Permutation Polynomials modulo p^{n}

Rajesh P Singh * Soumen Maity ${ }^{\dagger}$

Abstract

A polynomial f over a finite ring R is called a permutation polynomial if the mapping $R \rightarrow R$ defined by f is one-to-one. In this paper we consider the problem of characterizing permutation polynomials; that is, we seek conditions on the coefficients of a polynomial which are necessary and sufficient for it to represent a permutation. We also present a new class of permutation binomials over finite field of prime order.

Keywords: Permutation polynomials, Finite rings, Combinatorial problem, Cryptography

1 Introduction

A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is said to be a permutation polynomial over a finite ring R if f permutes the elements of R. That is, f is a one-to-one map of R onto itself. A natural question to ask is: given a polynomial $f(x)=$ $a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$, what are necessary and sufficient conditions on the coefficients $a_{0}, a_{1}, \ldots, a_{d}$ for f to be permutation? Permutation polynomials have been extensively studied; see Lidl and Niederreiter [7] Chapter 7 for a survey. Permutation polynomials have been used in Cryptography and Coding [4, 8, 10]. Most studies have assumed that R is a finite field. See, for example, the survey of Lidl and Mullen [5, 6]. It is well-known that many problems on permutation polynomials over finite fields are still open [5, 6]. Similarly there are a few work on permutation polynomials modulo integers [2]. Rivest [11] considered the case where R is the ring $\left(Z_{m},+, \cdot\right)$ where m is a power of $2: m=2^{n}$. Such permutation polynomials have also been used in Cryptography recently, such as in RC6 block cipher [13], a simple permutation polynomials $f(x)=2 x^{2}+x$ modulo 2^{d} is used, where d is the word size of the machine. In this paper, we consider the case that R is the ring $\left(Z_{m},+,.\right)$ where m is a prime power: $m=p^{n}$ and give an exact characterization of permutation polynomials modulo p^{n}, for $p=2,3,5$, in terms of their coefficients. Although permutation polynomials over finite fields have been a subject of study for over 140 years, only a handful of specific families of permutation polynomials of finite fields are known so far. The construction of special types of permutation polynomials becomes interesting research problem. Here we present a new class of permutation binomials over finite field of prime order.

[^0]
2 Congruences to a prime-power modulus

In this section we recall some results from [2] that we need to formally present our results. Consider the congruences

$$
\begin{equation*}
f(x) \equiv 0 \bmod p^{a} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x) \equiv 0 \bmod p^{a-1} \tag{2}
\end{equation*}
$$

where $f(x)$ is any integral polynomial, p is prime and $a>1$. Then Theorem 123 of [2] states that

Theorem 2.1 (Hardy \& Wright [2]) The number of solutions of (1) corresponding to a solution ξ of (2) is
(a) none, if $f^{\prime}(\xi) \equiv 0 \bmod p$ and ξ is not a solution of (1);
(b) one, if $f^{\prime}(\xi) \not \equiv 0 \bmod p$;
(c) p, if $f^{\prime}(\xi) \equiv 0 \bmod p$ and ξ is a solution of (1).

The solutions of (1) corresponding to ξ may be derived from ξ, in case (b) by the solution of a linear congruence, in case (c) by adding any multiple of p^{a-1} to ξ.

As a consequence of this theorem we obtain the following result. If p is a prime, then Z_{p} denotes the finite field with p elements.

Corollary 2.1 Let p be a prime. Then $f(x)$ permutes the elements of $Z_{p^{n}}, n>1$, if and only if it permutes the elements of Z_{p} and $f^{\prime}(a) \not \equiv 0 \bmod p$ for every integer $a \in Z_{p}$.

Proof: Suppose $f(x)$ permutes the elements of $Z_{p^{n}}, n>1$. That is $f(x)$ is a one-to-one map of $Z_{p^{n}}$ onto itself. Thus the congruence

$$
\begin{equation*}
f(x) \equiv 0 \bmod p^{n} \tag{3}
\end{equation*}
$$

has exactly one root, say x. Then x satisfies

$$
\begin{equation*}
f(x) \equiv 0 \bmod p \tag{4}
\end{equation*}
$$

and is of the form $\xi+s p,\left(0 \leq s<p^{n-1}\right)$, where ξ is the root of (4) for which $0 \leq \xi<p$.
Next, suppose that ξ is the root of (4) satisfying $0 \leq \xi<p$ and $f^{\prime}(\xi) \not \equiv 0 \bmod p$. Then, according to Theorem $3.1, f(x) \equiv 0 \bmod p^{2}$ has exactly one root corresponding to the solution ξ of (4). Repeating the argument we obtain $f(x) \equiv 0 \bmod p^{n}$ has exactly one root corresponding to the solution ξ of (4) for every $n>1$.

