
Attacking Reduced Rounds of the ARIA Block Cipher

Ewan Fleischmann, Michael Gorski, and Stefan Lucks

Bauhaus-University Weimar, Germany
{Ewan.Fleischmann, Michael.Gorski, Stefan.Lucks}@uni-weimar.de

Abstract. ARIA [4] is a block cipher proposed at ICISC’03. Its design is very similar to the advanced
encryption standard (AES). The authors propose that on 32-bit processors, the encryption speed is at
least 70% of that of the AES. They claim to offer a higher security level than AES. In this paper we
present two attacks of reduced round ARIA which shows some weaknesses of the cipher. Moreover, our
attacks have the lowest memory requirements compared to existing attacks on ARIA with an increase
in the time complexity.

Keywords: block ciphers, differential cryptanalysis, ARIA.

1 Introduction

The ARIA block cipher [4] was presented at ICISC’03. Its design is very similar to the
advanced encryption standard (AES/Rijndael) [3]. The block size is 128-bit and the key size
is either 128, 192 or 256 bits. It uses the same number of rounds as the AES, which are 10, 12
and 14 respectively. ARIA employs two kinds of S-Boxes and two types of substitution layers
which are different between even and odd rounds. They skip using a MixComuns operation
and use an 16×16 binary matrix with branch number 8 in their diffusion layer. The authors
propose that ARIA can increase the efficiency in 8-bit and 32-bit software implementations
in comparison to AES. Moreover, they claim to have better security against all existing
attacks on block ciphers.

Wu et al. [7] showed that there exist good impossible differentials to break up to 6 rounds
of ARIA. Later Li et al. [5] presented also some impossible differential attacks of up to 6
rounds of ARIA. In this paper we apply another technique on ARIA which is called the
boomerang attack. We show that our attack can also break up to 6 rounds of ARIA but with
the lowest data complexity compared to previous attacks. Our results should introduce a
new technique for cryptanalysis on ARIA and should therefore leave some space for further
research.

The boomerang attack [6] is a strong extension to differential cryptanalysis [1] in order
to break more rounds than plain differential attacks can, since the cipher is treated as a
cascade of two sub-ciphers, using short differentials in each sub-cipher. These differentials
are combined in an adaptive chosen plaintext and ciphertext attack to exploit properties of
the cipher that have a high probability. Biryukov [2] proposed a similar boomerang attack
on the AES-128 which can break up to 5 and 6 out of 10 rounds.
The paper is organized as follows: In Section 2 we give a brief description of the ARIA block
cipher. In Section 3 we describe the boomerang attack. In Section 4, we present a boomerang
attack on 5-rounds which works on each instance of ARIA. In Section 5 we extend the attack



Table 1. Comparison of attacks on ARIA

Attack # Rounds Data Time Source

Impossible Differential 5 271.3 271.6 [5]

Boomerang Attack 5 257 2115.5 Section 4

Impossible Differential 6 2121 2112 [7]

Impossible Differential 6 2120.5 2104.5 [5]

Impossible Differential 6 2113 2121.6 [5]

Boomerang Attack 6 257 2171.2 Section 5

on a 6-round attack that is applicable to ARIA-192 and ARIA-256 only. We conclude the
paper in Section 6.

2 Description of ARIA

ARIA [4] uses data blocks of 128 bits with an 128, 192 or 256-bit cipher key. A different
number of rounds is used depending on the length of the cipher key. ARIA has 10, 12 and 14
rounds when a 128, 192 or 256-bit cipher key is used respectively. The plaintexts are treated
as a 4 x 4 byte matrix, which is called state. A round applies three operations to the state:

• Substitution layer (SL) is a non-linear byte-wise substitution applied on every byte of
the state matrix in parallel, where two different substitution layer exist.
• Diffusion layer (DL) is a linear matrix multiplication of the state matrix with a 16×16

involution binary matrix.
• Round key addition (RK) is a XORing of the state and a 128-bit subkey which is

derived from the cipher key.

Before the first round, an initial RK operation is applied and the DL operation is omitted
in the last round. The bytes coordinates of a 4 x 4 state matrix are labeled as:

0 4 8 12
1 5 9 13
2 6 10 14
3 7 11 15

Substitution Layer (SL). ARIA uses two S-Boxes S1 and S2 and also their inverse
S−1

1 , S−1
2 . Each S-Box is defined to be an affine transformation of the inversion function

over GF(28).

