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Abstract. Denial of Service (DoS) vulnerabilities are one of the major
concerns in today’s Internet. Client-puzzles offer a good mechanism to
defend servers against DoS attacks. In this paper, we introduce the no-
tion of hidden puzzle difficulty, where the attacker cannot determine the
difficulty of the puzzle without expending a minimal amount of compu-
tational resource. Game theory is used to develop defense mechanisms,
which make use of such puzzles. New puzzles that satisfy the require-
ments of the defense mechanisms have been proposed. We also show
that our defense mechanisms are more effective than the ones proposed
in the earlier work by Fallah.
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1 Introduction

Denial of Service (DoS) vulnerabilities are one of the major concerns in today’s
internet. The aim of a DoS attack is to make a network service unavailable
to its legitimate users. A denial of service attack may either be a brute force
attack, where the attacker generates spurious network traffic to exhaust server
resources or a semantic attack, where the attacker exploits the vulnerabilities of
the protocol used [18].

Proof-of-work or client-puzzles offer a good mechanism for a server to coun-
terbalance computational expenditure when subjected to a denial of service at-
tack. On receiving a request, the server generates a puzzle of appropriate diffi-
culty and sends it to the client. When a response is received, the server verifies
the solution and provides the requested service only if the solution is correct.
? Work supported by IITM Summer Fellowship Programme May-July 2009
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Thus, the server is assured that the client is willing to commit his resources to
the protocol. This approach was first proposed by Dwork and Naor [5] to control
junk mails. Over the years, lot of research has gone into this area and different
client-puzzles have been proposed [16, 11, 1, 9, 20, 21, 7, 19, 3, 23].

A challenge in the client-puzzle approach is deciding on the difficulty of the
puzzle to be sent. One approach suggested by Feng et al. [7] is to adjust the
puzzle difficulty proportional to the current load on the server. However, the
attacker may herd simple puzzles from the server during low load, solve them and
thus flood the server [18]. Juels and Brainard [11] suggested that the difficulty
of the puzzle be scaled uniformly for all clients according to the severity of the
attack on the server. In both these approaches the quality of service to legitimate
users is not considered. Alternatively, the server can generate puzzles of varying
difficulties based on a probability distribution. Such an approach based on game
theory can be seen in [2, 6].

Though there have been several works that formally analyze denial of service
attacks using game theory [2, 22, 14, 17, 6, 12, 13], only few of them analyze the
client-puzzle approach. Bencsath et al. [2] modeled the client-puzzle approach
as a single-shot strategic-form game and identified the defender’s equilibrium
strategy. Fallah [6], on the other hand, used an infinitely repeated game to come
up with puzzle-based defense mechanisms. He also proposed extensions to tackle
distributed attacks. Recently, Jun-Jie [13] applied game theory to puzzle auctions
and came up with a defense mechanism against distributed DoS. Our work is
based on the game theoretic model proposed by Fallah.

In addition to the basic properties of a good puzzle [18], we introduce the
following requirement: the difficulty of the puzzle should not be determined by
the attacker without expending a minimal amount of computational effort. We
develop game theoretic defense mechanisms which make use of such puzzles and
show that they are more effective than the existing ones [6]. In our defense mech-
anisms, we prescribe a Nash equilibrium, where the best thing for the attacker
to do is to try to solve every puzzle and give a random answer if it is too hard.
We also introduce new puzzles which are suited for our defense mechanisms.
Previous game theoretic approaches to client-puzzles [2, 6] assume that the ran-
dom answers given by the attacker are always wrong. But the attacker’s random
guess could end up being correct with a small probability. Taking this into ac-
count, we propose modifications to the game model and identify the conditions
for equilibrium. Our basic contribution in this paper is the notion of hidden
puzzle difficulty, which, to the best of our knowledge, has not been emphasized
in previous works.

The rest of the paper is organized as follows: Section 2 describes the game of
client-puzzle approach. In Section 3, defense mechanisms based on Nash equi-
librium are proposed. Section 4 specifies modifications to existing client-puzzles
to suit the proposed defense mechanisms and also introduces new puzzles. We
conclude the paper in Section 5.
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2 Game Model

We assume the network consists of a server, a set of legitimate clients/users and
an attacker. The attacker seeks to mount a denial of service attack on the client-
server protocol by overloading the computational resources of the server. The
client-puzzle approach is used as a defense mechanism by the server/defender.
In addition to the assumptions in [11], we make the following assumptions:

1. Puzzle generation and verification does not lead to denial of ser-
vice. The defender has enough resources to generate and verify puzzles for
every request of the attacker without denying service to a legitimate user.

2. The computational effort to solve a puzzle is the same for a legiti-
mate user and an attacker. When the attack is carried out from a single
machine, the time taken to solve a puzzle is the same for a legitimate user
and an attacker.

3. The attacker is rational. The attacker always chooses the best action
given his preferences and beliefs.

The interaction between the attacker and the defender during a denial of service
attack is viewed as a two-player infinitely repeated game with discounting. Both
the players are rational. The objective of the attacker is to maximize the resource
expenditure of the defender with minimum computational effort. On the other
hand, the defender seeks to maximize the resource expended by the attacker and
minimize not only his resource expenditure, but also that of a legitimate user.
The legitimate user is not considered a player in this game.

2.1 Stage-game

Let G be a strategic-form game between the defender and the attacker. The set
of all action profiles is denoted by A and the payoff function of each player i is
denoted by ui [15]. On receiving a request from the attacker, the defender gen-
erates one among n puzzles of varying difficulties. We adopt the same notations
as in [6] to represent the players’ actions. The set of actions that the defender
can take is given by A1 = {P1, P2, ..., Pn}. The action Pi, 1 ≤ i ≤ n stands
for generating a puzzle of difficulty level i. A puzzle of difficulty level i is more
difficult than a puzzle of difficulty level j if i > j. In [6], three actions were per-
mitted for the attacker, namely QT, RA and CA, where QT stands for quitting
the protocol without giving a solution, RA stands for randomly answering the
puzzle and CA stands for solving the puzzle and giving the correct answer. It has
to be noted that in our game, the attacker will not know the difficulty level of a
puzzle when he receives it. Hence, we introduce two more actions TQ (Try and
Quit) and TA (Try and Answer), where the attacker expends a minimal amount
of computational effort in an attempt to solve the puzzle. In the case of TQ,
he gives a correct answer if he could solve the puzzle with minimal effort and
quits otherwise. TA is similar, but the attacker gives a random answer when the
puzzle is not solved. The set of actions possible for the attacker is A2 = {QT,
RA, TQ, TA, CA }.



4 Harikrishna, Venkatanathan and Pandu Rangan

Table 1. Cost incurred by the players and the legitimate user when action profile a is
chosen. Here 1 ≤ l ≤ n, 1 ≤ i ≤ k and k+1 ≤ j ≤ n.

a ψ1(a) ψ2(a) ψu(a)

(Pl;QT ) αPP 0 αSPl

(Pl;RA) αPP + αV P 0 αSPl

(Pi;TQ) αPP + αV P + αm αSPi αSPi

(Pj ;TQ) αPP αSPk αSPj

(Pi;TA) αPP + αV P + αm αSPi αSPi

(Pj ;TA) αPP + αV P αSPk αSPj

(Pl; CA) αPP + αV P + αm αSPl αSPl

Since the difficulty level of the puzzle sent is unknown to the attacker, the
defender’s action is not observed by the attacker. Hence, we model the game as
a strategic-form game as against Fallah’s extensive-form game [6].

In the client-puzzle approach, we assume that the defender uses two types of
resources, one for producing and verifying the puzzle and the other for providing
the service protected by the defense mechanism. Let ψ1(a) and ψ2(a) be the cost
incurred by the defender and attacker respectively when the action profile a is
chosen. Let ψu(a) be the corresponding cost to a legitimate user. In our model,
the attacker has the same payoff function as in [6], but the payoff function for
the defender is slightly different. Since an attacker would prefer the action profile
that maximizes the defender’s cost and minimizes his cost, his payoff is given by
u2(a) = ψ1(a) - ψ2(a). The defender’s payoff depends on the level of quality of
service η, 0 ≤ η ≤ 1, that he wishes to provide to a legitimate user. The defender
seeks to maximize the effectiveness of the defense mechanism and minimize the
cost to a legitimate user. The factor η allows him to strike a balance between the
two. Hence, his payoff is given by u1(a) = (1 - η)(-ψ1(a) + ψ2(a)) + η(-ψu(a)).