3 Permutation polynomials modulo a prime-power

In this section we give necessary and sufficient conditions on the coefficients $a_{0}, a_{1}, \ldots, a_{d}$ for $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ to be permutation polynomial modulo p^{n}, for $p=2,3,5$. A characterization of permutation polynomials modulo 2^{n} was given in [11]. Rivest [11] proved that $f(x)$ is a permutation polynomial if and only if a_{1} is odd, $\left(a_{2}+a_{4}+a_{6}+\ldots\right)$ is even, and $\left(a_{3}+a_{5}+a_{7}+\ldots\right)$ is even. We first give a very short and simple proof of the above characterization. We also give new characterization of permutation polynomials modulo p^{n} for $p=3,5$, and $n>1$.

3.1 Characterizing permutation polynomials modulo 2^{n}

A simple characterization of permutation polynomial modulo $2^{n}, n>1$, is presented in this section. We need the following lemma in the proof of Theorem 3.1

Lemma 3.1 A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo 2 if and only if $\left(a_{1}+a_{2}+\ldots+a_{d}\right)$ is odd.

Proof: Since $0^{i}=0$ and $1^{i}=1$ modulo 2 for $i \geq 1$, we can write $f(x)=a_{0}+\left(a_{1}+\right.$ $\left.a_{2}+\cdots+a_{d}\right) x \bmod 2$. Clearly $f(x)$ is a permutation polynomial modulo 2 if and only if $\left(a_{1}+a_{2}+\cdots+a_{d}\right) \not \equiv 0 \bmod 2$, that is, $\left(a_{1}+a_{2}+\cdots+a_{d}\right)$ is odd.

Theorem 3.1 (Rivest [11]) A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo $2^{n}, n>1$, if and only if a_{1} is odd, $\left(a_{2}+a_{4}+\right.$ $\left.a_{6}+\ldots\right)$ is even, and $\left(a_{3}+a_{5}+a_{7}+\ldots\right)$ is even.

Proof: The proof given here is different from that of Rivest [11] and is relevant to the proof of theorems to follow. The theorem is proved by making use of Corollary 2.1 and Lemma 3.1. By Corollary 2.1, $f(x)$ is a permutation polynomial modulo 2^{n} if and only if it is a permutation polynomial modulo 2 and $f^{\prime}(x) \not \equiv 0 \bmod 2$ for every integer $x \in Z_{2}$. By Lemma 3.1, $f(x)$ is a permutation polynomial modulo 2 if and only if $\left(a_{1}+a_{2}+\ldots+a_{d}\right)$ is odd. It is easy to cheek that $f^{\prime}(x)=a_{1}+\left(a_{3}+a_{5}+\ldots\right) x \bmod 2$. The condition $f^{\prime}(x) \not \equiv 0 \bmod 2$ with $x=0$ gives a_{1} is odd. The condition $f^{\prime}(x) \not \equiv 0 \bmod 2$ with $x=1$ gives $\left(a_{1}+a_{3}+a_{5}+\ldots\right)$ is odd. Hence the theorem follows.

Example 3.1 The following are all permutation polynomials modulo 2^{2} of degree atmost 3 and the coefficients are from $Z_{4}: x, 3 x, x+2 x^{2}, 3 x+2 x^{2}, x+x^{3}, 3 x+2 x^{3}, x+2 x+2 x^{3}$ and $3 x+2 x^{2}+2 x^{3}$.

3.2 Characterizing permutation polynomials modulo 3^{n}

This section starts with a proposition regarding permutations of Z_{p} that is needed later on.
Proposition 3.1 [7] If $d>1$ is a divisor of $p-1$, then there exists no permutation polynomial of Z_{p} of degree d.

The proof of Proposition 3.1 is given in [7]. As an easy consequence of this proposition we get, if p is an odd prime, no permutation over Z_{p} can have degree $p-1$.

