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Abstract. Physical random number generators (a.k.a. TRNGs) appear
to be critical components of many cryptographic systems. Yet, such
building blocks are still too seldom provided with a formal assessment
of security, in comparison to what is achieved for conventional cryp-
tography. In this work, we present a comprehensive statistical study of
TRNGs based on the sampling of an oscillator subject to phase noise
(a.k.a. phase jitters). This classical layout, typically instantiated with
a ring oscillator, provides a simple and attractive way to implement a
TRNG on a chip. Our mathematical study allows one to evaluate and
control the main security parameters of such a random source, includ-
ing its entropy rate and the biases of certain bit patterns, provided that
a small number of physical parameters of the oscillator are known. In
order to evaluate these parameters in a secure way, we also provide an
experimental method for filtering out the global perturbations affecting a
chip and possibly visible to an attacker. Finally, from our mathematical
model, we deduce specific statistical tests applicable to the bit stream of
a TRNG. In particular, in the case of an insecure configuration, we show
how to recover the parameters of the underlying oscillator.

Keywords: hardware random number generators, ring oscillators, jitter model,
entropy, statistical tests.

1 Introduction

Random Number Generators (RNGs) are crucial components for the security of
cryptographic systems — typical usages including key generation, initialization
vectors and even counter measures against side-channel attacks. Yet it is not
easy to design hardware-based RNGs with a proved entropy rate, together with
the flaw-tolerance and attack-resistance properties required by cryptographic
applications. Most often, cryptographic RNGs consist of two parts: on one side,
a physical (or True) Random Number Generator (TRNG) producing a random
bit-stream by harvesting some entropy source, and on the other side, a cryp-
tographic mode of operation ensuring that the final outputs remain computa-
tionally unpredictable even in case of an undetected failure of the TRNG. In
this paper, we investigate the design of a hardware-based TRNG with a proved



security, following the recommendations of [12]. This explains our focus on a
simple design, suitable for a complete and precise modeling.

A source of randomness commonly used in FPGA and ASIC implementations
of TRNGs is the instability of signal propagation time across logic gates. This
instability is typically accumulated in so-called ring oscillators, consisting in a
series of inverters or delay elements connected in a ring. The phase jitter of a ring
oscillator is then extracted by means of a sampling unit, for instance a type-D
flip-flop triggered by another ring oscillator or by an external clock signal. This
simple structure has been widely studied in the literature as a building block
for many on-chip TRNGs [8,3,14]. This paper aims to present a comprehensive
statistical model of such a basic random unit, and contribute more generally to
improving the security analysis of hardware random number generators.

Previous work on provably secure TRNGs based on sampled oscillators in-
cludes the work of [11,9,4], who consider mathematical models based on the
flipping times Tk of the signal, that is, the times of its rising and falling edges.
These models are natural to consider as they correspond to what can be ex-
perimentally observed on an oscilloscope. Existing work [9,4,2] report that the
durations Xk = Tk+1 − Tk between the flipping times appear in many cases to
be independent and identically distributed (in short i.i.d.), as one could expect
from the physical intuition of electronic noise. This allows one to compute a
safe lower bound of the entropy rate of the TRNG [9]. Yet, we found that such
time-oriented models become quickly intractable when one wishes to compute
more precise security parameters, such as the maximal bias on a short vector,
or the probabilities of outputting certain bit patterns.

Our first contribution is an original approach to address this limitation using
a different family of statistical models based on Wiener processes, a classical
tool in the study of noisy oscillators [6]. More precisely, we identify the phase of
an oscillator to a one-dimensional Brownian motion, and see the outputs of the
generator as a (periodic, possibly probabilistic) function of the phase. This new,
phase-oriented presentation allows us to achieve exact and approximate formulas
for the probabilities of occurrence and for the entropy of arbitrary-length bit
vectors, as well as a simple lower bound for the entropy rate. We validate these
computations from a physical perspective by arguing, after [6], that the time-
oriented and the phase-oriented models should be equivalent whenever the jitters
of oscillators are small compared to their nominal periods. (This is always verified
in practice.) Our formulas take as input a small number of physical parameters
that still need to be measured in order to provide a full security assessment.

For that purpose, we also present an experiment designed to compute the
relevant physical parameters of a given layout and a given technology. The
main difficulty here is that the phase jitter of a ring oscillator, according to
the model presented in [16], is made up of several different components depend-
ing on whether the jitter is local or global, deterministic or nondeterministic.
From a security perspective, it is important to be able to distinguish the lo-
cal Gaussian component, which is the entropy source of the TRNG, from the
global deterministic jitter which can be manipulated from outside the device.
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Our results show that the measure of the statistical parameters of the jitter usu-
ally described in the literature [14,4,2] can be inaccurate and, sometimes, largely
over-estimated. To solve this issue, we present an experiment able to extract and
precisely measure the local Gaussian component of phase jitters, by comparing
the signals of two free running oscillators on a same FPGA.

Finally, we apply our formulas to deduce statistical tests directly applicable to
the output sequence of a TRNG. Our tests are specifically tailored to detect over-
sampled oscillators, and potentially much stronger than the general-purpose tests
routinely used [1]. In particular, for a sufficiently large amount of over-sampled
bits, we observe that it is feasible to recover the main statistical parameters of
a TRNG.

Organization of the paper. In Section 2, we recall the classical, time-oriented
models for the sampling of oscillators, then we introduce our new, phase-oriented
approach and use it to compute the security parameters of oscillator-based
TRNGs. Section 3 presents an experiment designed to extract the Gaussian
component of the phase jitter of a ring oscillator. Finally, in Section 4, we out-
line two special-purpose statistical tests applicable to the outputs of a TRNG
in order to assess its statistical properties. Appendices A, B and C contain re-
lated proofs, additional justifications and an extension to a design made of two
oscillators.

2 Statistical models for the sampling of oscillators

Motivated by the example of TRNGs based on ring oscillators, we describe two
approaches to model an oscillator subject to phase jitters, and sampled by a
time reference (e.g. a quartz clock signal). Whereas the first approach, based
on flipping times, is classical [11,9,4], to our knowledge, the second approach,
based on a Wiener processes, has never been considered in the field of secure
random number generators. We focus on this new approach and derive several
formulas to compute the security parameters of a TRNG, notably the biases and
the entropy of bit-vectors, and as well as a lower bound of the entropy rate.

For simplicity, in what follows, we keep in line with previous work in the
area [11,9,4] and concentrate on symmetric (in particular balanced) oscillators,
for which the falling and rising transitions are equally distributed.

2.1 Classical approach (time-oriented)

A common and natural model for jittered oscillators consists in assuming that the
half-periods, that is, the durations Xk = Tk+1 − Tk between the flipping times
Tk (k ≥ 0) of the signal, are independent and identically distributed random
variables. In the sequel, we write mX = E(Xk) for the mean, and s2

X = V(Xk)
for the variance of Xk.

Once the flipping times Tk are defined, the corresponding signal s(t) ∈ {0, 1}
at time t ≥ 0 is described by s(t) = max{k + 1 |Tk ≤ t} mod 2. This model of
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s(t) is often referred to as an alternated renewal process (see for instance [15]).
Assuming a start-up time tS and a fixed sampling period ∆t, the successive
outputs of the random number generator are finally given by s(tS), s(tS + ∆t),
. . . , s(tS + n∆t),. . .

This model has been widely studied in the community of cryptographic ran-
dom number generation [11,4], and even generalized [9] to allow for short-term
dependencies between the Xk. Notably, Killman and Schindler [9] provide an
approximate lower-bound for the source entropy, and present experimental re-
sults on a TRNG based on noisy diodes, which appear compatible with the i.i.d.
assumption on the Xk.