S1, S2 : GF (28)→ GF (28)

S1 : x 7→ A · x−1 ⊕ a,

2



where

A =

















1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

















and a =

















1
1
0
0
0
1
1
0

















.

S2 : x 7→ B · x−247 ⊕ b,

where

B =

















0 1 0 1 1 1 1 0
0 0 1 1 1 1 0 1
1 1 0 1 0 1 1 1
1 0 0 1 1 1 0 1
0 0 1 0 1 1 0 0
1 0 0 0 0 0 0 1
0 1 0 1 1 1 0 1
1 1 0 1 0 0 1 1

















and b =

















0
1
0
0
0
1
1
1

















.

ARIA has two types of S-Box layers for even and odd rounds as shown in Figure 1. Type 1
is used in the odd rounds and type 2 is used in the even rounds.

S-Box layer type 1

S-Box layer type 2

Fig. 1. The two types of S-Box layers

Diffusion Layer (DL). The function A : GF(28)16 → GF(28)16 is given by

(x0, x1, . . . , x15) 7→ (y0, y1, . . . , y15),

3



where

y0 = x3 ⊕ x4 ⊕ x6 ⊕ x8 ⊕ x9 ⊕ x13 ⊕ x14,

y1 = x2 ⊕ x5 ⊕ x7 ⊕ x8 ⊕ x9 ⊕ x12 ⊕ x15,

y2 = x1 ⊕ x4 ⊕ x6 ⊕ x10 ⊕ x11 ⊕ x12 ⊕ x15,

y3 = x0 ⊕ x5 ⊕ x7 ⊕ x10 ⊕ x11 ⊕ x13 ⊕ x14,

y4 = x0 ⊕ x2 ⊕ x5 ⊕ x8 ⊕ x11 ⊕ x14 ⊕ x15,

y5 = x1 ⊕ x3 ⊕ x4 ⊕ x9 ⊕ x10 ⊕ x14 ⊕ x15,

y6 = x0 ⊕ x2 ⊕ x7 ⊕ x9 ⊕ x10 ⊕ x12 ⊕ x13,

y7 = x1 ⊕ x3 ⊕ x6 ⊕ x8 ⊕ x11 ⊕ x12 ⊕ x13,

y8 = x0 ⊕ x1 ⊕ x4 ⊕ x7 ⊕ x10 ⊕ x13 ⊕ x15,

y9 = x0 ⊕ x1 ⊕ x5 ⊕ x6 ⊕ x11 ⊕ x12 ⊕ x14,

y10 = x2 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x8 ⊕ x13 ⊕ x15,

y11 = x2 ⊕ x3 ⊕ x4 ⊕ x7 ⊕ x9 ⊕ x12 ⊕ x14,

y12 = x1 ⊕ x2 ⊕ x6 ⊕ x7 ⊕ x9 ⊕ x11 ⊕ x12,

y13 = x0 ⊕ x3 ⊕ x6 ⊕ x7 ⊕ x8 ⊕ x10 ⊕ x13,

y14 = x0 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x9 ⊕ x11 ⊕ x14,

y15 = x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x8 ⊕ x10 ⊕ x15.

Round Key Addition (RK). The round keys are derived from the cipher key using the
key schedule which uses a 3-round 256-bit Feistel cipher. We skip its introduction since we
do not need it for our attack. We refer to [4] for more details.

3 The Boomerang Attack

We now describe the boomerang attack [6] in more detail. But first, we give some definitions.

Definition 1. Let P, P ′ be two bit strings of the same length. The bit-wise xor of P and P ′,

P ⊕P ′, is called the difference of P, P ′. Let ′a′ be a known and ′∗′ an unknown non-zero byte

difference.

Definition 2. α → β is called a differential if α is the plaintext difference P ⊕ P ′ before

some non-linear operation f(·) and β is the difference after applying these operation, i.e,

f(P )⊕ f(P ′). The probability p is linked on a differential saying that an α difference turns

into a β difference with probability p. The backward direction, i.e., α← β has probability p̂.