Lemma 3.2 A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo 3 if and only if $\left(a_{1}+a_{3}+\ldots\right) \not \equiv 0 \bmod 3$ and $\left(a_{2}+a_{4}+\ldots\right) \equiv$ $0 \bmod 3$.

Proof: Since $x^{2 k+1}=x \bmod 3$ and $x^{2 k}=x^{2} \bmod 3$ for $k \geq 1$, we can write $f(x)=a_{0}+$ $\left(a_{1}+a_{3}+\ldots\right) x+\left(a_{2}+a_{4}+\ldots\right) x^{2} \bmod 3$. Letting $A=\left(a_{1}+a_{3}+\ldots\right) \bmod 3$ and $B=$ $\left(a_{2}+a_{4}+\ldots\right) \bmod 3$, we can write $f(x)$ more compactly as $f(x)=a_{0}+A x+B x^{2}$. Since, for odd prime p, no permutation polynomial over Z_{p} can have degree $p-1$, we have $B \equiv 0 \bmod 3$. Thus $f(x)$ is a permutation polynomial modulo 3 if and only if $\left(a_{1}+a_{3}+\ldots\right) \not \equiv 0 \bmod 3$ and $\left(a_{2}+a_{4}+\ldots\right) \equiv 0 \bmod 3$.

Theorem 3.2 A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo $3^{n}, n>1$, if and only if
(a) $a_{1} \not \equiv 0 \bmod 3$,
(b) $\left(a_{1}+a_{3}+\ldots\right) \not \equiv 0 \bmod 3$,
(c) $\left(a_{2}+a_{4}+\ldots\right) \equiv 0 \bmod 3$,
(d) $\left(a_{1}+a_{4}+a_{7}+a_{10}+\ldots\right)+2\left(a_{2}+a_{5}+a_{8}+a_{11}+\ldots\right) \not \equiv 0 \bmod 3$, and
(e) $\left(a_{1}+a_{2}+a_{7}+a_{8}+\ldots\right)+2\left(a_{4}+a_{5}+a_{10}+a_{11}+\ldots\right) \not \equiv 0 \bmod 3$.

Proof: By Corollary 2.1, $f(x)$ is a permutation polynomial modulo 3^{n} if and only if it is a permutation polynomial modulo 3 and $f^{\prime}(x) \not \equiv 0 \bmod 3$ for every integer $x \in Z_{3}$. It is easy to verify that $f^{\prime}(x)=a_{1}+\left(2 a_{2}+a_{4}+2 a_{8}+a_{10}+2 a_{14}+a_{16}+\ldots\right) x+\left(2 a_{5}+a_{7}+2 a_{11}+a_{13}+\right.$ $\left.2 a_{17}+a_{19}+\ldots\right) x^{2} \bmod 3$. The condition $f^{\prime}(x) \not \equiv 0 \bmod 3$ with $x=0$ gives $a_{1} \not \equiv 0 \bmod 3$. The condition $f^{\prime}(x) \not \equiv 0 \bmod 3$ with $x=1$ gives $a_{1}+\left(2 a_{2}+a_{4}+2 a_{8}+a_{10}+2 a_{14}+a_{16}+\ldots\right)+\left(2 a_{5}+\right.$ $\left.a_{7}+2 a_{11}+a_{13}+2 a_{17}+a_{19}+\ldots\right) \not \equiv 0 \bmod 3$. The condition $f^{\prime}(x) \not \equiv 0 \bmod 3$ with $x=2$ gives $a_{1}+\left(a_{2}+2 a_{4}+a_{8}+2 a_{10}+a_{14}+2 a_{16}+\ldots\right)+\left(2 a_{5}+a_{7}+2 a_{11}+a_{13}+2 a_{17}+a_{19}+\ldots\right) \not \equiv 0 \bmod 3$. Now the theorem directly follows by combining above conditions and Lemma 3.2.

Example 3.2 The following are some permutation polynomials modulo 9 of degree 5 and the coefficients are from $Z_{9}: 7 x+x^{3}+8 x^{5}, x+x^{2}+8 x^{3}+8 x^{4}+7 x^{5}, 7 x+6 x^{2}+8 x^{3}+8 x^{5}$ and $x+7 x^{2}+8 x^{3}+8 x^{4}+7 x^{5}$. There are total 3888 permutation polynomials modulo 9 of degree atmost 5 and the coefficients are from Z_{9}.