Although an elegant explicit formula exists for the Laplace transform of
P [s(t) = 1] (see [15, p. 334]), to our knowledge there is no general way to com-
pute the probabilities of sampling arbitrary-length bit-vectors from alternating
renewal processes, let alone if one wishes to abstract away the initial conditions
by letting the start-up time tS tend to +∞. Yet, evaluating these probabilities
is important to predict residual biases in the outputs of a TRNG, design specific
statistical tests, or simply validate the physical model and the amount of Gaus-
sian noise at a higher level. For these reasons, we consider another approach that
directly models the phase evolution of an oscillator.

2.2 New approach (phase-oriented)

Motivated by typical solutions of equations in the study of noisy oscillators [6],
we consider a family of model where the phase ϕ of an oscillator is analogue
to a (stationary) one-dimensional Brownian motion. Accordingly, we model the
evolution of the phase by a Wiener stochastic process (ϕ(t))t∈R with drift µ > 0
and volatility σ2 > 0. In other words, for any times t ≥ t0, the phase ϕ(t)
conditioned on the values (ϕ(t′))t′≤t0 prior to t0 follows a Gaussian distribution
of mean ϕ(t0) + µ(t − t0) and variance σ2(t − t0). Equivalently, in terms of
conditional density of probability, we have for all t, t0, x, x0,

d

dx
P [ϕ(t) ≤ x | ϕ(t0) = x0, (ϕ(t′))t′<t0 = . . .]

=
1

σ
√

2π(t − t0)
exp

(−(x − x0 − µ(t − t0))
2

2σ2(t − t0)

)

(1)

where the dots denote any set of values. (Note that both µ and σ2 are frequencies
here.)

Given a value x of the phase at a given time t, the output bit s(t) is then
modeled by a random variable such that the probability of s(t) = 1 is equal to
g1(x), for some fixed 1-periodic function g1. Let g0 = 1−g1 be the complementary
function. Again, in terms of conditional probability, we have for all t, b, x

P [s(t) = b | ϕ(t) = x, (ϕ(t′), s(t′))t′ 6=t = . . .] = gb(x). (2)

The fact that g1 is 1-periodic is related to the periodicity of the sampled signal,
whose average period is thus equal to 1

µ
. Another noticeable consequence is that

s(t) depends only on the quantity ϕ(t) = ϕ(t) mod 1.
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In the following, we concentrate on the (almost) deterministic sampling pro-
cess defined by

g1(x) =











1 if x mod 1 ∈ ]12 , 1[,

0 if x mod 1 ∈ ]0, 1
2 [,

1
2 if x mod 1 ∈ {0, 1

2}.
(3)

In other words, for such a choice of g1, we have that ϕ(t) ∈]0, 1
2 [ implies s(t) = 0,

ϕ(t) ∈]12 , 1[ implies s(t) = 1, and ϕ(t) ∈ {0, 1
2} implies that s(t) is a pure

random bit. (This last case is negligible and only motivated by Fourier series.)
We note that more complex signals, for instance featuring unbalanced and/or
noisy sampling, could be modeled as well, simply by adapting the definition of g1.

When no initial precondition is given, we assume that ϕ(0) follows the uni-
form distribution on [0, 1[, thereby modeling an infinite amount of time spent
after the start-up of the oscillator. In particular, this ensures that each ϕ(t0) fol-
lows the (same) uniform distribution, and that the source (s(t))t∈R is stationary,
that is, the probabilities of sampling bit vectors are invariant by time-shifting.

2.3 Equivalence formulas between models

For real physical systems, we expect the jitters to be small, that is, σ2 ≪ µ,
in terms of Wiener process. Arguably, the sampling of such a Wiener process
is equivalent to that of an alternated renewal process where the durations Xk

follow an inverse Gaussian distribution (a.k.a. Wald distribution):

pXk
(x) =

(

λ

2πx3

)
1
2

exp
−λ(x − mX)2

2m2
Xx

for x > 0 (4)

with parameters

mX =
1

2µ
and λ =

m3
X

s2
X

=
1

4σ2
. (5)

Indeed, on the one hand, it is well-known that this distribution corresponds
to the first passage time, from ϕ(0) = k

2 to ϕ(x) = k+1
2 , of a Wiener pro-

cess with drift µ and volatility σ2 (see for instance [5, p. 221]). On the other
hand, the assumption σ2 ≪ µ allows us to ignore the possibility for the sampled
signal to flip in a detectable manner because of the phase going backward: in-
deed by another classical result of Wiener processes [5, p. 212], the probability

P [∃t ≥ 0, ϕ(t) ≤ ϕ(0) − α] = e−2α
µ

σ2 will be infinitesimal for meaningful α > 0.

Remark 1. We note that Equation (5) allows one to set the parameters mX and
s2

X in function of µ and σ2, and use other distribution laws for Xk. For instance,
we may use a Gamma distribution:

pXk
(x) =

1

Γ (k)θk
xk−1e

x
θ (6)

with parameters k = E(Xk)2

V(Xk) = µ
2σ2 and θ = E(Xk)

k
= σ2

µ2 .
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In any case, we will have
s2

X

m2
X

= 2σ2

µ
≪ 1, therefore, we expect that the shape

of a given distribution law will have little influence on the behavior of processes.
By extension, this suggests that Wiener processes suffice to approximate every
physically relevant model based on renewal alternating processes. In the litera-
ture of noisy oscillators, we found that Demir et al. [6] do relate phase-oriented
processes to time-oriented processes based on Gaussian distributions.

2.4 Controlling bit-vector probabilities, source entropy and biases

Let ∆t > 0 be some fixed sampling period. Using either kind of model, we

define the quality factor Q = σ2 ∆t =
s2

X ∆t

4 m3
X

of an oscillator-based TRNG as the

phase variance accumulated between two samples, and let ν = µ ∆t = ∆t
2 mX

be
frequency ratio between the sampled and the sampling signal.

As mentioned before, in physical random generators based on phase jitter,

we expect that Q
ν

= σ2

µ
≪ 1.

Remark 2. We note that the notion of quality factor is in line with the intuitive
definition for a alternating renewal process: the average relative variance accu-
mulated during a time ∆t (that is, approximately for ∆t

2 E(Xk) = ν periods) is

given by

ν
V(X2k + X2k+1)

E(X2k + X2k+1)2
=

ν

2

V(Xk)

E(Xk)2
= σ2∆t = Q. (7)

We expect the sampled bits to behave as a perfect random source when the
quality factor Q is significantly larger than 1. Indeed the accumulated phase jitter
between two samples then amounts to more than one period of the oscillator.

In order to make this statement rigorous, we provide several formulas for the
probabilities and the entropy of arbitrary-length bit vectors.

Proposition 1. Consider a Wiener process (ϕ(t)) with parameters µ and σ2

and define (s(t)) as previously. Let ν = µ ∆t and Q = σ2 ∆t.

1. The probability to sample 1 at time t ≥ 0 conditioned on the phase at time 0
verifies

P [s(t) = 1 | ϕ(0) = x] =
1

2
− 2

π
sin(2π(µt + x)) e−2π2σ2t + O(e−4π2σ2t). (8)

2. The probability to output a vector b = (b1, . . . , bn) ∈ {0, 1}n at sampling
times 0, ∆t, . . . (n − 1)∆t satisfies

p(b) = P [s(0) = b1, . . . , s((n − 1)∆t) = bn] (9)

=
1

2n
+

8

2nπ2





n−1
∑

j=1

(−1)bj+bj+1



 cos(2πν)e−2π2Q + O(e−4π2Q).(10)
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3. The entropy of such an output is

Hn =
∑

b∈{0,1}n

− p(b) log p(b) (11)

= n − 32(n − 1)

π4 ln(2)
cos2(2πν) e−4π2Q + O(e−6π2Q). (12)

These expressions result from a careful study of the mathematical model,
based on Fourier series and given in appendix A. Our study also provides exact
formulas suitable for precise numerical simulations.

