
Practical Attacks on NESHA-256

Orr Dunkelman1 and Tor E. Bjørstad2

1 École Normale Supérieure, INRIA, CNRS, Paris, France.
<orr.dunkelman@ens.fr>

2 The Selmer Center, Dept. of Informatics, University of Bergen, Norway.
<tor.bjorstad@ii.uib.no>

Abstract. NESHA-256 is a cryptographic hash function designed by
Esmaeili et al. and presented at WCC ’09. We show that NESHA-256 is
highly insecure.

1 Introduction

Cryptographic hashing has been a vital research area in recent years, af-
ter significant breakthroughs were made in attacking the most common
algorithms, MD5 and SHA-1 [7, 8]. As a consequence of these advances,
and worry that the current hash standard, SHA-2, may not be as secure
as anticipated, NIST launched a public competition to establish a new
hash standard, called SHA-3 [5]. The competition attracted 64 submis-
sions, and is scheduled to conclude in 2012.

The hash algorithm NESHA-256 was proposed in [6] and presented at
WCC ’09. It was intended to be submitted as a candidate to the NIST
competition, but this did for various reasons not happen. The algorithm
is a traditional narrow-pipe Merkle-Damg̊ard construction, using a cus-
tom block cipher in the well-known Davies-Meyer mode.

2 The NESHA-256 Compression Function

The NESHA-256 algorithm is a word-based design. Its internal state con-
sists of eight 32-bit words, denoted A, . . . ,H; the message to be hashed
is processed in 512-bit chunks, M0, . . . ,M15. The message schedule of
NESHA-256 produces 16 expanded words, M̂1, . . . , M̂15 from the mes-
sage using modular addition and exclusive or, with each expanded word
depending on four message words.

In the compression function, the message, expanded message, and chain-
ing value is processed by four independent branches, whose outputs are
combined to form the new chaining value. The branches differ only by
the order in which the message and expanded message words are used.
Each branch consists of four rounds, which again consists of a nonlinear
layer based on T-functions [3] and modular addition, and a word-wise
diffusion layer based on the pseudo-Hadamard transform [4].



A high level overview of NESHA-256 compression function can be found
in Fig. 1, and a diagram showing part of the nonlinear layer is given in
Fig. 2. The T-functions f and g are defined as follows:

f(x) =x+ ((x ∗ x)|7), (1)

g(x) =x ∗ x+ 3 ∗ x+ 0xbf597fc7. (2)

For further information about the algorithm we refer to the NESHA-256
specification [6].

Mi

CVi

B1 B2 B3 B4

CVi+1

Fig. 1. High level view of NESHA-256 compression function

f g

Mi kA B

Mj
^

Fig. 2. Detail from the non-linear layer in the NESHA-256 round function



3 Attacking NESHA-256

Whereas the pseudo-Hadamard transform layer provides good wordwise
diffusion, the bit-level properties of NESHA-256 are a different story.
The only GF(2)-nonlinear components in the compression function are
modular additions, and the T-functions f and g. A salient feature of all
these functions is that bit differences propagate only to the left, from
low order to higher order bits. Furthermore, the compression function
contains no bitwise permutations, rotations or other devices to diffuse
differences from the higher order bits into the rest of the state.
An immediate consequence of this is that the compression function is
linear with respect to the high order bit of every word in the state and
message. Since we have more degrees of freedom in the message than
constraints from the chaining value, it is easy to find differences that
lead to collisions. A particularly simple one is found by inserting the
XOR difference (δ = 0x80000000) in every message word. This leads
to a zero difference in each of the 16 expanded message words, and the
difference in the four branches of the compression function becomes zero
after every other round. There are many other input differences that
work, since there are 216 possible assignments to the high bits in the
message, and only 28 possible outcomes.
As the above differential is completely independent of the choice of mes-
sage, the approach can also be used directly to find (several) second
preimages: given a fixed message block M , we immediately know that
M ′ = M0⊕ δ, . . . ,M15⊕ δ is a second preimage of the compression func-
tion. Using a C-implementation of the compression function obtained
from the NESHA-256 team [1,6]1, it appears that there are 511 non-zero
high bit differences that yield the same hash output.
Another interesting idea is to exploit the poor bitwise diffusion of NESHA-
256 to obtain preimages for the compression function. The plan is to use
a bit-slicing approach, somewhat similar to the technique used in [2].
First, we exhaustively search the 16 low order bits of the message block2

to find an input slice such that the 8 low order bits of the computed
chaining value take the desired value. Having obtained a correct con-
figuration for the first slice, the search can be repeated, building the
preimage incrementally from right to left over the remaining 31 slices.
Under normal circumstances, this procedure can be expected to yield a
preimage in roughly 25 · 28 = 213 compression function calls.
Unfortunately, the procedure does not work as expected, when tested
using the reference implementation of NESHA_Compression_Function()

from [1,6]. Looking more closely at the implementation, we observe some
odd behaviour:

1Source code is given in the appendix of the WCC pre-proceedings version of [6], but
currently not in the ePrint version of same; an electronic version of this implementation
was obtained via [1].

2The last 65 bits of the final block are used by the MD-padding, so to find preim-
ages of the hash function itself there are only 14 degrees of freedom. Under normal
circumstances, this is still plenty, since we only need to match an 8-bit constraint.