3.3 Characterizing permutation polynomials modulo 5^{n}

Let p be a prime and $\mathbf{F}_{p}=G F(p)$ be the Galois field of p elements. The following result is from [9].

Theorem 3.3 (Mollin \& Small [9]) Let $G F(p)$ have characteristic different from 3. Then $f(x)=a x^{3}+b x^{2}+c x+d(a \neq 0)$ permutes $G F(p)$ if and only if $b^{2}=3 a c$ and $p \equiv 2 \bmod 3$.

We need the following lemma in the proof of Theorem 3.4.
Lemma 3.3 A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo 5 if and only if $\left(a_{4}+a_{8}+a_{12} \ldots\right) \equiv 0 \bmod 5$ and $\left(a_{2}+a_{6}+\right.$ $\left.a_{10}+\ldots\right)^{2} \equiv 3\left(a_{1}+a_{5}+a_{9}+\ldots\right)\left(a_{3}+a_{7}+a_{11}+\ldots\right) \bmod 5$.

Proof: Since $x^{4 k+1}=x \bmod 5, x^{4 k+2}=x^{2} \bmod 5, x^{4 k+3}=x^{3} \bmod 5$, and $x^{4 k}=x^{4} \bmod 5$ for $k \geq 1$, we can write $f(x)=a_{0}+\left(a_{1}+a_{5}+\ldots\right) x+\left(a_{2}+a_{6}+\ldots\right) x^{2}+\left(a_{3}+a_{7}+\ldots\right) x^{3}+$ $\left(a_{4}+a_{8}+\ldots\right) x^{4} \bmod 5$. Letting $A=\left(a_{1}+a_{5}+\ldots\right), B=\left(a_{2}+a_{6}+\ldots\right), C=\left(a_{3}+a_{7}+\ldots\right)$ and $D=\left(a_{4}+a_{8}+\ldots\right)$ we can write $f(x)=a_{0}+A x+B x^{2}+C x^{3}+D x^{4} \bmod 5$. Since no polynomial of degree 4 can be a permutation polynomial modulo 5 , we have $D \equiv 0 \bmod 5$. Now $f(x)=a_{0}+A x+B x^{2}+C x^{3} \bmod 5$ and we are in the situation of Theorem 3.3. Hence, f is a permutation if and only if $B^{2}=3 A C$.

Example 3.3 The permutation binomials modulo 5 of degree atmost 3 are: $x, x^{3}, 2 x+x^{2}+x^{3}$, $3 x+2 x^{2}+x^{3}, 3 x+3 x^{2}+x^{3}$, and $2 x+4 x^{2}+x^{3}$.

Theorem 3.4 A polynomial $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{d} x^{d}$ with integral coefficients is a permutation polynomial modulo 5^{n} if and only if
(a) $a_{1} \not \equiv 0 \bmod 5$,
(b) $\left(a_{4}+a_{8}+a_{12} \ldots\right) \equiv 0 \bmod 5$,
(c) $\left(a_{2}+a_{6}+a_{10}+\ldots\right)^{2} \equiv 3\left(a_{1}+a_{5}+a_{9}+\ldots\right)\left(a_{3}+a_{7}+a_{11}+\ldots\right) \bmod 5$,
(d) $\left(a_{1}+a_{6}+a_{11}+\ldots\right)+2\left(a_{2}+a_{7}+a_{12}+\ldots\right)+3\left(a_{3}+a_{8}+a_{13}+\ldots\right)+4\left(a_{4}+a_{9}+a_{14}+\ldots\right) \not \equiv$ 0 mod 5,
(e) $\left(a_{1}+2 a_{6}+4 a_{11}+3 a_{16}+a_{21}+\ldots\right)+2\left(2 a_{2}+4 a_{7}+3 a_{12}+a_{17}+2 a_{22}+\ldots\right)+3\left(4 a_{3}+\right.$ $\left.3 a_{8}+a_{13}+2 a_{18}+4 a_{23}+\ldots\right)+4\left(3 a_{4}+a_{9}+2 a_{14}+4 a_{19}+3 a_{24}+\ldots\right) \not \equiv 0 \bmod 5$,
(f) $\left(a_{1}+3 a_{6}+4 a_{11}+2 a_{16}+a_{21}+\ldots\right)+2\left(3 a_{2}+4 a_{7}+2 a_{12}+a_{17}+3 a_{22}+\ldots\right)+3\left(4 a_{3}+\right.$ $\left.2 a_{8}+a_{13}+3 a_{18}+4 a_{23}+\ldots\right)+4\left(2 a_{4}+a_{9}+3 a_{14}+4 a_{19}+2 a_{24}+\ldots\right) \not \equiv 0 \bmod 5$, and
(g) $\left(a_{1}+4 a_{6}+a_{11}+4 a_{16}+a_{21}+\ldots\right)+2\left(4 a_{2}+a_{7}+4 a_{12}+a_{17}+4 a_{22}+\ldots\right)+3\left(a_{3}+4 a_{8}+\right.$ $\left.a_{13}+4 a_{18}+a_{23}+\ldots\right)+4\left(4 a_{4}+a_{9}+4 a_{14}+a_{19}+4 a_{24}+\ldots\right) \not \equiv 0 \bmod 5$.

