definition in Game i.

Game 0. This is the original mutual authentication game as per the Definition 2. By definition we have

AdvAma
= Pr[S0] (28)

Game 1. This game is the same as the previous game except that the simulation fails if an event Forge
occurs, where Forge is the same event described in Game 1 of Theorem 1.

|Pr[S1]− Pr[S0] ≤ Pr[Forge] ≤ n2 · AdvCMAΣ (29)

Game 2. This game is the same as the previous game except that the simulation fails if an event Collision
occurs, where Collision is the same event described in Game 2 of Theorem 1.

|Pr[S2]− Pr[S1]| ≤ Pr[Collision] ≤
(3qs + qr)

2

2k
(30)

Game 3. This game is the same as the previous game except that the game now aborts if an event Repeat
occurs, where Repeat is the same event described in Game 3 of Theorem 1.

|Pr[S3]− Pr[S2]| ≤ Pr[Repeat] ≤
q2
s

2k
(31)

If Game 3 does not abort, all the honest partnered parties compute the same key. Hence, Pr[S3] = 0. By
combining the Equations 28 to 31, we have the claimed advantage of Ama , which is negligible in k.

Theorem 3. The protocol in Figure 4 satisfies contributiveness as per Definition 3 assuming that H is a

random oracle. The advantage of Acon is upper bounded by

q2
s + 2 · qr

2k

where n is the number of participants and k is the security parameter. qs and qr are the upper bounds on the

number of Send and random oracle queries respectively that Aake can ask.

Proof. We give the proof in a sequence of games. Let Si be the event that Acon violates the definition of
contributiveness in Game i.

Game 0. This is the original game of contributiveness and as per the Definition 3. By definition we have

AdvAcon
= Pr[S0] (32)

Game 1. This game is the same as the previous game except that the simulation fails if an event Repeat
occurs, where Repeat is the same event described in Game 3 of Theorem 1.

|Pr[S1]− Pr[S0]| ≤ Pr[Repeat] ≤
q2
s

2k
(33)

Game 2. This game is the same as the previous game except that the simulation fails if Acon can find a
collision for the input kn.

|Pr[S2]− Pr[S1]| ≤
qr

2k
(34)

Game 3. This game is the same as the previous game except that the simulation fails if Acon finds a collision
for the keying material input (pidi‖k1‖ . . . ‖kn).

|Pr[S3]− Pr[S1]| ≤
qr

2k
(35)

If Game 3 does not abort, the output of the random oracle is uniformly distributed. Hence, Pr[S3] = 0.
By combining the equations 32 to 35, we have the claimed advantage of Acon , which is negligible in k.

12



5 Conclusion

Table 1 gives a comparison of the security of some of the existing GKE protocols. The terms “AKE” refers
to AKE-security, “AKE-FS” refers to AKE-security with forward secrecy and “AKE-KCIR” refers to AKE-
security with KCI resilience. Similarly “MA” refers to mutual authentication and “MA-KCIR” refers to
mutual authentication with KCI resilience. The entry “Yes∗” says that the corresponding protocol appears
to be secure under the notion but there is no formal proof. The last column in the table says whether the
protocol is proven in the random oracle model or in the standard model.

It can be observed from the table that only the two-round protocol of Bohli et al. is proven to satisfy all
the desired notions of security in the random oracle model. The two-round protocol obtained after applying
the KC-compiler to the improved Boyd and González Nieto protocol appears to satisfy all the desired notions
except forward secrecy. Another two-round protocol that appears to resist KCI attacks is that of Furukawa
et al. Their protocol is proven in the universal composability framework without assuming random oracles.
It is not known whether the protocol of Furukawa et al. satisfies contributiveness in the presence of insiders.
The protocol of Bresson and Manulis appears to resist KCI attacks and their protocol is also proven secure
in standard model. However, it has three rounds of communication.

AKE AKE-FS AKE-KCIR MA MA-KCIR Contributiveness Model

Boyd and González Nieto [6] (BG) Yes No No No No honest ROM

Katz and Yung [19] Yes Yes Yes∗ honest honest No Std.

Bresson et al. [7] Yes Yes No honest honest unknown ROM

BG Protocol + KS-compiler [18] Yes No Yes∗ Yes∗ Yes∗ Yes∗ ROM

Bohli et al. [3] Yes Yes Yes Yes Yes Yes ROM

Bresson and Manulis [11] Yes Yes Yes∗ Yes Yes∗ Yes Std.

Furukawa et al. [16] Yes Yes Yes∗ Yes Yes∗ unknown Std.
Table 1. Security comparison among existing GKE protocols

Our work models KCI attacks on GKE protocols in the presence of both outsiders and insiders. We have
shown that there exist protocols which are not secure against KCI attacks. We have then shown that an
existing protocol satisfies the new definitions. We hope that our work helps future protocols to be analyzed
for KCI resilience.

We have not considered GKE protocols with special properties like robustness [15] and deniability [4].
Modeling KCI attacks on these types of protocols is an interesting open task. An open question is whether
we can construct one-round AKE-secure GKE protocols that can have KCI resilience or forward secrecy.
Constructing GKE protocols which do not use signature based authenticators seems to be another interesting
problem.
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