Two texts (P, P ′) are called a pair, while two pairs (P, P ′, O, O′) are called a quartet. Regu-
larly, the differential probability decreases the more rounds are included. Therefore two short
differential covering only a few rounds each will be used instead of a long one covering the
whole cipher. We split the boomerang attack into two steps: The boomerang distinguisher

step and the key recovery step. The boomerang distinguisher is used to find all plaintexts
sharing a desired difference that depends on the choice of the differential. These plaintexts
are used in the key recovery step afterwards to recover subkey bits for the initial round key.

4



Distinguisher Step. During the distinguisher step we treat the cipher as a cascade of two
sub-ciphers EK(P ) = E1

K(P )◦E0
K(P ), where K is the key used for encryption and decryption.

Since we always use the same key we omit the key K and write E(P ) = E1(P ) ◦ E0(P )
instead. We assume that the differential α → β for E0 occurs with probability p, while the
differential γ → δ for E1 occurs with probability q, where α, β, γ and δ are differences of
texts. The backward direction E0−1

and E1−1
of the differential for E0 and E1 are denoted

by α ← β and γ ← δ and occur with probability p̂ and q̂ respectively. The attack works as
follows:

1. Choose a pool of s plaintexts Pi, i ∈ {1, . . . , s} uniformly at random and compute a pool
P ′

i = Pi ⊕ α.
2. Ask for the encryption of Pi, i.e., Ci = E(Pi) and ask for the encryption of P ′

i , i.e.,
C ′ = E(P ′

i ).
3. Compute the new ciphertexts Di = Ci ⊕ δ and D′

i = C ′

i ⊕ δ.
4. Ask for the decryption of Di, i.e., Oi = E−1(Di) and ask for the decryption of D′

i, i.e.,
O′

i = E−1(D′

i).
– For each pair (Oi, O

′

j), i, j ∈ {1, . . . , s}

5. If Oi ⊕O′

j equals α store the quartet (Pi, P
′

j , Oi, O
′

j) into a set M .

A pair (Pi, P
′

j), i, j ∈ {1, . . . , s} with the difference α satisfies the differential α → β with
probability p. The output of E0 is Ai and A′

j , i.e., E0(Pi) = Ai and E0(P ′

j) = A′

j have a certain
difference β = Ai ⊕A′

j with probability p. Using the ciphertexts Ci and C ′

j we can compute

the new ciphertexts Di = Ci⊕δ and D′

j = C ′

j⊕δ. Let Bi = E1−1

(Di) and B′

j = E1−1

(D′

j) are

the decryption of Di and D′

j with E1−1

i ∈ {1, . . . s}. A difference δ turns into a difference

γ after passing E1−1

with probability q̂. Since δ = Ci ⊕ Di and δ = C ′

j ⊕ D′

j we know that
γ = Ai⊕Bi and γ = A′

j⊕B′

j with probability q̂2. Since we also know, that Ai⊕A′

j = β with
probability p, it follows that (Ai⊕Bi)⊕ (Ai⊕A′

j)⊕ (A′

j ⊕B′

j) = γ⊕ β⊕ γ = β = (Bi⊕B′

j)
holds with probability p · q̂2. A β difference turns into an α difference after passing the
differential E0−1

with probability p̂. Thus, a pair of plaintexts (Pi, P
′

j) with Pi ⊕ P ′

j = α
generates a new pair of plaintexts (Oi, O

′

j) where Oi ⊕ O′

j = α with probability p · p̂ · q̂2. A
quartet containing these two pairs is defined as:

Definition 3. A quartet (Pi, P
′

j, Oi, O
′

j) which satisfies

Pi ⊕ P ′

j = α = Oi ⊕O′

j,

Ai ⊕A′

j = β = Bi ⊕ B′

j,

Ai ⊕Bi = γ = A′

j ⊕B′

j,

Ci ⊕Di = δ = C ′

j ⊕D′

j,

is called a correct boomerang quartet which occurs with probability Prc = p · p̂ · q̂2. A

quartet (Pi, P
′

j, Oi, O
′

j) which only satisfies the condition P ⊕ P ′

j = α = Oi ⊕ O′

j is called a

false boomerang quartet.