We shall now quantify the costs incurred in the game as in [6]. Let T be a
reference time period. Let αm be the fraction of the time T that the defender
spends in providing the service, αPPi

be the fraction of T he takes to produce
a puzzle Pi and αV Pi

be the fraction of T he takes to verify it. Let αSPi
be the

fraction of T that the attacker or legitimate user is expected to spend to solve
Pi. Note that 1

αm
is the number of requests that can be serviced by the defender

in time T and 1
αSPi

is the number of Pi puzzles that the attacker can solve in
the same time. It is assumed that αV Pi = αV P and αPPi = αPP for 1 ≤ i ≤
n and αSP1 < ... < αSPk

< αm < αSPk+1 < ... < αSPn
. The costs incurred by

the players and the legitimate user for the various action profiles are tabulated
in Table 1. In the case of actions TQ or TA, before deciding to quit or give a
random answer respectively, the attacker expends minimal computational effort
in an attempt to solve the puzzle. It is reasonable to assume that this minimal
effort is the effort required to solve the puzzle Pk. Hence, if the defender’s action
is Pi, 1 ≤ i ≤ k, the attacker would solve the puzzle when he chooses TQ or TA.
When the defender chooses Pj , k+1 ≤ j ≤ n, the attacker expends some effort
(αSPk

) and either quits (TQ) or gives a random answer (TA). It is assumed that
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Table 2. Stage-game payoffs for the defender and the attacker. The rows indicate the
defender’s actions where, 1 ≤ i ≤ k and k+1 ≤ j ≤ n and the columns indicate the
attacker’s actions. Payoffs for the defender: ui1 = (1 - η)(-αPP ) + η(-αSPi), ui2 = (1
- η)(-αPP - αV P ) + η(-αSPi), ui3 = ui4 = ui5 = (1 - η)(-αPP - αV P - αm + αSPi) +
η(-αSPi), uj1 = (1 - η)(-αPP ) + η(-αSPj ), uj2 = (1 - η)(-αPP - αV P ) + η(-αSPj ), uj3
= (1 - η)(-αPP + αSPk ) + η(-αSPj ), uj4 = (1 - η)(-αPP - αV P + αSPk ) + η(-αSPj ),
uj5 = (1 - η)(-αPP - αV P - αm + αSPj ) + η(-αSPj ). Payoffs for the attacker: vi1 =
vj1 = αPP , vi2 = vj2 = αPP + αV P , vi3 = vi4 = vi5 = αPP + αV P + αm - αSPi , vj3
= αPP - αSPk , vj4 = αPP + αV P - αSPk , vi5 = αPP + αV P + αm - αSPj .

QT RA TQ TA CA

Pi ui1, vi1 ui2, vi2 ui3, vi3 ui4, vi4 ui5, vi5
Pj uj1, vj1 uj2, vj2 uj3, vj3 uj4, vj4 uj5, vj5

the attacker never solves a puzzle by giving a random answer and hence, the
defender does not provide service for such requests. The payoff matrix is given
in Table 2.

2.2 Repeated Game

During a denial of service attack, the attacker repeatedly sends requests to the
defender. The defender responds with a puzzle and the attacker may choose from
one of his available actions. Clearly, this scenario can be modeled as a repeated
game. Also, the probability of arrival of a request is non-zero at any point in
time and hence, the game is infinitely repeated.

Given the strategic-form game G, the infinitely repeated game of G with
the discount factor δ is an extensive-form game in which the set of terminal
histories is the set of infinite sequences (a1, a2, ...) of action profiles in G and
the preference of each player i to the terminal history (a1, a2, ...) is given by the
discounted average (1 - δ)

∑∞
t=1 δt−1ui(at) [15]. The infinitely repeated game

has perfect information if each player knows the actions taken previously by
his opponent before making his choice. But, in the game of the client-puzzle
approach, the defender, on sending a puzzle to a client, may receive another
request before receiving the solution from the client. Clearly, the defender will
not know the action taken by the attacker before sending the next puzzle. On the
other hand, the attacker will never know the difficulty level of the puzzle received
when he gives a random answer or quits. The solutions proposed in the paper
are based on the assumption that the game has perfect information. Hence, we
have proposed suitable modifications to tackle the imperfect observability of the
defender.

3 Defense Mechanisms

We propose a number of defense mechanisms against DoS attacks based on the
concept of Nash equilibrium. As in [6], the concept of Nash equilibrium is used
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in a prescriptive way, where the defender selects and takes part in a specific
equilibrium profile and the best thing for the attacker to do is to conform to his
equilibrium strategy.

The Nash equilibrium of an infinitely repeated game can either be open-
loop, where the stage-game equilibrium is played during every period irrespective
of the corresponding history, or closed-loop, where the players’ strategies are
history-dependent. Defense mechanisms based on both these types of equilibria
have been proposed.

3.1 Open-Loop Nash Equilibrium

In an open-loop Nash equilibrium, the defender plays a stage-game equilibrium
in every period. Such a Nash equilibrium may not give the highest payoff to
the players. Owing to the imperfect observability in the game of the client-
puzzle approach, open-loop strategies are desirable as the players need not know
the actions taken previously by their opponents. One desirable open-loop Nash
equilibrium is where the attacker chooses the action TA in every period. The
conditions for such an equilibrium are given in Theorem 1.

Theorem 1 In the game of the client-puzzle approach, assume that the defender
uses n puzzles P1, P2, ..., Pn such that αSP1 < ... < αSPk

< αm < αSPk+1 <
... < αSPn . Also, assume αV Pi = αV P and αPPi = αPP for 1 ≤ i ≤ n. Then,
for 0 < η < 1

2 , a stage-game Nash equilibrium of the form (p ◦ Pk ⊕ (1 - p) ◦
Pk+1; TA)?, 0 < p < 1, exists if η = αm

αm+αSPk+1−αSPk
, αSPk+1 − αSPk

> αm

and αSPk

αm
< p < 1.

Proof. Let us prove the existence of a Nash equilibrium, where the defender
uses a mixed strategy α1 = p1 ◦ P1 ⊕ p2 ◦ P2 ⊕ .. ⊕ pn ◦ Pn, where
p1 + p2 + ... + pn=1 and the attacker uses the pure strategy TA. The profile
(α1;TA) is a Nash equilibrium if

u1(Pi;TA) = u1(Pj ;TA) > u1(Pl;TA), (1)

where i, j ∈ {h|1 ≤ h ≤ n, ph 6= 0}, l ∈ {h|1 ≤ h ≤ n, ph = 0} and

u2(α1;TA) > u2(α1; a2), (2)

where a2 ∈ {QT,RA, TQ,CA}. Note that u1(Pi;TA) = (1− η)(−αPP −αV P −
αm + αSPi

) − ηαSPi
if 1 ≤ i ≤ k and u1(Pi;TA) = (1 − η)(−αPP − αV P +

αSPk
)− ηαSPi if k + 1 ≤ i ≤ n.

Let IL = {h|1 ≤ h ≤ k, ph 6= 0} and IH = {h|k + 1 ≤ h ≤ n, ph 6= 0}. When
η = 0, (1) is satisfied if |IL| = 0 and |IH | ≥ 1, where |X| is the cardinality of set
X. When η = 1

2 , (1) is satisfied if |IL| ≥ 1 and |IH | = 0. In both cases, (2) is not
satisfied. If |IL| = |IH | = 1, the corresponding Nash equilibrium is of the form

? The notation p1 ◦ a1 ⊕ p2 ◦ a2 ⊕ ... ⊕ pn ◦ an denotes a lottery over the set of
actions {a1, a2, ..., an}, where p1 + p2 + ...+ pn = 1.
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(p ◦ Pi ⊕ (1 − p) ◦ Pj ;TA), where i ∈ IL and j ∈ IH . Here, (1) is satisfied
when,

η =
αm

αm + αSPj
− αSPi

(3)

and (2) is satisfied when,

αSPj
− αSPi

> αm (4)

and p >
αSPi

αm
. From (3) and (4), it can be easily seen that the maximum value

that η can take is less than 1
2 . Hence, 0 < η < 1

2 .
We claim that i = k and j = k + 1. On the contrary, if i < k, then

u1(Pi;TA) > u1(Pk;TA), which means (1 − η)(−αPP − αV P − αm + αSPi
) −

ηαSPi > (1−η)(−αPP−αV P−αm+αSPk
)−ηαSPk

or (1−2η)αSPi > (1−2η)αSPk
.

Since η < 1
2 , the inequality reduces to αSPi > αSPk

, which is a contradiction.
Hence, i = k. Similarly, it can be shown that j = k + 1.