Lower bound for entropy. For a stationary process, it is well-known [13] that
1
n
Hn and Hn − Hn−1 tends (from above) to a same limit H , called the bit-

rate entropy of the source. We emphasize that the approximation of Hn above
(Equation (12)) is not provably uniform in n, and thus cannot be used to provide
a rigorous lower bound of H . However, following similar ideas as in [9], it is easy
to state a lower bound of H based on the entropy of s(∆t) conditioned on ϕ(0).

Corollary 1. Let H(s(∆t) | ϕ(0)) =
∫ 1

0
H(s(∆t) | ϕ(0) = x) dx denote the

average conditional entropy of s(∆t) with respect to ϕ(0), where by definition

H(s(∆t) | ϕ(0) = x) = −p log2(p) − (1 − p) log2(1 − p) (13)

if p = P [s(∆t) = 1 | ϕ(0) = x]. Then we have that

H ≥ H(s(∆t) | ϕ(0)) = 1 − 4

π2 ln(2)
e−4π2Q + O(e−6π2Q). (14)

Remark 3. For a sanity check, note that 4
π2 ln(2) ≈ 0.58 > 32

π4 ln(2) ≈ 0.47.

Bounding biases in function of Q and n. We should emphasize that the given
approximation for p(b) (Equation (10)) hold when e−2π2Q is small enough for a
fixed parameter n = |b|. Preliminary numerical experiments suggest that these
approximations might not hold uniformly in n. As a consequence, controlling
the biases of the source may require to limit the number of consecutive outputs
returned by the random source to not exceed a fixed value nmax. To help designers
assess nmax in a safe way, we provide exact bounds on the biases ǫ(b) = 2np(b)−1.

Proposition 2. Let ϑ(x) =
∑

k∈Z
xk2

for |x| < 1 and B = e−2π2Q. For every n

and every b ∈ {0, 1}n, it holds that |ǫ(b)| ≤ ϑ(B)n−1−1. In particular, for every
n such that n ≤ nmax = ⌊1 + 1

log2(ϑ(B))⌋, we have |ǫ(b)| < 1 and Hn ≥ n − 2.

Although these bounds may appear pessimistic compared to the approximate
expressions given in the previous section, we note that small values of Q still
allow for large n, as the following table illustrates:
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Q B = e−2π2Q nmax = ⌊1 + 1
log2(ϑ(B))

⌋

0.1 1.3 · 10−1 3

0.2 1.9 · 10−2 18

0.3 2.6 · 10−3 130

0.5 5.1 · 10−5 6701

1 2.6 · 10−9 129 · 106

2 7.1 · 10−18 48 · 1015

3 Measuring the phase jitter of ring oscillators

In Section 2, we recalled classical models based on flipping times, and showed
how to use a new family of models based on Wiener processes to analyze the
security of a TRNG. Such security analyses rely on the physical parameters of
the generators, that is, the frequency ratio ν and a quality factor Q.

In this section, we first report several experiments in order to assess the
physical parameters of a single ring oscillator embedded on a FPGA, and to
confirm the physical relevance of the model in use. Note that, as mentioned
before, the choice between time and phase models does not matter as long as
Q ≪ ν.

Whereas the experiments are satisfactory for well-stabilized FPGAs (see for
instance [4,2]), we observe that the general case is more complex as the frequen-
cies of oscillators may fluctuate. As emphasized by Valtchanov et al. [16], an
important component of such fluctuations, the global deterministic jitters, typ-
ically low-frequency and global to a FPGA, should not be confused with (local)
Gaussian phase jitters, as the former generally depends on signals such as the
power source, that may leak or even be controlled by an attacker.

For that reason, we introduce a modified statistical model where the nominal
frequency of an oscillator is subject to deterministic variations. We show how
to validate this model experimentally by considering a layout made of two ring
oscillators, and by simulating the sampling of one oscillator by the other, in a
similar manner as a type D flip-flop.

3.1 Simple measures

Let t = (t0, . . . , tn) be the increasing sequence of flipping times observed in the
course of an experiment. Let x = (x0, . . . , xn−1) be the corresponding durations
xk = tk+1 − tk. If we neglect the effect of global deterministic jitters, we expect
the durations xk to be mutually independent and to follow a same distribution
of mean mX = E(Xk) and variance s2

X = V(Xk).

To evaluate mX , we use the classical estimator Ê(x) = 1
n

∑n−1
i=0 xi. In theory,

it should also be possible to directly measure s2
X using V̂(x) = 1

n

∑n−1
i=0 x2

i −
Ê(x)2. However, for very high frequency oscillators such as the one typically used
for random generation, this method can be inaccurate (even in favorable cases)
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due to the quantification noise of the oscilloscope — and perhaps other factors.
For that reason, it is classical to estimate the variance of Tk+ℓ − Tk (ℓ > 0) by
letting

Vs(ℓ) = V̂(tℓ − t0, t2ℓ − tℓ, . . . , t⌊n
ℓ
⌋ ℓ − t(⌊n

ℓ
⌋−1) ℓ) (15)

and carry on a linear regression on Vs(ℓ). Indeed, for n
ℓ

big enough, we expect
that Vs(ℓ) ≈ ℓ s2

X . By Formula (5), the parameters of the corresponding Wiener

process are then µ = 1
2mX

and σ2 =
s2

X

4m3
X

.

Experimental results. We made a series of experiments on an Altera Stratix II
board with a non-well-stabilized switching power supply. We have implemented
two different ring oscillators R and R′ made up of a NAND gate and the same
number of delay elements (see Figure 1). The clock signals of the two oscillators
are connected to an output PIN and analyzed with a digital oscilloscope at 10
Gigasamples per second.

�
�
�
�

Nand
Gate

De1 De2 Den

Fig. 1. Ring oscillator.

From the data recorded by the oscilloscope we recover two sequences t =
(t0, . . . , tn) and t′ = (t′0, . . . , t

′
n′) corresponding to the flipping times of the signals

of R and R′, respectively. We obtained that the mean period of R is 14, 5ns and
that of R′ is 14, 7ns. We remark that although R and R′ have identical VHDL
specifications, their mean periods are not equal because of the variability of
routing. Starting from the sequence t = (ti) of flipping times of R, we compute
the estimator Vs(ℓ) from the time gaps (tℓ(i+1) − tℓi). Figure 2 represents the
graph of Vs(ℓ) as a function of ℓ.

We remark that Vs(ℓ) is not a straight line with slope s2
X as one might expect

if the global deterministic jitters were negligible. The accumulation phenomenon
of the Gaussian jitter is nevertheless perfectly visible as the function Vs(ℓ) is
globally increasing. We can explain the shape of Vs(ℓ) by introducing a frequency
perturbation function α(t) to model the effect of global deterministic jitters.
Specifically, assume that the expected value of Tk+1 − Tk given that Tk = tk is
close to mX

α(tk) where 1
α(t) = 1 + A sin(2πt

P
+ B) is sinusoidal of period P with

P ≫ mX . If ℓ is such that 2ℓ mX is very close to a multiple of P then in average
the sampling of (Tℓ(k+1) − Tℓk) will cancel out the contribution of α(t) to the
variance of the jitter, thus giving a local minimum of Vs(ℓ). On the contrary, if
2ℓ mX is very close to a value of the form jP + 1

2P , j ∈ N, then the contribution

9
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Fig. 2. Simple measure: Vs(ℓ) as a function of ℓ.

of α(t) to the variance of the jitter is maximal and we obtain a local maximum
of the graph of Vs(ℓ).