Figure 2 displays the structure of the boomerang distinguisher step. Any attacker who applies
a boomerang distinguisher does not know the internal states Ai, A

′

j , Bi, B
′

j, since he can only

5



P 1
0,i

P 1
s,i

P 2
0,i

P 2
s,i

P 3
0,i

P 3
s,i

P 4
0,i

P 4
s,i

αα

ββ
γ

γ

δ

δ

E0E0

E1E1

E0E0

E1E1

P 1
b,i

P 2
b,i

P 3
b,i

P 4
b,i

Fig. 2. The boomerang distinguisher

apply a chosen plaintext and ciphertext attack on the cipher. The set M which is the output
of the boomerang distinguisher, therefore contains correct and false boomerang quartets. It is
impossible to form another distinguisher which separates the correct and the false boomerang
quartets, since the interior differences β and γ cannot be computed.

Key Recovery Step. The second step of the boomerang attack is the key recovery step.
From now on, an attacker operates on the set M that was stored by the boomerang dis-
tinguisher. Let k be some key bits of the last round keys derived from the cipher keys K.
Let dk(C) be the one round partial decryption of C under the key k. The key recovery step
works as follows:

- For each key-bit combination of k
1. Initialize a counter for each key-bit combination with zero.
- For all quartets (P, P ′, O, O′) stored in M

2. Ask for the encryption of P, P ′, O, O′ and obtain the ciphertext quartet C, C ′, D, D′

respectively. Decrypt the ciphertexts C, C ′, D, D′, i.e., C̄ = dk(C), C̄ ′ = dk(C
′), D̄ =

dk(D) and D̄′ = dk(D
′).

3. Test whether the differences C̄⊕D̄ and C̄ ′⊕D̄′ have a desired difference an attacker
would expect depending on the differential being used. Increase a counter for the
used key-bits if the difference is fulfilled in both pairs.

4. Output the key-bits k with the highest counter as the correct one.

Four cases can be differentiated in Step 3, since M contains correct and false boomerang
quartets and the key-bit combination k can either be correct or false. A correct boomerang

6



quartet encrypted with the correct key bits will have the desired difference needed to pass
the test in Step 3 with probability 1. Hence, the counter for the correct key bits is increased.
The three other cases are: a correct boomerang quartet is used with false key bits (PrcKf

),
a false boomerang quartet is used with the correct key-bits (PrfKc) or a false boomerang
quartet is used with a false key-bit combination (PrfKf

). We assume that the cipher acts
like a random permutation. In these cases we assume that

PrcKf
= PrfKc = PrfKf

=: Prfilter.

The probability that a quartet in one of the three undesirable cases is counted for a certain
key bit combination is Prfilter. The differentials have to be chosen such that the counter of
the correct key bits is significantly higher than the counter of each false key bit combination.
If the differentials have a high probability the key recovery step outputs the correct key-bits
in Step 4 with a high probability much faster than exhaustive search.

4 Boomerang Attack on 5-Round ARIA

In this section we mount a boomerang attack 5-round ARIA-128. The cipher is represented
as E = E1 ◦ E0. E0 is a differential containing rounds 1 to 3. E1 is a differential covering
rounds 4 to 5. After applying the boomerang distinguisher for E1 ◦E0 using the differentials
E0 and E1 we apply it to recover 56 key-bits of the initial round-keys. We assumed, that the
S-Box acts like a random permutation. Thus, all S-Box output differences will have the same
probability for a given input difference. The notation used in our attack will be defined as:

– Pi, P
′

j , Oi, O
′

j plaintexts.
– Ci, C

′

j, Di, D
′

j ciphertexts.
– E0

Ki
(·) 3-round ARIA encryption from round 1 to 3 under key Ki, i ∈ {a, b, c, d}.

– E1−1

Ki
(·) 2-round ARIA decryption from round 5 to 4 under key Ki, i ∈ {a, b, c, d}.

– a is a known non-zero byte difference.
– ∗ is a variable unknown non-zero byte differences.