According to Theorem 1, two levels of puzzle difficulty is sufficient for the de-
fense mechanism. Consider two puzzles P1 and P2 such that αSP1 < αm < αSP2 .
A stage-game Nash equilibrium is then possible if the hypothesis in Theorem 1
is satisfied. However, the prescribed equilibrium strategy does not necessarily
prevent a denial of service attack.

Let N be the maximum number of requests that an attacker can send in time
T. By our assumption, puzzle generation and verification does not lead to denial
of service. Hence, N (αPP + αV P ) ≤ 1. Let β be the probability with which
the attacker solves a given puzzle. Clearly, Nβ is the expected number of attack
requests for which the defender provides service. An attacker cannot mount a
successful denial of service attack if Nβαm ≤ 1 or β ≤ 1

Nαm
. In the prescribed

Nash equilibrium β = p. Hence, the condition αSP1
αm

< p < 1
Nαm

must hold. This
is possible only if αSP1 <

1
N .

We now propose a defense mechanism based on the open-loop Nash equilib-
rium:

1. For a desirable level of quality of service η, 0 < η < 1
2 , choose two puzzles

P1 and P2 such that

αSP1 <
1
N
< αm < αSP2 ,

αSP2 − αSP1 > αm and

η =
αm

αm + αSP2 − αSP1

.

2. Choose a value for p such that

αSP1

αm
< p <

1
Nαm

.
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3. On receiving a request, generate a random variable x such that the probabil-
ity Pr(x=0) = p and Pr(x=1) = 1 - p. If x=0, send puzzle P1. Otherwise,
send puzzle P2.

It has to be noted that out of the total number of requests that the defender
can service, 1

αm
is the number of requests allocated to the defense mechanism,

while the rest are for the legitimate users.
The maximum average payoff that the defender can expect in the prescribed

equilibrium is (1 - η)(-αPP - αV P - αm + αSP1) - ηαSP1 . The attacker, on the
other hand, receives an average payoff of

y1 = αPP + αV P + pαm − αSP1 . (5)

Adopting our modeling of the players’ payoffs to Fallah’s extensive-form game
[6], for 0 < η < 1

2 and 0 < p < 1, a stage-game equilibrium of the form (p ◦
P1 ⊕ (1 - p) ◦ P2; (CA,RA)) exists if αSP1 < αm < αSP2 , αV P < αm − αSP1 ,
αV P < αSP2 − αm and η = αm−αSP1

αm−2αSP1+αSP2
. In this equilibrium, the maximum

average payoff for the defender is (1 - η)(-αPP - αV P - αm + αSP1) - ηαSP1 and
that for the attacker is

y2 = αPP + αV P + p(αm − αSP1). (6)

We now compare the effectiveness of our defense mechanism with that of the
open-loop solution given by Fallah [6]. For a given η, we choose the same values
for αPP , αV P , αSP1 and p and different values for αSP2 in the two games such
that equilibrium conditions are satisfied. It is evident that the average payoff
for the defender is the same in both the defense mechanisms, but the attacker’s
maximum average payoff is lower in our solution (from (5) and (6)). Hence, our
open-loop solution is more effective than the one given in [6].

For other possible stage-game Nash equilibria in the game of the client-puzzle
approach, refer Appendix B.

3.2 Closed-Loop Nash Equilibrium

We now investigate the existence of an equilibrium that gives the defender higher
payoff than the open-loop solution. High payoffs are possible in an infinitely
repeated game if the players are sufficiently patient and take decisions based on
the corresponding history. We now define the minmax point (v∗1 , v∗2). For each
player i,

v∗i = min
α−i∈∆(A−i)

max
ai∈Ai

ui(ai, α−i),

where ∆(X) is the set of probability distributions over X. Let the mixed strat-
egy profile resulting in v∗1 and v∗2 be M1 = (M1

1 ; M1
2 ) and M2 = (M2

1 ; M2
2 )

respectively. Here M2
1 is player 1’s minmax strategy against player 2 and M1

2 is
player 2’s minmax strategy against player 1.

Let U = {(v1, v2)|∃a ∈ A with v1 = u1(a) and v2 = u2(a)}, V be the convex
hull of U and V ∗ = {(v1, v2) ∈ V |v1 > v∗1 and v2 > v∗2}. Here, V is the set of
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feasible payoffs and V ∗ is the set of strictly individual rational payoffs (SIRP).
The existence of a perfect Nash equilibrium that supports a payoff vector in V ∗

is given by Theorem 2.

Theorem 2 (By Fudenberg and Maskin [8]) For any (v1, v2) ∈ V ∗, there
exists δ0 ∈ (0, 1) such that for all δ ∈ (δ0, 1), there exists a subgame perfect
equilibrium of the infinitely repeated game in which player i’s average payoff is
vi when the players have the discount factor δ.

Let v̄i = maxα1∈∆(A1),α2∈∆(A2) ui(α1;α2) and ūi = ui(M2
1 ,M

1
2 ). For (v1, v2)

∈ V ∗, choose a value for δ0 ∈ (0, 1) such that for each player i,

δ0 >
v̄i − vi
v̄i − v∗i

(7)

and a value for τ0 such that

v∗i − ūi
vi − ūi

< δτ00 <
vi − v̄i + δ0(v̄i − ūi)

δ0(vi − ūi)
, (8)

subject to τ0 > 0. Clearly, for any δ > δ0, there exists a corresponding τ(δ) such
that (7) and (8) hold for (δ, τ(δ)) [6]. (Refer Appendix C.1.)

Let (α1;α2) be a correlated one-shot strategy profile corresponding to (v1,
v2), i.e, ui(α1;α2) = vi for i = 1, 2. The following repeated game strategies
for player i is a perfect Nash equilibrium, where the desired payoff is achieved
through the threat of punishment.

(A) Play αi each period as long as (α1;α2) was played last period. After any
deviation from phase (A),

(B) Play M j
i , j 6= i, τ(δ) times and then start phase (A) again. If there are

any deviations while in phase (B), restart phase (B).
The following theorem identifies the minmax strategies in the game of the

client-puzzle approach.

Theorem 3 In the game of the client-puzzle approach, assume the defender uses
two puzzles P1 and P2 such that αSP1 < αm < αSP2 , αV P1 = αV P2 = αV P and
αPP1 = αPP2 = αPP . Then, for 0 < η < 1, the defender’s minmax strategy
against the attacker is p1 ◦ P1 ⊕ (1−p1) ◦ P2, where 0 ≤ p1 ≤

αSP2−αm

αSP2−αSP1
< 1

when αSP2 − αSP1 < αm and 0 ≤ p1 ≤
αSP1
αm

< 1 when αSP2 − αSP1 ≥ αm
and for 0 < p2 < 1, the attacker’s minmax strategy against the defender is (i)
p2 ◦ CA ⊕ (1− p2) ◦ RA when αSP2 −αSP1 ≤ αm, η < 1

2 and p2 = η
1−η , (ii)

p2 ◦ TA ⊕ (1−p2) ◦ RA when αSP2−αSP1 ≥ αm, η < αm

αm+αSP2−αSP1
and p2 =(

η
1−η
)(αSP2−αSP1

αm

)
, (iii) CA when η ≥ 1

2 and (iv) TA when η ≥ αm

αm+αSP2−αSP1
.

Proof. Let α1 = p1 ◦ P1 ⊕ (1 − p1) ◦ P2, 0 < p1 < 1, be the defender’s
minmax strategy against the attacker. Assume αSP2 − αSP1 < αm. Clearly,
the attacker would prefer CA over TA and TQ and RA over QT . Therefore,
the attacker’s minmax payoff is max(U2(α1;CA), U2(α1;RA)), where Ui is the
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expected payoff of player i for i = 1, 2. Note that U2(α1;CA) > U2(α1;RA) when
αPP + αV P + αm − p1αSP1 − (1 − p1)αSP2 > αPP + αV P or p1 >

αSP2−αm

αSP2−αSP1
.

Higher the value of p1 above αSP2−αm

αSP2−αSP1
, higher is the attacker’s payoff. If p1 ≤

αSP2−αm

αSP2−αSP1
, the attacker’s payoff is minimum and equal to αPP +αV P . This is the

attacker’s minmax payoff and can be enforced by the defender using the mixed
strategy p1 ◦ P1 ⊕ (1−p1) ◦ P2, where 0 ≤ p1 ≤

αSP2−αm

αSP2−αSP1
< 1. Similarly, when

αSP2 − αSP1 ≥ αm, it can be shown that the minmax strategy of the defender
against the attacker is p1 ◦ P1 ⊕ (1− p1) ◦ P2, where 0 ≤ p1 ≤

αSP1
αm

< 1.
On the other hand, let the attacker’s minmax strategy against the defender

be α2 = q1 ◦ QT ⊕ q2 ◦ RA ⊕ q3 ◦ TA ⊕ q4 ◦ TQ ⊕ q5 ◦ CA, where
q1 + q2 + q3 + q4 + q5 = 1.