3.2 Differential measures

The previous experiments suggest that the statistical models of Section 2 may
not be accurate in general, for a non-well-stabilized oscillator, due to slow fluc-
tuations of the average frequency µ (or equivalently of the half-period mX).
This phenomenon naturally leads us to model the phase of such an oscillator
by a Wiener process with a non-constant drift of the form µ(t) = µ α(t), where
α(t) > 0 is a perturbation function, intuitively close to 1, and equal to 1 in
average.

Alternatively, in terms of flipping times Tk, we may equivalently consider a
modified classical model where the i.i.d. variables Xk now represent half-periods
that are scaled by α(t). More precisely, to define Tk+1 with respect to Tk and

Xk, the relation Xk = Tk+1 − Tk is now replaced by Xk =
∫ Tk+1

Tk
α(t)dt.

Following the empirical conclusions of Valtchanov et al. [16] regarding a de-
composition between local and global jitters of oscillators, we expect α(t) to be
global, that is, applicable to all the (similar) oscillators running on a given FPGA,
and to have slow variations compared to the nominal frequency of oscillators.

Based on these considerations, we provide an experiment that we call “dif-
ferential measure”, which aims at eliminating the global factor α(t) in the mea-
surements of local jitters. The experiment runs as follows. Consider two similar
ring oscillators R and R′ running on a same FPGA. Let t = (t0, . . . , tn) and
t′ = (t′0, . . . , t

′
n′) be the two increasing sequences of flipping times observed

for R and R′, respectively. Intuitively, we wish to rescale the first sequence t

according to the second sequence t′, seen as a time reference, and then apply
the same statistical treatment as in Subsection 3.1 to conclude.

10



More precisely, let mX′ be the average half-period of R′ (typically estimated
as in Subsection 3.1) and let φ be the simplest, continuous, strictly increasing,
piecewise-affine function from [t′0, t

′
n′ ] to [0, n′] such that φ(t′k) = k mX′ (0 ≤

k ≤ n′). Assume for simplicity that t′0 ≤ t0 and tn ≤ t′n′ . We define the rescaled
sequence τ = (τ0, . . . , τn) by τj = φ−1(tj) (0 ≤ j ≤ n), that is, more concretely:
for every j,

τj

mX′

= k(j) +
tj − t′

k(j)

t′
k(j)+1 − t′

k(j)

(16)

where k(j) = max{k ∈ N | t′k ≤ tj}. Finally, we consider the differential estima-
tors Vd(ℓ) defined by

Vd(ℓ) = V̂(τℓ − τ0, τ2ℓ − τℓ, . . . , τ⌊n
ℓ
⌋ ℓ − τ(⌊n

ℓ
⌋−1) ℓ). (17)

We note that, by construction, sampling the digital signal corresponding
to the flipping times t at times (t′0, t

′
2, . . . , t

′
2⌊n′

2 ⌋) — this is typically done by

connecting the outputs of R and R′ to a type-D flip-flop — would give exactly
the same binary outputs as the sampling of the signal corresponding to τ by a
clock signal of constant period 2 mX′.

As we show in Appendix B, this analogy also applies to Vd(ℓ), that is: ac-
cording to the physical assumptions above, Vd(ℓ) should be approximately pro-

portional to ℓ. More precisely, we show that the proportionality factor s2 ≈ Vd(ℓ)
ℓ

is an estimation of the amount of local noise available in R and R′, in the sense
that

s2 ≈ s2
X +

(

mX

mX′

)2

s2
X′ (18)

where mX and sX (resp. mX′ and sX′) are the mean and the standard deviation
of the durations Xk related to R (resp. X ′

k related to R′).

Experimental results. We go on with the experimental results paragraph of Sec-
tion 3.1 with the same experimental device and keep the same notations. From
the flipping time sequences t = (ti) and t′ = (t′j) of R and R′, as described above,
we compute the estimator Vd(ℓ) from (τℓ(i+1) − τℓi) in the case of a differential
measure.

Figure 3 represents the graph of Vd(ℓ) as a function of ℓ. We can see that
the function Vd(ℓ) is well approximated by an affine function. The differential
measure has canceled out the influence of the global deterministic jitter. By
doing an affine regression on Vs(ℓ) we obtain a line with slope 0.97, while in the
case of Vd(ℓ) the slope of the linear regression is 0.09. As a consequence, we see
that the usual simple measure leads to a gross overestimation of the variance of
the jitter of R.

4 Statistical tests

In the previous section, we provided low-level experiments to isolate and esti-
mate the Gaussian noise related to a given hardware technology. However, these
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Fig. 3. Differential measure: Vd(ℓ) a function of ℓ.

experiments require a direct access to the (possibly multiple) ring oscillators be-
fore the signal is digitalized. In this section, we build upon the theoretical model
presented in Section 2, and report higher-level experiments carried out directly
on the bit stream of a sampled ring oscillator and applicable to any source that
is presumably equivalent.

Our tests are based on the biases predicted by the statistical model when
the quality factor Q = σ2∆t (see Section 2) is insufficient, that is, when the
sampling rate 1

∆t
is too high compared to the amount of noise available σ2. Such

a weakened behavior can be obtained on purpose by accelerating the sampling
clock. Interestingly, it could also occur in the case of a bad design or a physi-
cal attack on the generator. After discussing a simple auto-correlation test, we
present numerical experiments related to the likelihood of a given sample.

4.1 Auto-correlation test

A consequence of Proposition 1 is that the first coefficient of auto-correlation
of a sample b = (b1, . . . , bn) ∈ {0, 1}n defined by c(b) = 1

n−1

∑n−1
j=1 (−1)bj+bj+1 ,

gives a statistical test especially well suited to detect biases in the bit-stream of
random generators based on oscillators. Indeed, we note that the expectation of
c(b) is 0 on a perfect random source, but amounts to

∑

b

c(b)p(b) =
8

π2
cos(2πν)e−2π2Q + O(e−4π2Q) (19)

on a random generator such as considered in Section 2 (with the same notations).
Besides, on perfect random sources, by the central limit theorem, c(b) approxi-
mately follows a centered Gaussian distribution of variance 1

n−1 . Therefore, we
may expect a source with low quality factor Q and cos(2πν) 6= 0 to be easily
distinguished from an ideal source for large enough n.

12



Experimental results. We have implemented a single ring oscillator R composed
of 49 inverters on an Altera Stratix II FPGA. We let the oscillator R be sampled
via a type D flip-flop triggered by a divider applied to the quartz clock signal
of the FPGA, running at frequency f = 50MHz (see Figure 4). Using a digital

����

��������������

������

Ring
oscillator

D
flip flop

:k

b[t]

Fig. 4. Scheme of the experiment

oscilloscope, we could measure the mean period of the ring oscillator: 2 mX =
33.4 ns. By performing a differential measure, we also estimated the variance of
the jitter per half period of R to be approximately s2

X = 0.0047 ns2. From this,
we could estimate the quality factor of the generator for a given division factor

D to be Q ≈ s2
X

4 m3
X

D
f

≈ D
197840 . Table 1 shows the empirical auto-correlation

factors obtained for various samples. We observe as expected that a too small
quality factor causes the source to be immediately discarded as |c(b)| ≫ 1√

n
.

Division factor (D) Sample size (n) Quality factor (Q) c(b) 1
√

n

2559 71483 0.012 -0.7523 0.003

22598 110621 0.114 0.0020 0.003

40000 62498 0.202 -0.0007 0.004

Table 1. Auto-correlation factors c(b) for samples from three random sources.