4.1 The Differential E
0

The input difference α of E0 has a non-zero difference in bytes 3, 4, 6, 8, 9, 13 and 14. A
non-zero difference ∗ transforms into an a difference through SL with probability 2−8. Thus,
we have an a difference in bytes 3, 4, 6, 8, 9, 13 and 14 with probability 2−56. DL1 then leaves
an a difference in byte 0, while the remaining bytes become zero. Since RK is linear it will
not alter this difference. SL2 produces a non-zero difference in byte 0 and DL2 spreads this
difference in bytes 3, 4, 6, 8, 9, 13 and 14. At the end of the differential we obtain a difference
called βout where all the 16 bytes of the state difference are non-zero. The probability of the
differential E0, i.e., the transformation of an α difference into a βout difference is given by

Pr(α→ βout) = 2−56.

The differential E0 is shown in Figure 3.

7



α

∗ ∗
∗ ∗

∗ ∗
∗

RK0,SL1−→

a a

a a

a a

a

DL1−→

a
RK1−→

a

SL2,DL2−→

∗ ∗
∗ ∗

∗ ∗
∗

RK2−→

∗ ∗
∗ ∗

∗ ∗
∗

SL3,DL3,RK3−→

βout

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

Fig. 3. The differential E
0

4.2 The Differential E
1

−1

The input difference δ consists of one non-zero difference in byte 0 and and a zero difference
in the remaining bytes. The non-zero difference remains after the the inverse of round 5.
The DL4 operation spreads this non-zero difference to the bytes 3, 4, 6, 8, 9, 13 and 14. We
call the remaining difference of the state γ. The probability of E1−1

is Pr(γ ← δ) = 1. The
differential E1−1

is shown in Figure 4.

δ

∗
RK

−1

5
,SL5,RK

−1

4−→

∗
DL4,SL4−→

γ

∗ ∗
∗ ∗

∗ ∗
∗

Fig. 4. The differential E
1
−1

4.3 The Differential E
0

−1

For the following steps we need that the output difference βout of the differential E0 is equal
to the input difference βin for the differential E0−1

. Note that βin and βout are not only
equal in the same positions of non-zero differences but are also equal in each byte. We will
shown how to construct such a case. From the boomerang condition inside the cipher for two
differences γ1 and γ2 we know that

βout ⊕ γ1 ⊕ γ2 = βin

holds with some probability. Since γ1 and γ2 are equal in each byte, we simply write γ. Thus
the above condition reduces to:

βout ⊕ γ ⊕ γ = βout = βin (1)

Using the differentials above, the differences βin and βout are equal with probability one.
Note that these difference occur only with some probability, which will be described more
detailed later.

8



Let A, A′, B, B′ be the internal state after SL3 in forward direction when encrypting
P, P ′, O, O′ respectively. The notation from Figure 2 is used. Since DL is linear γ can be
expressed as

γ = K3 ⊕DL3(A)⊕K3 ⊕DL3(B) = DL3(A⊕B) (2)

and as

γ = K3 ⊕DL3(A
′)⊕K3 ⊕DL3(B

′) = DL3(A
′ ⊕ B′). (3)

Equation (2) and (3) can be combined, which leaves A⊕A′ = B ⊕B′. In other words, DL3

can be undone with the probability 1 due to the boomerang condition (1). This means that
we know exactly that after DL3 in backward direction the bytes 3, 4, 6, 8, 9, 13 and 14 are
non-zero while the remaining bytes are zero. SL3 an a difference in bytes 3, 4, 6, 8, 9, 13 and
14 with probability 2−56. DL2 outputs an a difference in byte 0 and a zero difference in the
remaining bytes. SL2 then transforms the a difference in byte 0 into a non-zero difference,
which is spread into the bytes 3, 4, 6, 8, 9, 13 and 14 after DL1. The output difference α of
the differential E0−1

contains these non-zero and zero differences. The differential E0−1

has
the probability Pr(α← βin) = 2−56 to occur. It is shown in Figure 5.