Assume αSP2 − αSP1 < αm. When the attacker chooses CA, the defender
would receive equal or lower payoff than when the attacker chooses TA or TQ.
Also, RA would give the defender lower payoff than QT . Hence, the attacker’s
minmax strategy against the defender should assign non-zero probabilities to
CA and RA and zero probability to the rest, i.e, q1 = q3 = q4 = 0, q2 = p2 and
q5 = 1 − p2, 0 < p2 < 1. When 0 < η < 1

2 , the defender’s best response for the
attacker’s pure strategy RA is P1 and for CA is P2. For the attacker’s mixed
strategy α2, the defender’s best response is P1 only if U1(P1;α2) > U1(P2;α2).
This is possible when p2((1 − η)αSP1) − ηαSP1 > p2((1 − η)αSP2) − ηαSP2 or
p2 <

η
1−η . The lower the value of p2 below η

1−η , higher is the defender’s payoff.
Similarly, if p2 > η

1−η , the defender would prefer P2 over P1 and his payoff
increases as p2 increases. Clearly, the defender is minmaxed when U1(P1;α2) =
U1(P2;α2) or p2 = η

1−η . It can be shown that the attacker’s minmax strategy
against the defender is the same when αSP2 − αSP1 = αm. Hence the proof for
case (i). A similar argument can be used to prove the case (ii).

We now give a proof for case (iii). Assume η > 1
2 . The defender would then

prefer action P1 over action P2 when the attacker chooses CA. If αSP2 −αSP1 >
αm, αm

αm+αSP2−αSP1
< 1 and hence, η > αm

αm+αSP2−αSP1
. The defender’s best

response to the attacker’s action TA would then be P1. P1 is also the defender’s
best response to the attacker’s action RA. Note that the attacker’s actions RA
and TA would give the defender lower payoff than the actions QT and TQ
respectively. Since u1(P1;CA) = u1(P1;TA) and u1(P1;CA) < u1(P1;RA), the
defender is minmaxed when the attacker’s action is CA. If αSP2 − αSP1 < αm,
the defender’s best response to the attacker’s action TA would either be P1 or P2

depending on the chosen value of η. In either case, it can be seen that CA would
minmax the defender. Also, it can be shown that CA is a minmax strategy of
the attacker against the defender when η = 1

2 . Hence the proof for case (iii).
Case (iv) can be proved in a similar manner.

The defender’s minmax strategy against the attacker is either the pure strat-
egy P2 or a lottery over P1 and P2. The latter is more beneficial for a legit-
imate user as he has a chance of getting an easy puzzle. Under the condition
αSP2 −αSP1 < αm, the maximum probability with which the defender can send
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P1 and still minmax the attacker is αSP2−αm

αSP2−αSP1
. When the defender adopts such

a strategy, the attacker receives the same payoff for both CA and RA, but a
lower payoff for other actions. The defender’s payoff, on the other hand, is the
same whether the attacker chooses CA or RA.

Consider the attacker’s minmax strategy against the defender p2 ◦ CA ⊕ (1−
p2) ◦ RA, where p2 = η

1−η . Then, the strategy profile α1 = (p ◦ P1 ⊕ (1− p) ◦
P2;TA) corresponds to a strictly individual rational payoff if

αSP1

αm
< p <

αSP1 − η(αSP2 − αm + αSP1)
αm − η(αSP2 + αm − αSP1)

.

It can be easily shown that a value of 0 < p < 1 that satisfies the given inequality
exists under the conditions stated in Theorem 3. Moreover, in order to prevent
flooding, the condition p < 1

Nαm
must also hold.

As described earlier, through the threat of punishment, the desired Nash
equilibrium can be achieved. In phase (A), the strategy profile α1 is played until
a deviation occurs, after which the strategy profile α2 = (p1 ◦ P1 ⊕ (1 −
p1) ◦ P2; p2 ◦ CA ⊕ (1 − p2) ◦ RA) is played for a period τ(δ) given by
(8). It has to be noted that the only deviation that gives a momentary gain for
the attacker in phase (A) is playing CA. In phase (B), the best response for the
attacker is either CA or RA or a lottery on both. Hence, if the attacker deviates
in this phase, his payoff either decreases or remains the same. On the other hand,
his deviation in phase (B) would either increase the defender’s payoff or keep
it constant. Also, note that the strategy profile α2 is a mixed strategy Nash
equilibrium in which both players receive their minmax payoff.

For the sake of simplicity, the only deviation that we consider in phase (A) is
when a correct answer is received for puzzle P2. Since an attacker will not profit
by deviating in phase (B), deviations are not considered in this phase. On the
other hand, if deviations were considered in phase (B), a legitimate user’s action
may unnecessarily extend this phase as he always solves the given puzzle.

An important assumption that Theorem 2 makes is that a player can ob-
serve his opponent’s past mixed strategies. This is possible if the outcomes of
the players’ randomizing devices are jointly observable ex-post [8]. Moreover,
submission of partial solutions to puzzles must be allowed, so that the defender
observes the attacker’s action TA. In section 4, we propose puzzles that satisfy
this requirement.

The defense mechanism based on the closed-loop solution is given below.

1. For a given desirable level of quality of service η, 0 < η < 1
2 , choose two

puzzles P1 and P2 such that

αSP1 <
1
N
< αm < αSP2 (9)

and αSP2 − αSP1 < αm. (10)



12 Harikrishna, Venkatanathan and Pandu Rangan

2. Choose a value for p such that

αSP1

αm
< p < min

(
1

Nαm
,
αSP1 − η(αSP2 − αm + αSP1)
αm − η(αSP2 + αm − αSP1)

)
(11)

and determine the value of p1 according to

p1 =
αSP2 − αm
αSP2 − αSP1

. (12)

3. Determine the value of δ0 satisfying (7). Choose a value of δ > δ0 and the
corresponding value of τ(δ) such that (8) is satisfied for (δ, τ(δ)).

4. Phase (A) and phase (B) of the defense mechanism have been described in
Fig. 1.

The defender may receive a new request before the attacker gives his response
for the previous request. Hence, the defender will have to choose a puzzle with-
out knowing the attacker’s previous action. Fallah [6] says that the attacker’s
response to a simple puzzle is known to the defender very soon and this allows
him to compensate for the wrong decisions.

Let u′1 be the defender’s payoff function in the stage-game described earlier
and u′′1 be his payoff function in the repeated game. In order to compare the two
payoffs, we keep αPP , αV P , αSP1 and p same in both games and use different
values for αSP2 such that the equilibrium criteria are satisfied. It can be easily
seen that u′1(P1;TA) = u′1(P2;TA) = u′′1(P1;TA) < u′′1(P2;TA). The maximum
average payoff p(u′′1(P1;TA)) + (1 − p)(u′′1(P2;TA)), 0 < p < 1, that the de-
fender receives in phase (A) is definitely greater than his payoff in the open-loop
solution. Similarly, it can be shown that the defender’s minmax payoff in our
repeated game is greater than the minmax payoff in Fallah’s repeated game, i.e.,

(1− η)(−αPP − αV P )− ηαm > (1− η)(−αPP − αV P )− ηαSP2 .

In both these games, the minmax payoff serves as a lower bound on the defender’s
payoff and hence, our closed-loop solution is better than the one in [6]. Moreover,
in our defense mechanism, a legitimate user is hurt less in the punishment phase
as he has a chance of receiving P1.

In phase (B), if the attacker chooses to answer all the puzzles correctly, his
average resource expenditure would be p1αSP1 + (1 − p1)αSP2 . Since p1αSP1 +
(1− p1)αSP2 = αm, flooding is not possible in this phase.