Proof: By Corollary 2.1, $f(x)$ is a permutation polynomial modulo 5^{n} if and only if it is a permutation polynomial modulo 5 and $f^{\prime}(x) \not \equiv 0 \bmod 5$ for every integer $x \in Z_{5}$. We obtain

$$
\begin{aligned}
f^{\prime}(x)= & a_{1}+\sum_{k}(4 k+2) a_{4 k+2} x+\sum_{k}(4 k+3) a_{4 k+3} x^{2}+\sum_{k}(4 k) a_{4 k} x^{3} \\
& +\sum_{k}(4 k+1) a_{4 k+1} x^{4} \\
\equiv & a_{1}+\left(2 a_{2}+a_{6}+4 a_{14}+3 a_{18}+2 a_{22}+\ldots\right) x \\
& +\left(3 a_{3}+2 a_{7}+a_{11}+4 a_{19}+3 a_{23}+\ldots\right) x^{2} \\
& +\left(4 a_{4}+3 a_{8}+2 a_{12}+a_{16}+4 a_{24}+\ldots\right) x^{3} \\
& +\left(4 a_{9}+3 a_{13}+2 a_{17}+a_{21}+4 a_{29}+\ldots\right) x^{4} \bmod 5
\end{aligned}
$$

Observe that $f^{\prime}(0) \not \equiv 0 \bmod 5$ means $a_{1} \not \equiv 0 \bmod 5 ;$
$f^{\prime}(1) \not \equiv 0 \bmod 5$ means $\left(a_{1}+a_{6}+a_{11}+\ldots\right)+2\left(a_{2}+a_{7}+a_{12}+\ldots\right)+3\left(a_{3}+a_{8}+a_{13}+\ldots\right)+$ $4\left(a_{4}+a_{9}+a_{14}+\ldots\right) \not \equiv 0 \bmod 5 ;$
$f^{\prime}(2) \not \equiv 0 \bmod 5$ means $\left(a_{1}+2 a_{6}+4 a_{11}+3 a_{16}+a_{21}+\ldots\right)+2\left(2 a_{2}+4 a_{7}+3 a_{12}+a_{17}+2 a_{22}+\ldots\right)$
$+3\left(4 a_{3}+3 a_{8}+a_{13}+2 a_{18}+4 a_{23}+\ldots\right)+4\left(3 a_{4}+a_{9}+2 a_{14}+4 a_{19}+3 a_{24}+\ldots\right) \not \equiv 0 \bmod 5 ;$
$f^{\prime}(3) \not \equiv 0 \bmod 5$ means $\left(a_{1}+3 a_{6}+4 a_{11}+2 a_{16}+a_{21}+\ldots\right)+2\left(3 a_{2}+4 a_{7}+2 a_{12}+a_{17}+3 a_{22}+\ldots\right)$ $+3\left(4 a_{3}+2 a_{8}+a_{13}+3 a_{18}+4 a_{23}+\ldots\right)+4\left(2 a_{4}+a_{9}+3 a_{14}+4 a_{19}+2 a_{24}+\ldots\right) \not \equiv 0 \bmod 5$; and $f^{\prime}(4) \not \equiv 0 \bmod 5$ means $\left(a_{1}+4 a_{6}+a_{11}+4 a_{16}+a_{21}+\ldots\right)+2\left(4 a_{2}+a_{7}+4 a_{12}+a_{17}+4 a_{22}+\ldots\right)$ $+3\left(a_{3}+4 a_{8}+a_{13}+4 a_{18}+a_{23}+\ldots\right)+4\left(4 a_{4}+a_{9}+4 a_{14}+a_{19}+4 a_{24}+\ldots\right) \not \equiv 0 \bmod 5$. Now the theorem directly follows by combining above conditions and Lemma 3.3. However the situation becomes complicated for $p=7,11,13, \ldots$ Thus, in the following section we consider the problem of characterizing only permutation binomials modulo prime p.