4.2 Maximum likelihood estimation

The auto-correlation test is useful to detect flaws, but is not sufficient to esti-
mate the physical parameters of a generator, namely its quality factor Q and its
frequency ratio ν. On the other hand, the techniques used for proving Proposi-
tion 1 (see Section A in appendix) make it possible to compute the probability
p(Q, ν, b) of a sample b in function of (Q, ν) efficiently and with good precision.
Following the rational of maximum likelihood estimators, we may then choose
the two parameters (Q, ν) that maximize the probability of a given sample. Note
that the mathematical model of sampling entails p(Q, ν, b) = p(Q,±ν + k, b) for
any k ∈ Z. Therefore, we can only observe ν̄ = |(ν + 1

2 mod 1) − 1
2 | ∈ [0, 1

2 ].
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Numerical experiments. The graphs of Figure 5 result from the evaluation of
these probabilities on two bit samples of size n = 50000: one sample taken from
a perfect simulated source (right-hand side), and the other from our FPGA for a
division factor D = 22598 (left-hand side). On both graphs, Q is represented on
the X-scale, ν on the Y -scale, and the plotted value on the Z-scale is log2(1 +
2np(Q, ν, b)). We observe that contrarily to the simulated perfect source, the real
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Fig. 5. Maximum likelihood estimations.

data cause two symmetric peaks indicating plausible values for Q and ν mod 1.
We also carried out the analysis on 1000 bits of the source D = 2559 and

on 60000 bits of the source D = 40000 (Figure 6, left and right respectively).
We observe that the maximum likelihood approach succeeds — that is, clearly
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Fig. 6. Maximum likelihood estimations (2).

discriminates the source from a perfect random source — for the samples D =
2559 and D = 22598, but does not for the last sample D = 40000. As we discuss
below, this is due to the fact that the available bit sample is too small. In the
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case D = 2559, we see that global maximum of the plausability function leads
to the right value of the quality factor Q ≈ 0.01. The case D = 22598 is less
clear as the plot seems to indicate a quality factor twice as much as the expected
value Q = 0.11. However, experiments on simulated sources for Q = 0.15 (see
Table 7 below) partly mitigate this impression. Besides, we should emphasize
that the estimation of the quality factor Q relies on a differential measure that
filters out global frequency jitters, whereas the graphical test does not.

Further numerical experiments on simulated sources. To study the convergence
and the reliability of our graphical estimator, we conducted a number of nu-
merical experiments on simulated random sources for different quality factors Q

and frequency ratio ν. In Table 2, we report the amounts of bits that we found
usually necessary for a graphical estimation to be conclusive.

Quality factor (Q) Best case (ν̄ = 0) Worst case (ν̄ = 0.25)

< 0.05 < 1000 < 5000

0.1 50000 100000

0.2 500000 1000000

0.3 2000000 > 4000000

Table 2. Typical sample sizes needed by the estimator.

Finally, to validate the equivalence between the different mathematical mod-
els (Section 2), we simulated several sources of parameters Q = 0.15 and ν =
50.2, according to the model of Wiener processes and two models of alternating
renewal processes using Gamma and Inverse Gaussian laws (see Figure 7 and
Figure 8). The resulting graphs for 50000 bits of data confirm the intuition that
the three sources behave similarly and the fact that the graphs provide correct
estimations of the physical parameters.
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5 Conclusion

We have seen that the family of random bit generators made of a ring oscillator
sampled by a clock signal is amenable to a comprehensive statistical study.

On the conception side, we provide practical formulas and an experimental
method to control the main security parameters of a TRNG — in particular
its entropy rate and the probability biases in the output bits. Incidentally, our
experiments give an explanation for the observation reported in the literature
that ring oscillators have a tendency to couple with each other. Indeed, there is at
least one coupling between ring oscillators by the way of the global deterministic
jitters. Some authors [7] conclude that this phenomenon significantly reduces the
amount of randomness produced by a TRNG. Our observations tend to show that
the global deterministic jitters do not undermine the randomness of a TRNG by
itself, but can lead to dangerous overestimations.

On the attackers’ side, we have seen that it is easy to recover the statisti-
cal parameters of an oversampled oscillator from a sufficiently large amount of
output bits. In extreme cases, we note that this allows one to implement opti-
mized brute-force attacks on the unknown output vectors of such a generator.
Indeed, one may determine the corresponding distributions and try out the most
probable values first (see [10] for a detailed analysis).

Finally, on the performance side, we observe that, in order to achieve a near-
to-one quality factor and obtain almost perfectly random bit-sequences, it is
necessary to sample the ring oscillator at a very low frequency. Interestingly, our
statistical model uncovers some possible approach to improve the throughput of
such a TRNG. Indeed, our theoretical study (Proposition 1) suggests that the
residual biases of the generator would be considerably lowered if one could lock
the term cos(2πν) to a very small value.

Further work. We believe that the framework described in this paper is an impor-
tant step towards precise security analyses of many other designs of generators
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based on ring oscillators. For instance, a natural design, presumably more robust
to global deterministic jitters [16], consists of a ring oscillator sampled by another
ring oscillator — the random bitstream being accommodated to the system clock
through a FIFO-stack. As an encouraging result, we have proved using reason-
able heuristics (see Appendix C) that such a design can be well approximated
by the model considered in this paper for an appropriate choice of parameters.
Another common design of generator, motivated by bit-rate efficiency, is made
of a (XOR) combination of several ring oscillators before sampling (see for in-
stance [14]). Achieving precise and physically-validated security analyses for such
complex designs constitutes a challenging open problem.

Acknowledgments. We are very thankful to Frédéric Valette for his support to
this project and for his contributions to the physical experiments. Our work
also greatly benefited from early discussions with Sébastien Kunz-Jacques, who
brought the idea of using specific statistical tests, and with Jean-Michel Lévy-
Bruhl, who suggested the need for a simpler mathematical model.
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A Computing probabilities and source entropy

This section provides the mathematical justifications and additional details re-
lated to Section 2.

A.1 Exact expression of probabilities by means of Fourier series

Fourier coefficients of ϕ(t). From the point of view of an outside observer,
the state of the generator at a given time t corresponds to a certain probability
measure on the phase ϕ(t).

More precisely, let pt(x | ξ) be the density of probability (possibly a dis-
tribution) of ϕ(t) after a certain experiment described by precondition ξ. We
introduce the Fourier coefficients of pt(x | ξ):

ct(k | ξ) =

∫ +∞

−∞
pt(x | ξ) e−2πikxdx (20)

for every k ∈ Z.

Remark 4. We note that ct(0 | ξ) =
∫ +∞
−∞ pt(x | ξ) dx = 1.

Remark 5. The reason why we restrict k to integer values is that we are only
interested in the probability measure of ϕ(t) = ϕ(t) mod 1, which is described
by the 1-periodic density function:

pt(x | ξ) =
∑

k∈Z

pt(x + k | ξ) (21)

Indeed we observe that

ct(k | ξ) =
∑

u∈Z

∫ 1

0

pt(x + u | ξ) e−2πikxdx (22)

=

∫ 1

0

pt(x | ξ) e−2πikxdx (23)

Assuming that the inverse formula for Fourier series holds for ct(k | ξ), we obtain:

pt(x | ξ) =
∑

k∈Z

ct(k | ξ) e2πikx (24)
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Effect of time evolution. The following lemma expresses the effect of time
evolution on the Fourier coefficient of a density of probability pt(x | ξ).