In the repeated game, a strategy profile that corresponds to a high SIRP for
the defender is (P1; p ◦ CA ⊕ (1 − p) ◦ RA), 0 < p < 1, which has been
proposed as a closed-loop solution in [6]. (Refer Appendix C.2.) We feel that this
strategy profile is less intuitive than the one proposed as it requires the attacker
to make decisions based on the outcome of a public randomizing device.
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Fig. 1. Closed-Loop Defense Mechanism. Two random variables x and y are used,
where x determines which puzzle has to be sent in phase (A) and y determines the
puzzle to be sent in phase (B). φ(msg) is the phase corresponding to the puzzle, whose
solution has been received.
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3.3 Implementation Issues

In the defense mechanisms proposed, the defender must be capable of servicing
at least 2

αm
requests in time T . Out of this, 1

αm
requests are allocated to the

defense mechanism and the remaining are for the legitimate user. Even if all
the P1 puzzles go to the attacker, the defender can service up to 1

αm
legitimate

requests.
Consider the closed-loop defense mechanism described earlier. If an attacker

chooses to correctly answer a P2 puzzle in phase (A), the corresponding deviation
is discerned by the defender only when he receives the solution after a time
period TαSP2 . In the mean time, the attacker can correctly answer as many
puzzles as possible without immediate punishment. Eventually, the attacker will
be subjected to τ(δ) periods of the punishment phase (B) for each deviation. The
maximum number of P2 puzzles that the attacker can solve before the transition
to phase (B) is 1−p

αSP2
. Here, (1− p) is the probability with which defender sends

puzzle P2 in phase (A). To ensure that the attacker does not overwhelm the
defender through his deviations in phase (A), the defender must be able to
provide service for an additional 1−p

αSP2
attack requests in time T . On the whole,

in the closed-loop defense mechanism, the defender must be capable of servicing
up to 2

αm
+ 1−p

αSP2
requests in time T .

A legitimate user always solves the given puzzle. When he solves P2 in phase
(A), the defender would consider it a deviation and switch to phase (B). Hence,
a legitimate user is unnecessarily hurt in the absence of an attack. This problem
can be avoided by making use of the defense mechanism only when the time
elapsed since the last request is lesser than a certain value. Let t1 be the time
interval between the current request and the previous request. Consider the
following implementation.

1. If t1 ≥ Tαm, send P1.
2. Otherwise, send a puzzle according to the defense mechanism.

We now show that a denial of service attack will not be successful in the
proposed implementation. Assume that in time T , the attacker sends n1 requests
separated by a time interval greater than Tαm. Let N1 be the remaining number
of requests that he can send in T . Clearly,

N1 ≤ N
(
T − n1Tαm

T

)
= N(1− n1αm). (13)

On the whole, the attacker is expected to receive P1 puzzles for n1+pN1 requests,
where the maximum value of p is 1

Nαm
. The denial of service attack is successful

only if (n1 + pN1)αm > 1, which from (13) is not possible for 0 ≤ n1 ≤ 1
αm

.
Assume in the absence of an attack, requests arrive according to a Poisson

process with parameter λ. Since the service rate must be greater than the rate
at which the requests arrive, λ ≤ 1

Tαm
. Then,

p̃ = Pr(t1 ≥ Tαm) = e−λTαm ≥ 1
e

= 0.3679.
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The probability with which a client gets puzzle P1 in the absence of an attack
is given by p̃+ (1− p̃)p ≥ 0.3679 + 0.6321p ≥ 0.3679 for 0 ≤ p ≤ 1. This shows
that at least 36.79% of the clients’ requests receive P1 if there is no attack.

The game theoretic defense mechanisms proposed are based on the assump-
tion that both players are rational. However, from the implementation point of
view, the defender is a piece of software that runs on the server and always fol-
lows the prescribed strategy. Therefore, the attacker will never have to punish
the defender as the defender would never deviate. Hence, the outcomes of the
defender’s randomizing device need not be revealed to the attacker. Also, it is
sufficient for the punishment period to be long enough to make the attacker’s
deviation from phase (A) unprofitable. In other words, while choosing δ0, δ and
τ(δ), it is sufficient to satisfy (7) and (8) for the attacker (i = 2) alone.

3.4 Extension to Distributed Attacks

When the attacker carries out the attack from more than one machine, his com-
putational power proportionally increases. Let s be the number of machines in
the attack coalition. The attacker can then send N requests from a single ma-
chine and sN request from the attack coalition in time T . The number of P1

puzzles that he can solve in time T is s
αSP1

and the number of P2 puzzles that
he can solve in the same time is s

αSP2
.

We now modify the conditions for the open-loop defense mechanism to handle
a distributed attack.

αSP1

s
<

1
N
< αm <

αSP2

s
,

αSP2 − αSP1 > sαm,

η =
αm

αm + αSP2 − αSP1

and

αSP1

sαm
< p <

1
Nαm

.

In a distributed attack, the defender receives a large number of requests
before knowing the attacker’s decision. This delays the transition from phase (A)
to phase (B) in the closed-loop defense mechanism. To prevent a successful DoS
attack, the defender must be capable of providing service for up to 2

αm
+ s(1−p)

αSP2

requests in time T .
The conditions for the closed-loop defense mechanism to handle distributed

attacks are:
αSP1

s
<

1
N
< αm <

αSP2

s
,

αSP2 − αSP1 < sαm and

αSP1

sαm
< p < min

(
1

sNαm
,

1
s

(
αSP1 − sη(αSP2 − αm − αSP1)
αm − η(αSP2 + αm − αSP1)

))
.



16 Harikrishna, Venkatanathan and Pandu Rangan

Note that the size of the attack coalition is unknown to the defender. In [6],
a fair learning process is used to estimate the size of the attack coalition. The
same approach can be adopted in our defense mechanisms.

3.5 Considerations for Random Guesses

The defense mechanisms that we have proposed till now and the results in pre-
vious works [2, 6] are based on the assumption that the attacker cannot solve a
puzzle by giving a random answer. However, the attacker’s random guess may
sometimes end up as the correct answer. Taking this into account, we make some
changes in the game model. We make use of hint-based hash reversal puzzles [7]
in the analysis.

In a hint-based hash reversal puzzle, the defender generates a preimage X
and computes Y = H(X), where H is a cryptographic hash function. He also
computes the hint, a = X − b, where b is chosen uniformly at random from
{1, ..., D}. Y and a are then sent to the client. To solve the puzzle, the client
searches for a value 1 ≤ c ≤ D such that H(a+ c) = H(X). The difficulty level
of the puzzle is given by parameter D. Clearly, the value of Y and a do not
reveal the puzzle difficulty to the attacker.

Assume the defender uses two hint-based hash reversal puzzles P1 and P2

with difficulty parameters D1 and D2 respectively, where D2 > D1. The value
of b for P1 is chosen uniformly at random from {1, ..., D1} and that for P2 is
chosen from {1, ..., D2}. The actions that the attacker can take are {S0, S1, ...,
SD1 , ..., SD2−1}, where Sk, 0 ≤ k < D2, indicates that the attacker gives an
answer after at most k hash computations. Note that the attacker requires at
most D2 − 1 hash computations to solve P2 as there will be only one possible
solution left after failure in D2 − 1 attempts.

In order to solve a puzzle of difficulty D, the attacker will have to search
among D possible solutions. Each such solution in the search space has a proba-
bility 1

D of being correct. Note that the attacker is unaware whether the puzzle
difficulty is D1 or D2. When the attacker takes action Sk, 0 ≤ k < D2, he tries
out at most k possible solutions and if the puzzle is still not solved, he chooses
an answer uniformly at random from the remaining D2 − k possible solutions.
If the puzzle sent was P1, the attacker would have solved the puzzle with a
maximum of D1 hash computations. The probability that the attacker solves
P1 with 0 ≤ k ≤ D1 hash computations is k

D1
and his random guess from the

remaining possible solutions would be correct with a probability 1
D1

D1−k
D2−k . On

the other hand, the probability that the attacker solves P2 with 0 ≤ k < D2 hash
computations is k

D2
and his random guess from the remaining possible solutions

would be correct with a probability 1
D2
. Let pk(i) be the probability that the

attacker gives a correct answer for the puzzle Pi, i = 1, 2, by choosing action
Sk. Then, the value of pk(1) is 1

D1

D1−k
D2−k + k

D1
if 0 ≤ k ≤ D1 and 1 otherwise and

pk(2) = k+1
D2

for 0 ≤ k < D2.
Let Nh be the total number of hashes that the attacker can compute in time

T . Let αSk
(i) be the average fraction of time T that the attacker spends in
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attempting to solve the puzzle when his action is Sk and the puzzle received is
Pi. Note that αS0(i) = 0. Assume the defender chooses puzzle P1. If the attacker
chooses Sk, 1 ≤ k ≤ D1, he would compute 1 ≤ j < k hashes with a probability
1
D1

each and k hashes with a probability 1− k−1
D1

. For the action Sk, D1 < k < D2,
the attacker would compute 1 ≤ j ≤ D1 hashes, each with a probability 1

D1
. The

average number of hash computations for the action Sk is

k−1∑
j=1

j

(
1
D1

)
+ k

(
1− k − 1

D1

)
=
k(2D1 − k + 1)

2D1

when 1 ≤ k ≤ D1 and
D1∑
j=1

j

(
1
D1

)
=
D1 + 1

2

when D1 < k < D2. Hence, for 1 ≤ k ≤ D1, αSk
(1) = k(2D1−k+1)

2NhD1
and for

D1 < k < D2, αSk
(1) = D1+1

2Nh
. Similarly, for 1 ≤ k < D2, the average number of

hash computations for the action Sk is

k−1∑
j=1

j

(
1
D2

)
+ k

(
1− k − 1

D2

)
=
k(2D2 − k + 1)

2D2
.