βin

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

RK
−1

3
,DL3

−→

∗ ∗
∗ ∗

∗ ∗
∗

SL3−→

a a

a a

a a

a

RK
−1

2
,DL2

−→

a
SL2−→

∗
RK

−1

1
.DL1,SL1

−→

∗ ∗
∗ ∗

∗ ∗
∗

RK
−1

0−→

α

∗ ∗
∗ ∗

∗ ∗
∗

Fig. 5. The differential E
0
−1

4.4 The Attack

The attack first mounts a boomerang distinguisher to obtain all correct and false boomerang
quartets which are stored in M . A key-search is then applied to M in order to find 56 bits of
K0. Let k0 be an 56-bit subkey in the position of bytes 3, 4, 6, 8, 9, 13 and 14. Let e0,k(X)
be the partially encryption of X under the subkey k before DL1 is applied. The attack is as
follows:

1. Choose 258.5 structures S1, S2, . . . , S258.5 of 256 plaintexts Pi, i ∈ {1, 2, . . . , 258} which have
all possible values in seven bytes (3, 4, 6, 8, 9, 13 and 14). With a chosen plaintext scenario
ask for encryption of Pi to obtain the ciphertexts Ci, i.e., Ci = E(Pi).

2. For each ciphertext Ci compute a new ciphertext Di = Ci ⊕ δ, where δ is a fixed 128-bit
value with a non-zero value in byte 0 and zero in the remaining bytes.

3. With a chosen ciphertext scenario ask for the decryption of Di and obtain the new ciphertexts
Oi, i.e. Oi = E−1(Di).

9



4. Store only those quartets (Pi, P
′

j, Oi, O
′

j) in the set M where Oi⊕O′

j have a non-zero difference
in bytes 3, 4, 6, 8, 9, 13 and 14 and a zero difference in the remaining bytes.

5. For each 56-bit key k
For each quartet passing the test in Step 5:

5.1. Partially encrypt a plaintext quartet (Pi, Pj, Oi, Oj), i.e., P̄i = e0,k(Pi), P̄j = e0,k(Pj),
Ōi = e0,k(Oi) and Ōj = e0,k(Oj).

5.2. Increase a counter for the used 56-bit subkey k by one if P̄i⊕ P̄j and Ōi⊕ Ōj have an
a-difference in bytes 3, 4, 6, 8, 9, 13 and 14.

6. Output the 56-bit subkey k which counts at least two quartets as the correct one.

4.5 Analysis of the Attack

Two pools of 256 plaintexts can be combined to approximately (256)2

2
= 2111 quartets. Using

258.5 structures we obtain #PP ≈ 258.5 · 258.5 = 2169.5 quartets in total. A correct boomerang
quartet occurs with probability

Prc = Pr(α→ βout) · (Pr(γ ← δ))2 · Pr(γ1 = γ2) · Pr(α← βin)

= 2−56 · 1 · 2−56 · 2−56 = 2−168,

since all differential conditions are fulfilled. A random permutation of a difference Oi ⊕ Oj

has 9 zero byte difference with probability Prf = 2−72. Thus, after Step 4 we have about
#C = #PP ·Prc = 2169.5·2−168 = 21.5 correct and #F = #PP ·Prf = 2169.5·2−72 = 297.5 false
boomerang quartets. A false boomerang quartet passes the test in Step 5.2 with probability
Prfilter = 2−112, since we have a 56-bit filtering condition on both pairs of a quartet. Thus
#CKc = 21.5 correct boomerang quartets and #FKc = #F · Prfilter = 297.5 · 2−112 = 2−14.5

false boomerang quartets are counted with the correct key bits. About #CKc + #FKc =
21.5 + 2−14.5 ≈ 3 quartets are counted in Step 5.2 for the correct key bits.

About #CKf = #C · Prfilter = 21.5 · 2−112 = 2−110.5 correct boomerang quartets and
#FKf = #F · Prfilter = 297.5 · 2−112 = 2−14.5 false boomerang quartets are counted with the
false key bits, which are in total #CKf + #FKf = 2−110.5 + 2−14.5 = 2−14.5 counts for each
false key bit combination.

Using the Poisson distribution we can compute the success rate of our attack. The prob-
ability that the number of remaining quartets for each false key bit combination is larger
than 1 is Y ∼ Poisson(µ = 2−14.5), Pr(Y ≥ 2) ≈ 0. Therefore the probability that our attack
outputs false key bits as the correct one is very low. We expect to have a count of 3 quartets
for the correct key bits. The probability that the number of quartets counted for the correct
key bits is larger than 1 is Z ∼ Poisson(µ = 3), Pr(Z ≥ 2) ≈ 0.8.