Lemma 1. Assume an average drift speed µ and volatility σ2 (σ > 0) for the
Wiener process ϕ(t). For any t0 ≤ t and for every precondition ξ concerning
only events prior to t0, we have

ct(k | ξ) = ct0(k | ξ) e−2πiµ(t−t0) k e−2π2σ2(t−t0) k2

(25)

Proof. Let f(x) = 1

σ
√

2π(t−t0)
exp −(x−µ(t−t0))

2

2σ2(t−t0)
be the density probability of the

Gaussian distribution with mean µ(t−t0) and variance σ2(t−t0). By construction
of Wiener processes (Eq. 1), we have that pt(x | ξ) = pt0(x | ξ) ∗ f(x) where ∗
denotes the convolution product. The result then follows from the property of
Fourier transform w.r.t. convolution, and the computation of Fourier coefficients
for normal distributions. ⊓⊔

Notation. Let ct(ξ) denote the infinite vector (ct(k | ξ))k∈Z. Let δk be the Dirac
(infinite) column vector with a one in k-th position, and πj be Dirac (infinite)
row vector with a one in j-th position.

The linear relation above is written

ct(ξ) = E[t − t0] ct0(ξ) (26)

where E[t−t0] denotes the (t−t0)-evolution operator with coefficient (j, k) ∈ Z
2

given by:

πj E[t − t0] δk =

{

0 if j 6= k

e−2πiµ(t−t0) k e−2π2σ2(t−t0) k2

otherwise if j = k
(27)

Remark 6. Let 1 = (1)k∈Z denote the vector made of ones. We note that σ > 0
implies that for any t > 0, ‖E[t] 1‖1 < ∞.

Effect of sampling. The next lemma expresses the effect of sampling a bit b

on the Fourier coefficient of a density pt(x | ξ).

Lemma 2. For any t and for every precondition ξ concerning only events prior
to t, we have

ct(j | ξ, s(t) = b) =
1

P

∑

k∈Z

γb(j − k) ct(k | ξ) (28)

where γb(k) =
∫ 1

0
gb(x) e−2πikxdx is the k-th Fourier coefficient of the (periodic)

sampling probability gb, and

P = P [s(t) = b | ξ] =
∑

k∈Z

γb(−k) ct(k | ξ) (29)
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Proof. By definition and by Bayes formula on probability densities, we have

pt(x | ξ, s(t) = b) =
1

P
pt(x | ξ) gb(x)

where

P = P [s(t) = b | ξ] =

∫ +∞

−∞
pt(x | ξ) gb(x) dx

The result follows from the usual property of Fourier coefficients, which trans-
form products into convolutions, and maps mean values of functions to their
0-th coefficients. ⊓⊔

Notation. The relation above is written

ct(ξ, s(t) = b) =
1

P
S[b] ct(ξ) (30)

where S[b] denotes the b-sampling operator with coefficient (j, k) given by

πj S[b] δk = γb(j − k) (31)

and P = π0 S[b] ct(ξ).

Exact expressions of the probabilities. We may now determine the proba-
bilities of sampling arbitrary bit patterns from a jittered oscillator.

Proposition 3. Let A0 = e−2πiµ and B0 = e−2π2σ2

. For any x ∈ R, let 1x =
(e−2iπkx)k∈Z. Using the other vector notations above, we have for every t > 0,

p1,x(t) = P [s(t) = 1 | ϕ(0) = x] (32)

= π0 S[1] E[t] 1x (33)

=
∑

k∈Z

γ1(−k) e−2iπkxAtk
0 Btk2

0 (34)

and for every t1 < t2 < . . . < tn, letting i0 = in = 0, we have

fb(t) = P [s(t1) = b1, . . . , s(tn) = bn] (35)

= π0 S[bn] E[tn − tn−1] . . . S[b2] E[t2 − t1] S[b1] δ0 (36)

=
∑

(i1, ..., in−1)∈Zn−1

n−1
∏

k=0

γbk
(ik − ik+1) A

Pn−1
k=1 ik(tk+1−tk)

0 B
Pn−1

k=1 i2k(tk+1−tk)
0

(37)

Note that the expression of fb(t) shows in particular that (s(t))t∈R is a stationary
source. For numerical computations, for |B0| small enough, we observe that
the expression of fb(t) can be approximated by means of a product of n finite
matrices.
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Proof. We observe that

p1(t) = P [s(t) = 1 | ϕ(0) = x]

= π0 S[b] ct(ϕ(0) = x) by Lemma 2

= π0 S[b] E[t] c0(ϕ(0) = x) by Lemma 1

= π0 S[b] E[t] 1x by definition of Fourier coefficients ct(k|ϕ(0) = x)

Similarly, letting qn = P [s(t1) = b1, . . . , s(tn) = bn], we have for all n > 0

qn ctn
(s(t1) = b1, . . . , s(tn) = bn)

=
qn

Pn

S[bn] ctn
(s(t1) = b1, . . . , s(tn−1) = bn−1)

= qn−1 S[bn] ctn
(s(t1) = b1, . . . , s(tn−1) = bn−1)

= qn−1 S[bn] E[tn − tn−1] ctn−1(s(t1) = b1, . . . , s(tn−1) = bn−1)

= S[bn] E[tn − tn−1]
(

qn−1 ctn−1(s(t1) = b1, . . . , s(tn−1) = bn−1)
)

where Pn = P [s(tn) = bn | s(t1) = b1, . . . , s(tn−1) = bn−1].
Given that q0 ct0() = δ0 and E[t1−t0] δ0 = δ0, we obtain by induction on n:

qn ctn
(s(t1) = b1, . . . , s(tn) = bn)

= S[bn] E[tn − tn−1] . . . S[b2] E[t2 − t1] S[b1] δ0

The first expression of fb(t) follows from π0 ct(ξ) = ct(0|ξ) = 1.
In the end, we obtain the desired final expressions by expanding the matrix

products (the conditions σ > 0, t > 0 and t1 < . . . < tn ensuring that every sum
is absolutely convergent). ⊓⊔

A.2 Approximate expressions of probabilities and entropy

Consider the function g1(x) defined in Section 2. The Fourier coefficient of g1(x)
are given by

– γ1(0) = 1
2 ;

– for every k 6= 0, γ1(2k) = 0; and
– for every k, γ1(2k + 1) = i

(2k+1)π .

From g0 + g1 = 1, we also deduce that γ0(0) = 1
2 and γ0(k) = −γ1(k) for k 6= 0.

In particular, the exact expression of p1,x(t), taken from Proposition 3, becomes

p1,x(t) =
∑

k∈Z

γ1(−k) e−2πik(µt+x)e−2π2σ2tk2

(38)

=
1

2
− 2

π

+∞
∑

N=0

sin(2π(µt + x)(2N + 1))

2N + 1
e−2π2σ2t(2N+1)2 (39)

We now focus on periodic sampling times: t = (0, ∆t, . . . , (n − 1)∆t) for
some period ∆t > 0. Let Q = σ2∆t and ν = µ ∆t. Let A = A∆t

0 = e−2πiν ,
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B = B∆t
0 = e−2π2Q and i0 = in = 0. The exact expression of p(b) = fb(t), taken

from Proposition 3, becomes

p(b) =
∑

(i1, ..., in−1)∈Zn−1

n−1
∏

k=0

γbk
(ik − ik+1) A

Pn−1
k=1 ik B

Pn−1
k=1 i2k (40)

=

+∞
∑

N=0

aN (b)BN (41)

where

aN (b) =
∑

Pn−1
k=1

ik
2=N

n−1
∏

k=0

γbk
(ik − ik+1) A

Pn−1
k=1 ik . (42)

From the expressions of γ0(k) and γ1(k), we obtain in particular the first
terms aN (b):

a0(b) =
1

2n
(43)

a1(b) = γb1(−1) γb2(1) γb2(0) . . . γbn
(0) A

+ γb1(0) γb2(−1) γb3(1) . . . γbn
(0) A

+ . . .