– For the low order 16-bit message slice, we obtain only 32 possible
configurations for the corresponding 8-bit output slice, each occuring
exactly 2048 times. For a random function, we would expect that all
256 slices appear with a roughly uniform distribution.

– The possible configurations of the low-order bit slices appears to be
a partition; starting from the low-order slice of some IV, it is not
possible to reach any of the other 224 configurations at all.

– For the other bit slices, we obtain 128 possible configurations of
the 8-bit output slice, each occuring 512 times. This is also highly
nonrandom.

– The output of our obtained implementation does not agree with the
test vectors given in [6].

It is currently unclear to us whether it is the implementation or the test
vectors that are incorrect. In case the implementation is correct, it would
from the above seem that it is impossible to obtain arbitrary preimages
for the hash function itself 3. If the implementation we are using contains
errors, there is little reason to believe that our attack will not work as
expected on a patched version, thus obtaining arbitrary preimages for
the full hash function after only about 213 compression function calls.
Either way, it seems that the algorithm is highly flawed.
Pseudo-preimages are of course readily computable by our bit-slicing ap-
proach, using the freedom in both message block and the IV to obtain up
to 24 degrees of freedom in each slice. Experimentally, the complexity of
this lies around 220 compression function calls. Finding “near-preimages”
is also simple, by choosing a message that yields a low-weight error (0
when possible) at each step.

4 Conclusion

We believe that NESHA-256 is highly insecure. Our analysis is quite
superficial, yet reveals severe weaknesses in the algorithm as specified. We
believe future research efforts should be directed towards the currently
unbroken candidate algorithms in the NIST Hash Function Competition,
rather than attempting to repair or patch NESHA-256.

References

1. M. R. S. Abyaneh and M. M. Hassanzadeh. Personal communication,
May 2009.

2. C. de Cannière and C. Rechberger. Preimages for Reduced SHA-0
and SHA-1. In Proceedings of CRYPTO ’08, volume 5157 of LNCS,
pages 179–202, 2008.

3. A. Klimov and A. Shamir. Cryptographic Applications of T-functions.
In Proceedings of SAC ’03, volume 3006 of LNCS, pages 248–261,
2004.

3On the other hand, a preimage of any valid hash output can still be found with
our method. As the algorithm does not hash onto the entire output space, the efficiency
of brute force search will also be greater than expected.



4. H. Lipmaa. On Differential Properties of Pseudo-Hadamard Trans-
form and Related Mappings. In Proceedings of INDOCRYPT ’02,
volume 2551 of LNCS, pages 48–61, 2002.

5. National Institute of Standards and Technology. Announcing Request
for Candidate Algorithm Nominations for a New Cryptographic Hash
Algorithm (SHA-3) Family. Federal Register, 27(212):62212–62220,
November 2007. Available online as http://csrc.nist.gov/groups/
ST/hash/documents/FR_Notice_Nov07.pdf (July 2009).

6. Y. E. Salehani, S. A. H. A. E. Tabatabaei, M. R. S. Abyaneh, and
M. M. Hassanzadeh. NESHA-256, NEw 256-bit Secure Hash Algo-
rithm. In Pre-proceedings of WCC ’09, 2009. First published in the
Cryptology ePrint Archive as http://eprint.iacr.org/2009/033.

7. X. Wang, Y. L. Yin, and H. Yu. Finding Collisions in the Full SHA-1.
In Proceedings of CRYPTO ’05, volume 3621 of LNCS, pages 17–36,
2005.

8. X. Wang and H. Yu. How to Break MD5 and Other Hash Functions.
In Proceedings of EUROCRYPT ’05, volume 3494 of LNCS, pages
19–35, 2005.



A Appendix

The examples below give a second preimage and a pseudo-preimage for
the NESHA-256 compression function, as well as a near-preimage of zero.

Collision / second preimage (1 comp. function call)
IV 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,

0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19.

M0 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000.

M1 0x80000000, 0x80000000, 0x80000000, 0x80000000,

0x80000000, 0x80000000, 0x80000000, 0x80000000,

0x80000000, 0x80000000, 0x80000000, 0x80000000,

0x80000000, 0x80000000, 0x80000000, 0x80000000.

H0 0xbb6f7a73, 0x629d3473, 0xf5c1b822, 0x8628e9dc,

0x65e358f7, 0xd5532c5a, 0xceeb5265, 0x389e294b.

H1 0xbb6f7a73, 0x629d3473, 0xf5c1b822, 0x8628e9dc,

0x65e358f7, 0xd5532c5a, 0xceeb5265, 0x389e294b.

Pseudo-preimage of 0 (853000 comp. function calls)
IV2 0x5442ce30, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000.

M2 0xa912939a, 0xb0d36eb4, 0x3a05a47a, 0x872eeed2,

0x89a5ce62, 0xcb4ba1cc, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0xda532ad8, 0x00000000, 0x00000000, 0x00000000.

H2 0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000.

Near-preimage of 0 (892 comp. function calls, weight 24)
IV3 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a,

0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19.

M3 0x835424be, 0x7fcead27, 0xb3817d8e, 0x65ab5dc0,

0x8198dc9c, 0x03d060d0, 0x00000001, 0x00000000,

0x00000000, 0x00000000, 0x00000000, 0x00000000,

0x00000000, 0x01000000, 0x00000000, 0x000001bf.

H3 0x00040f08, 0x00000000, 0x08200000, 0x00000000,

0x00000000, 0x40000000, 0x804aa0f4, 0x20010003.