Each structure can be analyzed sequentially. Thus the data complexity is determined
by Step 1 to 3, which is about 2 · 256 = 257 chosen plaintexts and ciphertexts. The data
complexity of Step 4, 5.1 and 5.2 is negligible compared to the data complexity of the first
two steps. The time complexity of Step 1 to 3 is 2 · 256 = 257 encryptions. Since we have
to run these steps for each structure the overall time complexity is about 258.5 · 257 = 2115.5

five round ARIA-128 encryptions. Note that due to the complexity of this attack it can be
applied to each instance of ARIA.

10



5 Boomerang Attack on 6-Round ARIA-192 and ARIA-256

The attack of the previous section can be easily extend to a 6-round attack on ARIA-192
and ARIA-256. Therefore we need the following property of ARIA.

Property 1. The round key addition (RK) and the diffusion layer (DL) can be interchanged,
due to its linearity.

Using this property we can change the order of DL5 and RK5. Thus we can use our 5-round
boomerang distinguisher to apply a 6-round attack in the following way. We add one round
after the boomerang distinguisher as shown in Figure 6. We can guess 7 byte of K6 at bytes 3,

φ

∗ ∗
∗ ∗

∗ ∗
∗

RK
−1

6
,SL6

−→

a a

a a

a a

a

DL5−→

δ

a

Fig. 6. The round after the distinguisher

4, 6, 8, 9, 13 and 14. This will allow us to choose the desired difference φ such that after SL6

in backward direction a known difference a occurs in each of these bytes. The DL5 operation
then outputs an a difference in byte 0 while the remaining bytes become zero. From this
point the 5-round boomerang distinguisher works as explained above. The data complexity
of our 6-round attack remains the same as the 5-round attack which are 257 chosen plaintexts
and ciphertexts. The overall time complexity increases to 256 · (5/6) · 2115.5 ≈ 2171.2 six round
ARIA-192 encryptions. This attack is also applicable to ARIA-256 but not on the 128 bit
version.

6 Conclusion

In this paper we have shown how to attack ARIA using the boomerang attack, which is a
strong extension of differential cryptanalysis. Our 5-round boomerang attack on ARIA-128
has a data complexity of 257 chosen plaintexts and ciphertexts. Its time complexity is of
about 2115.5 five round encryptions. We extended this attack to mount a 6-round boomerang
attack on ARIA-192 which has the same data complexity as our 5-round attack. The time
complexity of our 6-round boomerang attack is about 2171.2 six round encryptions.

To the best of our knowledge there are no better attacks on ARIA in terms of data
complexity or number of attacked rounds than the 6-round attack presented in this paper.

References

[1] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In Alfred Menezes and
Scott A. Vanstone, editors, CRYPTO, volume 537 of Lecture Notes in Computer Science, pages 2–21. Springer,
1990.

11



[2] Alex Biryukov. The Boomerang Attack on 5 and 6-Round Reduced AES. In Hans Dobbertin, Vincent Rijmen,
and Aleksandra Sowa, editors, AES Conference, volume 3373 of Lecture Notes in Computer Science, pages 11–15.
Springer, 2004.

[3] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer,
2002.

[4] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn, Jung Hwan Song, Yongjin Yeom,
E-Joong Yoon, Sangjin Lee, Jaewon Lee, Seongtaek Chee, Daewan Han, and Jin Hong. New Block Cipher: ARIA.
In Jong In Lim and Dong Hoon Lee, editors, ICISC, volume 2971 of Lecture Notes in Computer Science, pages
432–445. Springer, 2003.

[5] Peng Zhang Ruilin Li, Bing Sun and Chao Li. New Impossible Differential Cryptanalysis of ARIA. Cryptology
ePrint Archive, Report 2008/227, 2008. http://eprint.iacr.org/.

[6] David Wagner. The Boomerang Attack. In Lars R. Knudsen, editor, FSE, volume 1636 of Lecture Notes in

Computer Science, pages 156–170. Springer, 1999.
[7] Wenling Wu, Wentao Zhang, and Dengguo Feng. Impossible Differential Cryptanalysis of Reduced-Round ARIA

and Camellia. J. Comput. Sci. Technol., 22(3):449–456, 2007.

12