+ γb1(0) . . . γbn−2(0) γbn−1(−1) γbn
(1) A

+ γb1(+1) γb2(−1) γb2(0) . . . γbn
(0) A−1

+ γb1(0) γb2(+1) γb3(−1) . . . γbn
(0) A−1

+ . . .

+ γb1(0) . . . γbn−2(0) γbn−1(+1) γbn−1(−1) A−1 (44)

=
A + A−1

2n−2π2





n−1
∑

j=1

(−1)bj+bj+1



 (45)

=
8

2nπ2
cos(2πν)





n−1
∑

j=1

(−1)bj+bj+1



 (46)

We now address the development of Hn = −∑
b∈{0,1}n p(b) log2 p(b). Given

that (1 + x) ln(1 + x) = x +
∑+∞

N=2
(−1)N

N(N−1) xN for |x| < 1, and that p(b) tends

to a0(b) = 1
2n when B → 0, we have for sufficiently small values of B:

− p(b) log2(p(b)) = np(b) − 1

2n ln(2)
(2np(b)) ln(2np(b)) (47)

= np(b) − 1

2n ln(2)

+∞
∑

N=2

(−1)N

N(N − 1)
ǫ(b)N (48)
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where we use ǫ(b) = 2np(b) − 1 to denote the bias of a vector b. Using that
∑

b∈{0,1}n p(b) = 1 and a0(b) = 1
2n , we obtain

Hn = n − 1

2n ln(2)

∑

b∈{0,1}n

+∞
∑

N=2

(−1)N

N(N − 1)

(

+∞
∑

M=1

2naM (b)BM

)N

(49)

= n − 2n−1

ln(2)

∑

b∈{0,1}n

a1(b)2 B2 + O(B3) (50)

But, by the previous expression of a1(b), we have

∑

b∈{0,1}n

a1(b)2 =
64

22nπ4
cos2(2πν)

∑

b∈{0,1}n





n−1
∑

j=1

(−1)bj+bj+1





2

(51)

=
64

22nπ4
cos2(2πν) 2n(n − 1) (52)

=
64(n− 1)

2nπ4
cos2(2πν) (53)

Therefore, we may conclude that Hn = n − 32(n − 1)

π4 ln(2)
cos2(2πν) B2 + O(B3).

A.3 Safe bounds on bias and entropy

The proof of Corollary 1 runs as follows.

Proof (of Corollary 1). By definition Hn = H(s((n−1)∆t), . . . , s(∆t), s(0)) and
we have that

Hn+1 − Hn = H(s(n∆t) | s((n − 1)∆t), . . . , s(∆t), s(0))

≥ H(s(n∆t) | ϕ((n − 1)∆t)

= H(s(∆t) | ϕ(0))

=

∫ 1

0

H(s(∆t) | ϕ(0) = x) dx

but

H(s(∆t) | ϕ(0) = x) = 1 − 1 + ǫ

2
log2(1 + ǫ) − 1 − ǫ

2
log2(1 − ǫ)

= 1 − ǫ2

2 ln(2)
+ O(ǫ3)

where ǫ = 2 P [s(∆t) = 1 | ϕ(0) = x]− 1 = 4
π

sin(2π(ν +x)) e−2π2Q +O(e−4π2Q).
The results follows from replacement of ǫ and by integration. (Equation 39 of
Section A.2 in appendix shows that the last O(.) is indeed uniform in x.) ⊓⊔
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Next, we give a proof of Proposition 2.

Proof (of Proposition 2). Using the expression of p(b) at Equation (42) and the
fact that γb(0) = 1

2 , we have that

ǫ(b) = 2np(b) − 1 (54)

=
∑

(i1, ..., in−1) 6=0

n−1
∏

k=0

(2 γbk
(ik − ik+1)) A

Pn−1
k=1 ik B

Pn−1
k=1 i2k (55)

Since |A| = 1, B > 0 and for every k, |γb(k)| ≤ 1
2 , we obtain

|ǫ(b)| ≤
∑

(i1, ..., in−1) 6=0

B
Pn−1

k=1 i2k = ϑ(B)n−1 − 1 (56)

The lower bound of Hn results the fact that the function x 7→ x log2 x is mono-
tone:

− p(b) log2(p(b)) = np(b) − 1

2n
(2np(b)) log2(2

np(b)) (57)

≥ np(b) − 1

2n
ϑ(B)n−1 log2 ϑ(B)n−1 (58)

Hence, by summing on b, we have Hn ≥ n−ϑ(B)n−1 log2(ϑ(B)n−1) ≥ n−2. ⊓⊔

B Physical justifications of differential measures

The goal of this section is to justify that the physical assumptions of Subsec-
tion 3.2 implies Vd(ℓ) ≈ ℓ s2 for some value s2 that we relate to the amount of
noise available in R and R′.

In line with Subsection 3.2, for simplicity, we directly model the flipping

times Tk of R and assume the variables Xk =
∫ Tk+1

Tk
α(t) dt to be i.i.d. according

to some distribution of mean mX and standard deviation sX . We model R′ in a
similar way using the corresponding prime symbols.

The physical assumptions of our models are the following:

(i) sX ≪ mX (small local jitters for R),
(ii) sX′ ≪ mX′ (small local jitters for R′), and
(iii) α(t) ≈ 1 (small deterministic perturbations on R and R′).
(iv) |α′(t)| ≪ 1

mX
and |α′(t)| ≪ 1

mX′

(slow variations of α(t)).

Note that the last assumption implies that the equation Xk =
∫ Tk+1

Tk
α(t) dt

can be simplified into

Tk+1 − Tk ≈ Xk

α(Tk)
(59)

(and similarly for T ′
k+1 − T ′

k).
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Following the notations of Subsection 3.2, from the two sequences of times
t = (t0, . . . , tn), t′ = (t′0, . . . , t

′
n′), we define a rescaled sequence τ = (τ0, . . . , τn)

such that for every j (t′0 ≤ tj < t′n′),

τj

mX′

= k(j) +
tj − t′k(j)

t′
k(j)+1 − t′

k(j)

, (60)

where k(j) = max{k ∈ N | t′k ≤ tj}.
To show that Vd(ℓ) = V̂(τℓ − τ0, τ2ℓ − τℓ, . . . , τ⌊n

ℓ
⌋ ℓ − τ(⌊n

ℓ
⌋−1) ℓ) is approxi-

mately proportional to ℓ, we argue that each τj+1 − τj independently follows a

distribution with mean m ≈ mX and variance s2 ≈ s2
X +

(

mX

mX′

)2

s2
X′ .

Indeed, by definition, we have

τj+1 − τj

mX′

=
tj+1 − t′k(j+1)

t′
k(j+1)+1 − t′

k(j+1)

+ k(j + 1) −
tj − t′k(j)

t′
k(j)+1 − t′

k(j)

− k(j) (61)

=
tj+1 − t′

k(j+1)

t′
k(j+1)+1 − t′

k(j+1)

+

k(j+1)−1
∑

k=k(j)

t′k+1 − t′k
t′k+1 − t′k

+
t′
k(j) − tj

t′
k(j)+1 − t′

k(j)

. (62)

For all 0 ≤ k ≤ n′ − 1, let

ǫ′k =
α(t′k) (t′k+1 − t′k)

mX′

− 1. (63)

By Equation (59) and assumption (ii), ǫ′k approximately follows a centered

Gaussian distribution of variance
s2

X′

m2
X′

≪ 1. As a consequence, we may write

mX′

(t′k+1 − t′k)
=

α(t′k)

1 + ǫ′k
≈ α(t′k) (1 − ǫ′k). (64)

By assumption (iv), for k(j) ≤ k ≤ k(j + 1), a first-order approximation
of α(t′k) is α(tj). Therefore, putting altogether (62) and (64) and neglecting
second-order terms, we have

τj+1 − τj ≈ α(tj) (tj+1 − tj) − α(t′k(j+1)) ǫ′k(j+1)(tj+1 − t′k(j+1))

−
k(j+1)−1
∑

k=k(j)

α(t′k) ǫ′k (t′k+1 − t′k)

− α(t′k(j)) ǫ′k(j) (t′k(j) − tj).