Hence, αSk
(2) = k(2D2−k+1)

2NhD2
for 1 ≤ k < D2. Note that a legitimate user always

solves the puzzle and hence, the cost incurred by him for P1 is αSD1
(1) and that

for P2 is αSD2−1(2). In a game where the defender chooses Pi and the attacker
chooses Sk, the payoff for the attacker is αPP + αV P + pk(i)αm − αSk

(i) and
that for the defender is (1− η)(−αPP − αV P − pk(i)αm + αSk

(i)) + η(−αu(i)),
where αu(1) = αSD1

(1) and αu(2) = αSD2−1(2).
The following theorem states the conditions for a Nash equilibrium in such

a stage-game.

Theorem 4 In the game of the client-puzzle approach, assume the defender
uses two hint-based hash reversal puzzles P1 and P2 of difficulty levels D1 and D2

respectively such that αPP1 = αPP2 = αPP , αV P1 = αV P2 = αV P , 4 < D2 < Nh,
0 < D1 <

D2
2 , D1+1

2Nh
< αm < D2+1

2Nh
and D2 − D1 > 2Nhαm and the attacker

uses n actions S1, S2, ..., SD1 , ..., SD2−1. Then, for 0 < η < 1, a stage-game
Nash equilibrium of the form (p ◦ P1 ⊕ (1− p) ◦ P2;SD1), 0 < p < 1, exists if

p >
D1(2D2 −D1 + 1)− 2NhD1αm

2(D2 −D1 − 1)Nhαm + (D2 −D1)(D1 − 1)
and

η =
2Nh(D2 −D1 − 1)αm + (D2 −D1)(D1 − 1)

2Nh(D2 −D1 − 1)αm + (D2 −D1)(D2 +D1 − 1)− 2
.

Proof. Let us prove the existence of a Nash equilibrium, where the defender uses
a mixed strategy α1 = p ◦ P1⊕ (1−p) ◦ P2, 0 < p < 1 and the attacker uses a
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pure strategy Sk, 0 ≤ k < D2. The expected payoff of the attacker U2(α1;Sk) is
αPP+αV P+

(
1
D2

)
αm if k = 0, αPP+αV P+p

[(
1
D1

D1−k
D2−k+ k

D1

)
αm− k(2D1−k+1)

2NhD1

]
+

(1− p)
[
k+1
D2

αm − k(2D2−k+1)
2NhD2

]
if 1 ≤ k ≤ D1 and αPP +αV P + p

(
αm − D1+1

2Nh

)
+

(1− p)
[
k+1
D2

αm − k(2D2−k+1)
2NhD2

]
if D1 < k < D2.

The attacker would prefer SD1 over S0 when U2(α1;SD1) > U2(α1;S0), which
is possible if

p >
D1(2D2 −D1 + 1)− 2NhD1αm

2(D2 −D1 − 1)Nhαm + (D2 −D1)(D1 − 1)
. (14)

Consider the action set S1 = {S1, S2, ..., SD1}. We claim that under the
assumptions made, the second derivative U

′′

2 (α1;Sk) = p
(

1
D1Nh

− 2(D2−D1)αm

D1(D2−k)3
)
+

(1 − p)
(

1
D2Nh

)
is positive for 1 ≤ k ≤ D1 and 0 < p < 1. On the contrary, if

U
′′

2 (α1;Sk) ≤ 0, then 1
D1Nh

− 2(D2−D1)αm

D1(D2−k)3 < 0. As D1 > 0, 1
Nh

< 2(D2−D1)αm

(D2−k)3 .

Considering the assumption, αm < D2+1
2Nh

, we have (D2−D1)(D2+1)αm

(D2−k)3 > αm. Since
αm > 0, (D2 − D1)(D2 + 1) > (D2 − k)3. When k takes its highest value D1,
this inequality reduces to D2 + 1 > (D2 − D1)2, which cannot be satisfied as
D1 < D2

2 and D2 > 4. Clearly, for no value of 1 ≤ k ≤ D1, the inequality
is satisfied. This is a contradiction and hence, U

′′

2 (α1;Sk) > 0. By the second
derivative test, U2(α1;Sk) does not have a local maximum for 1 < k < D1.
It can be shown that when (14) holds, U2(α1;SD1) > U2(α1;S1). Therefore,
no action in S1 gives a higher payoff for the attacker than SD1 (provided (14)
holds). Similarly, under the assumption D2 − D1 > 2Nhαm, it can be shown
that SD1+1 gives the highest payoff for the attacker in the action set S2 =
{SD1+1, ..., SD2−1}. Under the same assumption, it is evident that the attacker
would prefer SD1 over SD1+1. We conclude that the attacker’s best response to
the defender’s mixed strategy α1 is SD1 .

On the other hand the defender does not gain by deviating from his mixed
strategy α1 when the expected payoff U1(P1;SD1) = U1(P2;SD1), which implies

η =
2Nh(D2 −D1 − 1)αm + (D2 −D1)(D1 − 1)

2Nh(D2 −D1 − 1)αm + (D2 −D1)(D2 +D1 − 1)− 2
. (15)

Under the assumptions made, it can be seen that η < 1.

Using theorem 4, for a desirable level of quality of service η, an effective
defense mechanism can be constructed by choosing appropriate values for D1,
D2 and p.

4 Client-Puzzles

4.1 Puzzle Requirements

The requirements of a puzzle in our defense mechanisms are given below.
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1. Hidden difficulty: The difficulty of the puzzle should not be determined
without a minimal number of computations.

2. High Puzzle Resolution: The granularity of puzzle difficulty must be high.
3. Partial Solution: Submission of partial solutions should be possible with-

out increasing the verification time.

The third requirement allows the defender to determine whether the attacker
chose RA or TA.

4.2 Analysis of Existing Client-Puzzles

We examine whether the existing puzzles satisfy the requirements mentioned
above.

– Hash-Reversal Puzzle: Given a random number with first n bits erased
and its hash value, the client needs to reverse the hash [11]. This puzzle
is not suitable for our defense mechanisms as the number of preceding 0
bits will indicate the puzzle difficulty. Further, the resolution of this puzzle
is low as increasing n by 1 increases the difficulty two fold. Though puzzle
resolution can be increased by using multiple hash-reversal puzzles, the other
requirements are not satisfied.

– Time-Lock Puzzle: In a time-lock puzzle [16], given n, a and t, the client
needs to compute b = a(2t) mod n. The puzzle guarantees that the client
expends a fixed amount of computational resource. Here, the parameter t
reveals the difficulty of the puzzle. Also, puzzle generation is time consuming
[7], leaving this puzzle unsuitable for the defense mechanism.

– Hint-Based Hash-Reversal Puzzle: Hint-based puzzles, described in Sec-
tion 3.5, are the closest bid as they satisfy all the requirements except partial
solution.

4.3 Design of New Client-Puzzles

We introduce three new puzzles that are designed to work with the proposed
defense mechanisms.

Puzzle 1: We propose a modification to the hash-reversal puzzle [11] in order
to hide the puzzle difficulty. We achieve this by providing a preimage with some
of the first k bits inverted. The puzzle generation and verification is detailed in
Fig. 2.

Note that the difficulty parameter k is unknown to the client. Hence, he
would carry out a brute-force search and arrive at the solution after testing
up to 2k possible preimages. On an average the client computes (2k+1)

2 hash
computations to solve the puzzle. Puzzle generation takes 2 hash computations
and the verification takes 3 hash computations. This puzzle does not allow partial
solutions to be submitted.
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Fig. 2. Puzzle 1 Description. Here, H is a cryptographic hash function, S is a
server secret, Ns and Nc are nonces generated by the server and client respectively, k
is the difficulty parameter, I is a binary number that is used to randomly invert some
of the first k bits of X and par1, par2, etc. are parameters that are specific to the
session or protocol. The defender uses the server nonce to check whether the solution
received is for a recently sent puzzle.

Client Defender

Request,Nc−−−−−−−−→
X = H(S,Ns, Nc, par1, par2, ...)