4 A new class of permutation binomials over finite field F_{p}

Let p be a prime and $\mathbf{F}_{p}=G F(p)$ be the Galois field of p elements. In [5], the open problem P2 states: Find new classes of permutation polynomials of $\mathbf{F}_{q}, q=p^{n}, n$ is a positive integer. Recently some classes of permutation binomials are presented in [1, 3]. Here we present a new class of permutation binomials of \mathbf{F}_{p}. We now recall the definition and some properties of quadratic residue.

Definition 4.1 Suppose p is an odd prime and a is an integer. a is defined to be a quadratic residue modulo p if $a \not \equiv 0(\bmod p)$ and the congruence $y^{2} \equiv a(\bmod p)$ has a solution $y \in \mathbf{F}_{p}$. a is defined to be a quadratic non-residue modulo p if $a \not \equiv 0(\bmod p)$ and a is not a quadratic residue modulo p.

Euler's Criteria states that a is a quadratic residue modulo p if and only if $a^{\frac{p-1}{2}} \equiv 1 \bmod p$ and a is a quadratic non-residue modulo p if and only if $a^{\frac{p-1}{2}} \equiv-1 \bmod p$.

Theorem 4.1 Let p be a prime and $f(x)=x^{u}\left(x^{\frac{p-1}{2}}+a\right)$ where u is an integer such that $(u, p-1)=1$ and a is a non-zero element in \boldsymbol{F}_{p}. Then $f(x)$ is a permutation binomial over \boldsymbol{F}_{p} if and only if $\left(a^{2}-1\right)^{\frac{p-1}{2}}=1 \bmod p$.

Proof: It is known that the monomial x^{u} is a permutation polynomial of \mathbf{F}_{p} if and only if $\operatorname{gcd}(u, p-1)=1$. Using Euler's criteria we can rewrite

$$
f(x)= \begin{cases}0, & \text { if } x=0 \\ x^{u}(a+1), & \text { if } x \text { is quadratic residue } \\ x^{u}(a-1), & \text { if } x \text { is quadratic non-residue }\end{cases}
$$

There are $\frac{1}{2}(p-1)$ residues and $\frac{1}{2}(p-1)$ non-residues of an odd prime p. The product of two residues, or of two non-residues, is a residue, while the product of a residue and a nonresidue is a non-residue. Since u is odd, x^{u} is residue (resp. non-residue) if x is residue (resp. non-residue). If both $a+1$ and $a-1$ are residues, then $f(x)$ maps residues to residues and non-residues to non-residues and if both $a+1$ and $a-1$ are non-residues, then $f(x)$ maps residues to non-residues and non-residues to residues. On the other hand, if $a+1$ is residue and $a-1$ is non-residue then $f(x)$ maps all the non-zero elements to residues and if $a+1$ is non-residue and $a-1$ is residue then $f(x)$ maps all the non-zero elements to non-residues. Since x^{u} is a permutation polynomial, therefore $f(x)$ is a permutation polynomial if and only if both $a+1$ and $a-1$ are either quadratic residues or quadratic non residues. In other words, $f(x)$ is a permutation polynomial over \mathbf{F}_{p} if and only if $\left(a^{2}-1\right)^{\frac{p-1}{2}}=1 \bmod p$. In Theorem 4.1, if the degree $u+\frac{p-1}{2}$ of binomial $f(x)$ is greater than $p-1$ for some values of u then the polynomial is reduced modulo $x^{p}-x$. In the following, as an application of Theorem 4.1, we give some examples of permutation binomials of \mathbf{F}_{p}.