(65)

We note that the first part of the equation approximately follows a Gaussian
distribution of mean mX and variance s2

X , whereas the second half approxi-
mately (and independently) follows a centered Gaussian distribution of variance
( sX′

mX′

)2 m2
X . Therefore, we may conclude that the (τj+1−τj) are independent out-

comes of a Gaussian distribution of mean mX and variance s2 = s2
X +s2

X′( mX

mX′

)2.
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C Equivalent physical parameters of a dual-oscillator

TRNG

In Section 2, we considered the sampling of an oscillator R by a perfectly stabi-
lized clock signal. The present section is devoted to the study the sampling of an
oscillator R by another ring oscillator R′. We also allow small global variations
of frequency for R and R′ as considered in Section 3. Our goal is to show that
such a complex system is still well approximated by the simple framework of
Section 2.

Model and physical assumptions. We model the phase of the sampled oscillator R

by a Wiener process of variable speed µ(t) = µ α(t) and volatility σ2. As for
the sampling oscillator R′, for simplicity, we directly model the flipping times

Tk and assume the variables Xk =
∫ Tk+1

Tk
α(t) dt to be i.i.d. according to some

distribution of mean mX and standard deviation sX . (Here we omit the prime
symbols for readability.)

As before, the physical assumptions of our models are the following:

(i) σ2 ≪ µ (small local jitters for R),
(ii) sX ≪ mX (small local jitters for R′), and
(iii) α(t) ≈ 1 (small deterministic perturbations on R and R′).

(Note that we do not assume α(t) to have low frequency variations, here.)
To compare this setting with the simpler model of Section 2, we proceed in

two steps. First, we generalize the method used in Appendix A to reason about
the effect of time evolution on phases. Second, we use the physical assumptions
above to argue that the sampling of R by R′ can be well approximated by the
sampling of a single oscillator R′′ by a periodic time reference, that is, following
the model initially considered in Section 2.

Phase evolution revisited. In Appendix A, we noticed that, for an oscillator R

with constant statistical parameters µ and σ2, the evolution of the conditional
distribution of the phase from time tk to time tk+1 ≥ tk is expressed by a
convolution product:

ptk+1
(x | ξ) = ptk

(x | ξ) ∗ fµ(tk+1−tk),σ2(tk+1−tk)(x), (66)

where fm,s2(x) = 1
s
√

2π
exp −(x−m)2

2s2 is the density function of the Gaussian

distribution with mean m and variance s2, and ξ denotes any event related to
the sampling of R at times before tk.

In the case of non constant statistical parameters µ(t) and σ2(t) for R, this
equation generalizes as follows:

ptk+1
(x | ξ) = ptk

(x | ξ) ∗ fm,s2(x), (67)

where m =
∫ tk+1

tk
µ(t)dt and s2 =

∫ tk+1

tk
σ2(t)dt.
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Now let us consider that the sampling times tk are probabilistic drawings of
random variables T2k modeling the raising times of another oscillator R′ such

that the durations Xk =
∫ Tk+1

Tk
α(t)dt are i.i.d. following some density pX . Be-

sides, assume that µ(t) = µα(t) and σ2(t) = σ2α(t) for some constant µ and σ.
We have that

P[s(T2(k+1)) = 1 | ξ] =

∫ +∞

−∞
P[s(t) = 1 | ξ] dPT2(k+1) | ξ(t) (68)

=

∫ +∞

−∞
g1(x) pk+1(x | ξ) dx, (69)

where we let pk+1(x | ξ) =
∫

pt(x | ξ) dPT2(k+1) | ξ(t) denote the average condi-
tional density of the phase of R at the (k + 1)-th sampling time.

By definition of T2(k+1) and from Equation (67), we obtain that

pk+1(x | ξ) = pk(x | ξ) ∗ g(x) ∗ g(x), (70)

where g(x) =
∫∞
0

pX(y) fµy,σ2y(x) dy. Altogether, Equations (69) and (70) allow
one to define modified operators S[b] and E[t] operating on the Fourier coefficient
of pk(x | ξ) similarly as for the proof of Proposition 3. We now argue that
in the physical cases under consideration, these new operators are in fact well
approximated by the same operators as before, using suitable parameters.

Interpretation. Above, we have let σ2(t) = σ2α(t) instead of σ2(t) = σ2 in
the model of Section 3.2. This approximation is justified by the assumptions (i)
and (iii) that σ is small and α(t) ≈ 1.

Formula (70) is similar to Equation (66) except that the Gaussian density is
replaced by a function g(x) ∗ g(x) obtained by averaging the durations between
two sampling times. We note that the two formulas are exactly equivalent when
X = ∆t

2 with probability 1: indeed g(x) ∗ g(x) = fµ∆t,σ2∆t(x). When X has a
very small variance (assumption (ii)), g(x)∗g(x) will be very close to a Gaussian
function, and therefore we can approximate the behavior of the two composed
oscillators by a single one.

More precisely, we compute the mean and the variance of the approximation
of g(x)∗ g(x) as follows. Let mX and s2

X be the mean and the variance of X . By
assumption (ii), sX ≪ mX , therefore, letting f(x, y) = fµy,σ2y(x), we have the
following approximation:

g(x) =

∫ ∞

0

pX(y) f(x, y) dy (71)

≈
∫ ∞

0

pX(y)

[

f(x, mX) + (y − mX)
∂f

∂y
(x, mX)

+
(y − mX)2

2

∂2f

∂y2
(x, mX)

]

dy (72)

= f(x, mX) +
s2

X

2

∂2f

∂y2
(x, mX). (73)
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Given that f(x, y) is infinitely derivable and for every i, j, k ≥ 0, for every y0,

|xk ∂i+jf
∂xi yj (x, y)| is bounded by a summable function of x, in the neighborhood of

y0, we may compute the first central moments of g(x) as follows:

∫ +∞

−∞
x g(x) dx ≈

∫ +∞

−∞
x f(x, mX) dx +

s2
X

2

∫ +∞

−∞
x

∂2f

∂y2
(x, mX) dx (74)

= µ mX +
∂2

∂y2

∫ +∞

−∞
xf(x, y) dx

∣

∣

∣

∣

y=mX

(75)

= µ mX +
∂2µ y

∂y2

∣

∣

∣

∣

y=mX

(76)

= µ mX . (77)

∫ +∞

−∞
x2 g(x) dx − (µ mX)2 ≈

∫ +∞

−∞
x2 f(x, mX) dx − (µ mX)2

+
s2

X

2

∫ +∞

−∞
x2 ∂2f

∂y2
(x, mX) dx (78)

= σ2 mX +
s2

X

2

∂2

∂y2

∫ +∞

−∞
x2f(x, y) dx

∣

∣

∣

∣

y=mX

(79)

= σ2 mX +
s2

X

2

∂2(µ2y2 + σ2 y)

∂y2

∣

∣

∣

∣

y=mX

(80)

= σ2 mX + s2
Xµ2. (81)

These values must be doubled for g(x) ∗ g(x). Finally, we obtain that the com-
position of R and R′ by means of a type-D flip-flop is equivalent to a system
made of single oscillator R′′ sampled by a time reference, with frequency ratio
ν = 2µ mX and quality factor Q = 2σ2 mX + 2µ2 s2

X .

28


	On the security of oscillator-based random number generators