Y = H(X)

(X ′, Y ), Ns, par1, par2, ...←−−−−−−−−−−−−−−−−−−−
X ′ = X ⊕ (I1, I2, ..., Ik−1, 1, 0k+1, ..., 0n)

Find p such that p,Ns, Nc, par1, par2, ...−−−−−−−−−−−−−−−−−→
X = H(S,Ns, Nc, par1, par2, ...)

H(p) = Y H(p)
?
= H(X)

Puzzle 2: The second puzzle proposed uses a combination of the modified
hash-reversal puzzle and hint-based puzzle. It is described in Fig. 3.

Here, the client can submit a partial solution by giving the correct answer
for the first part (p) of the puzzle and a random answer for the second part (q).
It takes 4 hash computations for puzzle generation and a maximum of 6 hash
computations for verifying the puzzle solution. When l = 1, the average number
of hash computations required to solve the puzzle is (2k+1) + (D+1)

2 . Thus, the
difficulty of the puzzle can be varied exponential by adjusting k and linearly by
adjusting D. Also, the client is not aware of the difficulty when he receives the
puzzle. It has to be noted that the occurrence of a collision, while solving the first
part of the puzzle, may lead to an unprecedented change in the puzzle difficulty.
However, if the hash function used is collision resistant, the probability of such
a collision is negligible.

Puzzle 3: We propose a puzzle, where the effect of hash collision on puzzle dif-
ficulty is negligible. Refer Fig. 4 for the puzzle description. When l = 1, the aver-
age number of hash computations required to solve this puzzle is (Da+1) + (Db+1)

2
and hence, the difficulty varies linearly with Da and Db. Also, production of the
puzzle requires 4 hash computations and the verification requires a maximum of
6 hash computations.

If a collision occurs when solving the first part of the puzzle, the client would
have found X2 < X ′ such that H(X2) = Z. Following this, the client will solve
the second part with X − X2 hash computations. Further, while solving the
second part, the occurrence of collision does not increase the puzzle difficulty.
Thus, hash collisions have a marginal effect on the puzzle difficulty.



Game Theoretic Resistance to DoS Attacks Using Hidden Difficulty Puzzles 21

Fig. 3. Puzzle 2 Description. Here, S1 and S2 are server secrets, D and k are
difficulty parameters and l is a constant.

Client Defender

Request,Nc−−−−−−−−→
X = H(S1, Ns, Nc, par1, par2, ...)

Y = H(X)
a = H(S2, Ns, Nc) mod D + l
X ′ = X − a
Z = H(X ′)

(X ′′, Y, Z), Ns, par1, par2, ...←−−−−−−−−−−−−−−−−−−−−−
X ′′ = X ′ ⊕ (I1, ..., Ik−1, 1, 0k+1, ..., 0n)

Find p such that
H(p) = Z.

Find a′ such that
H(q) = Y ,

where q = p+ a′. p, q,Ns, Nc, par1, par2, ...−−−−−−−−−−−−−−−−−−−→
X = H(S1, Ns, Nc, par1, par2, ...)

a = H(S2, Ns, Nc) mod D + l

H(p)
?
= H(X − a)

H(q)
?
= H(X)

4.4 Protocol Description

We now discuss how puzzle 3 can be used in the closed-loop solution. The dif-
ficulty parameter Db is kept the same for both P1 and P2. The value of a is
set to a constant c for P1. For P2, Da is chosen according to the equilibrium
conditions and l is set to c + 1. Clearly, the attacker cannot determine puzzle
difficulty without putting in the effort required to solve P1.

When the defender receives a correct solution for a puzzle, he needs to know
whether the puzzle is P1 or P2 and the phase in which the puzzle was sent. Since
maintaining state information at the server is a source of vulnerability, the phase
and the puzzle type are included as parameters in the puzzle construction. While
φ is sent along with the puzzle, the value of n is determined by the client based
on the number of hashes he computes while solving the puzzle. Both these values
are sent back to the defender along with the puzzle solution. If the attacker tries
to forge the puzzle type or phase to avoid punishment, verification will fail. Note
that the defender does not need to know the phase or puzzle type for a random
answer.

The protocol is described in Fig. 5.

4.5 An Example

On an AMD Opteron 8354 2.2 GHz processor, the computation of the SHA-
512 hash function for an input size of 64 bytes takes 0.396 µs and the 1024-bit
DH key agreement takes 0.56 ms [4]. Assume the closed-loop solution is used to
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Fig. 4. Puzzle 3 Description. Here, b is a value chosen uniformly at random from
{1, ..., Db}.

Client Defender

Request,Nc−−−−−−−−→
X = H(S1, Ns, Nc, par1, par2, ...

Y = H(X)
a = H(S2, Ns, Nc) mod Da + l
X ′ = X − a
Z = H(X ′)

(X ′′, Y, Z), Ns, par1, par2, ...←−−−−−−−−−−−−−−−−−−−−−
X ′′ = X ′ − b

Find b′ such that
H(p) = Z,

where p = X ′′ + b′.
Find a′ such that

H(q) = Y ,
where q = p+ a′. p, q,Ns, Nc, par1, par2, ...−−−−−−−−−−−−−−−−−−−→

X = H(S1, Ns, Nc, par1, par2, ...)

a = H(S2, Ns, Nc) mod Da + l

H(p)
?
= H(X − a)

H(q)
?
= H(X)

defend a DH key agreement protocol against DoS attacks. Let the reference time
T be 2 ms. Then, αm = 0.28. The total number of hashes computable in time
T , Nh is approximately 5050. If puzzle 3 is used, the maximum number of hash
computations for puzzle production is 4 and that for verification is 6. We take
αPP = 0.0008 and αV P = 0.0012. It is reasonable to assume that the maximum
number of requestsN that the attacker can send within 2 ms is 10. If the difficulty
parameter Db is set to 500 and c = 1, αSP1 = 1

Nh

(
Db+1

2 + 1
)

= 0.05 < 1
N . For

a desirable quality of service η = 0.4, we choose αSP2 = 0.29, satisfying (9) and
(10). From αSP2 = 1

Nh

(
Da+1

2 + 1 + Db+1
2

)
, we get Da = 2423.

We choose the probabilities p = 0.357 and p1 = 0.042 based on (11) and
(12) respectively. Note that 35.7% of the requests in phase (A) and 4.2% of the
requests in phase (B) receive P1. The corresponding SIRP vector is (-0.1129,
0.0520). As mentioned in Section 3.3, while determining the punishment period,
it is sufficient to satisfy (7) and (8) for i = 2. Choosing δ0 = 0.9 and δ = 0.99 >
δ0, we obtain τ(δ) = 4.

Assume in the absence of an attack, requests arrive according to a Poisson
process at a rate of 750 requests/s. Puzzle P1 is sent if a time period Tαm = 1.12
ms has elapsed since the last request. Otherwise, a puzzle is sent according to
the defense mechanism. Clearly, p̃ = Pr(t1 ≥ 1.12 ms) = 0.432. In the absence
of an attack, a client receives P1 with probability 0.432+0.568p = 0.635 and will
have to compute around 695 hashes on an average. During an attack, a client
will have to compute on an average around 1032 hashes in phase (A) and around
1414 hashes in phase (B).
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Fig. 5. Protocol Description. Here, H is a collision resistant cryptographic hash
function, S1 and S2 are server secrets, Ns and Nc are nonces generated by the server
and client respectively, M is a session parameter, φ is the phase of the defense mech-
anism, Da and Db are the difficulty parameters and b is a value chosen uniformly at
random from {1, ..., Db}. Also, n is the puzzle type, where n = 1 for P1 and n = 2 for P2.

Client Defender

Request,Nc−−−−−−−−→
Choose puzzle type n.

X = H(S1, Ns, Nc,M, n, φ)
Y = H(X)

a =

(
1 if n = 1

H(S2, Ns, Nc) mod Da + 2 if n = 2

X ′ = X − a
Z = H(X ′)

(X ′′, Y, Z), Ns, φ←−−−−−−−−−−−−
X ′′ = X ′ − b

Find b′ such that
H(p) = Z,

where p = X ′′ + b′.
Find a′ such that

H(q) = Y,
where q = p+ a′.

Find puzzle type n. p, q,Ns, Nc, n, φ−−−−−−−−−−−→
Check that Ns is recent.

X = H(S1, Ns, Nc,M, n, φ)

a =

(
1 if n = 1

H(S2, Ns, Nc) mod Da + 2 if n = 2

H(p)
?
= H(X − a)

H(q)
?
= H(X)

5 Conclusions

In this paper, we have given emphasis on hiding the difficulty of client-puzzles
from a denial of service attacker. Using game theory, we have developed appro-
priate defense mechanisms and have shown that they are more effective than the
ones previously proposed. The concept of Nash equilibrium in infinitely repeated
games has been used to come up with suitable defense mechanisms.