Example 4.1 Let $p=7$. Then $u=1,5$. Thus $x\left(x^{3}+a\right)$ and $x^{5}\left(x^{3}+a\right) \bmod x^{7}-x$ are permutation binomials over \boldsymbol{F}_{7} if and only if $\left(a^{2}-1\right)^{3} \equiv 1 \bmod 7$. That is, $x\left(x^{3}+a\right)$ and $x^{5}\left(x^{3}+a\right)$ are permutation binomials over \boldsymbol{F}_{7} for $a=3$, 4. We can write $x^{5}\left(x^{3}+a\right) \equiv$ $x^{2}+a x^{5} \equiv a x^{2}\left(x^{3}+a^{-1}\right) \bmod x^{7}-x$. Hence the permutation binomials over \boldsymbol{F}_{7} are $x\left(x^{3}+3\right)$, $x\left(x^{3}+4\right), x^{2}\left(x^{3}+2\right)$, and $x^{2}\left(x^{3}+5\right)$.

Example 4.2 Let $p=11$. Then $x^{u}\left(x^{5}+a\right)$ is a permutation binomial of \boldsymbol{F}_{11} for $u=1,3,7,9$ and $a=2,4,7,9$. Therefore $x\left(x^{5}+2\right), x\left(x^{5}+4\right), x\left(x^{5}+7\right), x\left(x^{5}+9\right), x^{3}\left(x^{5}+2\right), x^{3}\left(x^{5}+4\right)$, $x^{3}\left(x^{5}+7\right), x^{3}\left(x^{5}+9\right), x^{2}\left(x^{5}+3\right), x^{2}\left(x^{5}+5\right), x^{2}\left(x^{5}+6\right), x^{2}\left(x^{5}+8\right), x^{4}\left(x^{5}+3\right), x^{4}\left(x^{5}+5\right)$, $x^{4}\left(x^{5}+6\right), x^{4}\left(x^{5}+8\right)$ are permutation binomials of \boldsymbol{F}_{11}.

References

[1] A. Akbary and Q. Wang. A generalized Lucas sequence and permutation binomials. Proceeding of the American Mathematical Socity, 134(1), 15-22, 2005.
[2] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers, Oxford Science Publications, 5th ed., 1979.
[3] L. Wang. On permutation polynomials. Finite Fields and Their Applications, 8, 311-322, 2002.
[4] R. Lidl, On cryptosystems based on permutation polynomials and finite fields, In Advance in Cryptology-EuroCrypt 1984, Lecture Notes in Computer Science, Vol. 209, 10-15, 1985.
[5] R. Lidl and G. L. Mullen. When does a polynomial over a finite field permute the elements of the field? The American Math. Monthly, 95(3), 243-246, 1988.
[6] R. Lidl and G. L. Mullen. When does a polynomial over a finite field permute the elements of the field? II The American Math. Monthly, 100(1), 71-74, 1993.
[7] R. Lidl and H. Niederreiter. Finite Fields. Addision-Wesley, 1983.
[8] R. Lidl and W. B. Muller. Permutation polynomials in RSA-ctyptosystems. In Proc. CRYPTO 83, 293-301, 1948, New York, Plenum Press.
[9] R. A. Mollin and C. Small. On permutation polynomials over finite fields. Internat. J. Math. \& Math. Sci., 10 (3), 1987, 535-544.
[10] Gary L. Mullen, Permutation polynomials and nonsingular feedback shift registers over finite fields. IEEE Trans. Information Theory, 35 (4), 1989, 900-902.
[11] R. L. Rivest, Permutation polynomials modulo 2^{w}. Finite Fields and Their Applications, 7, 287-292, 2001.
[12] R. L. Rivest, Adi Shamir, and L. M. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21(2), 120-126, 1978.
[13] R. L. Rivest, M. J. B. Robshaw, R. Sidney, and Y.L. Yin, The RC6 block cipher. See http://theory.lcs.mit.edu/ rivest/rc6.pdf or http://csrc.nist.gov/encryption/aes/.

[^0]: *Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati 781 039, Assam, INDIA. Email addresses: r.pratap@iitg.ernet.in
 ${ }^{\dagger}$ Department of Mathematics Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, INDIA. Email addresses: sm@maths.iitkgp.ernet.in