Unlike previous works [2, 6], we have taken into account the fact that an at-
tacker’s random guess could sometimes be correct and have suitably modified the
game model. We have also discussed how the proposed defense mechanisms can
be extended to handle distributed attacks. New puzzles that meet the require-
ments of our defense mechanisms have been described and a specific instance of
the protocol has been given.

Future direction of work would be to incorporate the proposed defense mech-
anisms in the Internet Key Exchange (IKE) protocol [10] and to estimate its
effectiveness in real-time.
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A Notations

Mixed Strategy: Let Ai = {a1, a2, ..., an} be a set of actions permitted for
player i and ∆(Ai) denote a probability distribution over Ai. The mixed strategy
αi ∈ ∆(Ai) is denoted as p1◦a1 ⊕ p2◦a2 ⊕ ... ⊕ pn◦an, where p1+p2+...+pn = 1.

Strategy Profile: In a two player game with players 1 and 2, we represent
a pure strategy profile as (a1; a2), where a1 ∈ A1 and a2 ∈ A2 and a mixed
strategy profile as (α1;α2), where α1 ∈ ∆(A1) and α2 ∈ ∆(A2). Note that A is
the set of all pure strategy profiles in the game.

B Open-Loop Nash Equilibria

In the game of the client-puzzle approach, the set of all possible stage-game Nash
equilibria and the corresponding conditions have been listed in Table 3. In the
equilibrium profiles 1, 2 and 3, the defender sends only puzzle P1 and the attacker
always solves the puzzle. This may lead to a successful DoS attack. In the case
of profile 4, the quality of service cannot be adjusted. Among the remaining
profiles, P1 is sent with a higher probability in 5 and 6. The equilibrium profile
(p1◦P1⊕(1−p1)◦P2;TA) has been chosen for the open-loop defense mechanism
as it is more suitable in preventing a DoS attack from being successful.
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Table 3. Stage-game Equilibrium Profiles. For a desirable of quality of service
0 < η < 1 and probabilities 0 < p1 < 1 and 0 < p2 < 1, the various stage-game Nash
equilibria are given.

Equilibrium Profile Equilibrium Conditions

1. (P1;CA) η > 1
2

2. (P1;TA) η > αm
αm+αSP2−αSP1

3. (P1; p2 ◦ CA⊕ (1− p2) ◦ TA) η > max
`

1
2
, αm
αm+αSP2−αSP1

´
4. (p1 ◦ P1 ⊕ (1− p1) ◦ P2;CA) η = 1

2

αSP2 − αSP1 < αm

p1 >
αSP2−αm

αSP2−αSP1

5. (p1 ◦ P1 ⊕ (1− p1) ◦ P2;TA) η = αm
αm+αSP2−αSP1

αSP2 − αSP1 > αm
p1 >

αSP1
αm

6. (p1 ◦ P1 ⊕ (1− p1) ◦ P2; p2 ◦ CA⊕ (1− p2) ◦ TA) η = αm
αm+αSP2−αSP1

αSP2 − αSP1 = αm
p1 >

αSP1
αm

7. (p1 ◦ P1 ⊕ (1− p1) ◦ P2; p2 ◦ CA⊕ (1− p2) ◦RA) αSP2 − αSP1 < αm

p1 =
αSP2−αm

αSP2−αSP1

p2 = η
1−η

8. (p1 ◦ P1 ⊕ (1− p1) ◦ P2; p2 ◦ TA⊕ (1− p2) ◦RA) αSP2 − αSP1 > αm
p1 =

αSP1
αm

p2 =
`

η
1−η

´`αSP2−αSP1
αm

´

C Closed-Loop Nash Equilibria

C.1 Calculation of τ (δ) [8, 6]

Let ūi = ui(M2
1 ;M1

2 ) and take

v̄i = max
α1∈∆(A1),α2∈∆(A2)

ui(α1;α2),

where ∆(X) is the set of probability distributions over X. For (v1, v2) ∈ V ∗,
choose a value for δ0 ∈ (0, 1) and τ0 such that for each player i = 1, 2

vi > v̄i(1− δ0) + δ0v
∗∗
i , (16)

where

v∗∗i = (1− δτ00 )ūi + δτ00 vi, (17)

with

v∗∗i > v∗i . (18)

From (16), (17) and (18),

v∗i < (1− δτ00 )ūi + δτ00 vi <
vi − v̄i(1− δ0)

δ0
. (19)
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This necessitates

δ0 >
v̄i − vi
v̄i − v∗i

(20)

and for δ0 satisfying (20), τ0 is obtained from

v∗i − ūi
vi − ūi

< δτ00 <
vi − v̄i + δ0(v̄i − ūi)

δ0(vi − ūi)
, (21)

subject to τ0 > 0. Clearly, for any δ > δ0, there exists a corresponding τ(δ), such
that (20) and (21) hold for (δ, τ(δ)).

C.2 Strictly Individual Rational Payoffs

Consider the game of the client-puzzle approach with two puzzles P1 and P2 such
that αSP1 < αm < αSP2 . From theorem 3, it is seen that the attacker’s minmax
payoff is always u2(P1;RA) = u2(P2;RA). On the other hand, the attacker has
four possible minmax strategies against the defender.

Case (i). When αSP2 −αSP1 ≤ αm and η < 1
2 , the attacker’s minmax strategy

against the defender is p2 ◦ CA ⊕ (1−p2) ◦ RA, where p2 = η
1−η . The convex

hull of the payoff vectors, the minmax point and the set of SIRP for the game
are shown in Fig. 6.

Case (ii). When αSP2 − αSP1 ≥ αm and η < αm

αm+αSP2−αSP1
, the attacker’s

minmax strategy against the defender is p2 ◦ TA ⊕ (1 − p2) ◦ RA, where
p2 =

(
η

1−η
)(αSP2−αSP1

αm

)
. The corresponding convex hull of the payoff vectors,

minmax point and set of SIRP are shown in Fig. 7.

Case (iii). When η ≥ 1
2 , the attacker’s minmax strategy against the defender

is CA. Fig. 8 contains the convex hull of the payoff vectors, the minmax point
and the set of SIRP.

Case (iv). When η ≥ αm

αm+αSP2−αSP1
, the attacker’s minmax strategy against

the defender is TA. The convex hull of the payoff vectors, the minmax point and
the set of SIRP are shown in Fig. 9.

In all four cases, the strategy profile (P1; p ◦ CA ⊕ (1−p) ◦ RA), 0 < p < 1,
corresponds to a high SIRP for the defender. This strategy profile is not very
intuitive as it requires the attacker to make decisions based on the outcome of a
public randomizing device. Strategy profiles involving the attacker’s actions TQ
and QT are also not considered as they require the defender to maintain a timer
for the puzzles sent and check for timeouts. Two strategy profiles corresponding
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Fig. 6. Convex Hull of Payoff Vectors and the Set of SIRP for Case (i). Here,
αPP = 0.01, αV P = 0.02, αm = 0.25, αSP1 = 0.1, αSP2 = 0.3 and η = 0.4. The value
of p2 is 0.667 and the corresponding minmax point is (−0.118, 0.03).

to reasonably high SIRP for the defender are (p ◦ P1 ⊕ (1 − p) ◦ P2;TA),
0 < p < 1 (case (i)) and (p ◦ P1 ⊕ (1 − p) ◦ P2;CA), 0 < p < 1 (case (ii)).
In the case of the second profile, a successful DoS attack cannot be prevented.
Hence, the first profile has been chosen for the closed-loop defense mechanism.
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Fig. 7. Convex Hull of Payoff Vectors and the Set of SIRP for Case (ii).
Here, αPP = 0.01, αV P = 0.02, αm = 0.25, αSP1 = 0.1, αSP2 = 0.4 and η = 0.4. The
value of p2 is 0.8 and the corresponding minmax point is (−0.13, 0.03).
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Fig. 8. Convex Hull of Payoff Vectors and the Set of SIRP for Case (iii).
Here, αPP = 0.01, αV P = 0.02, αm = 0.25, αSP1 = 0.1, αSP2 = 0.3 and η = 0.6. The
minmax point is (−0.132, 0.03).
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Fig. 9. Convex Hull of Payoff Vectors and the Set of SIRP for Case (iv).
Here, αPP = 0.01, αV P = 0.02, αm = 0.25, αSP1 = 0.1, αSP2 = 0.4 and η = 0.6. The
minmax point is (−0.132, 0.03).


