
A Secure and Efficient Authenticated Diffie–Hellman Protocol

Augustin P. Sarr1, Philippe Elbaz–Vincent2, and Jean–Claude Bajard3

1Netheos R&D
1,2Institut Fourier – CNRS, Université Grenoble 1
3LIP6 – CNRS, Université Pierre et Marie Curie

Abstract. The Exponential Challenge Response (XRC) and Dual Exponential Challenge
Response (DCR) signature schemes are the building blocks of the HMQV protocol. We pro-
pose a complementary analysis of these schemes; on the basis of this analysis we show how
impersonation and man in the middle attacks can be mounted against the HMQV protocol
when some session specific information leakages happen. We define the Full Exponential
Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR) sig-
nature schemes; using these schemes we propose the Fully Hashed MQV protocol (with
security arguments), which preserves the remarkable performance of the (H)MQV protocols
and resists the attacks we present.

1 Introduction

Implicitly authenticated key exchange protocols have gained wide acceptance; in addition to
providing implicit authentication, these protocols are usually more efficient than the explicitly
authenticated ones. The HMQV protocol [11], inspired by the famous MQV protocol [14, 1, 2,
9, 10, 20, 8], was proposed with security arguments in the Canetti–Krawczyk model [5]. HMQV
was designed in accord with the principle that “a good security system is not one that denies the
possibility of failures but rather one designed to confine the adverse effects of such failures to the
possible minimum” [11]. Session secret leakages may happen; in that case the exposed session
may be compromised, but this should have no effect on the security of any other unexposed
session.

In this paper, we propose a complementary analysis of the Exponential Challenge Response
(XCR) and Dual Exponential Challenge Response (DCR) signature schemes. On the basis of this
analysis we show how impersonation and man in the middle attacks can be performed against
HMQV when some session specific information leakages happen. We propose the Full Expo-
nential Challenge Response (FXRC) and Full Dual Exponential Challenge Response (FDCR)
signature schemes. With these schemes we define the Fully Hashed MQV protocol (with security
arguments), which resists the attacks we present and preserves the remarkable performance of
the (H)MQV protocol.

This paper is organized as follows. In section 2 we analyze some aspects of the XCR and
DCR signatures schemes; we show how session specific information leakages can be used for
impersonation and man in the middle attacks against (H)MQV. In section 3 we define a Canetti–
Krawczyk type security model [5, 13] for the (H)MQV type protocols. In section 4, we propose
the FXCR and FDCR signature schemes; and using these schemes we propose the FHMQV
protocol. Section 5 deals with the FHMQV security arguments; in section 6 we present the
FHMQV–C protocol (the ‘C’ stands for key confirmation) , which provides additional security
attributes, namely key confirmation and perfect forward secrecy. We conclude in section 7.

The following notations are used in this paper: G is a multiplicatively written cyclic group
of prime order q generated by G, |q| is the bit length of q. The identity element in G is denoted 1̄,

1

and G∗ is the set of non–identity elements in G; all public keys are supposed to belong to G∗.
For a group element X ∈ G, the lowercase x denotes the discrete logarithm of X in base G. The
identity of an entity with public key A (and private key a) is denoted Â (Â is supposed to contain
A, or sufficient information to learn A); For two identities Â 6= B̂, we suppose that no substring
of Â equals B̂, and conversely. H is a λ–bit hash function where λ is the length of the desired
session key, and H̄ is a l–bit hash function where l = (⌊log2 q⌋ + 1)/2 (see [11, Remark 4.2] for a
discussion on the value of l); the concatenation of n strings s1, . . . , sn is denoted (s1, . . . , sn). The
symbol “∈R” stands for “chosen uniformly at random in.” The Computational Diffie–Hellman
(CDH) assumption is supposed to hold in G, i.e. given U = Gu and V = Gv with U, V ∈R G∗,
computing CDH(U, V) = Guv is infeasible.

2 Complementary Analysis of the HMQV design

We show in this section how session specific information leakages, can be used for impersonation
and man in the middle attacks against HMQV.

Note. In our description of HMQV, the ephemeral public keys are tested for membership in G∗.
Ephemeral public key validation is voluntarily omitted in [11], but the HMQV protocol is known
to be insecure if ephemeral keys are not correctly validated [18, 17].

2.1 Exploiting Secret Leakage in the XCR and DCR Signature Schemes

Definition 1 (Exponential Challenge–Response Signature [11]). Let B̂ be an entity with public
key B ∈ G∗, and Â a verifier. B̂’s signature on a message m and challenge X provided by Â
(X = Gx, x ∈R [1, q − 1] is chosen and kept secret by Â) is Sig

B̂
(m, X) = (Y, XsB), where Y =

Gy, y ∈R [1, q − 1] is chosen by B̂, and sB = y + H̄(Y, m)b. The verifier Â accepts a pair (Y, σB)
provided by B̂ as a valid signature if Y ∈ G∗ and (Y Be)x = σB, where e = H̄(Y, m).

In this scheme, the information sB “allows” an attacker to generate valid signatures. Indeed,
given the sB, “corresponding” to some message m and some challenge Y , one can generate a
valid signature on any message–challenge pair (m, X1) (X1 is a new challenge and the message is
unchanged). In a (H)MQV1 session between Â and B̂, the identity of B̂ stands for Â’s message
to B̂, and thus does not change from one session (between Â and B̂) to another; this can be
exploited when sB leakage happens.

Proposition 1. Let B̂ be an entity, with public key B ∈ G∗, signing a message–challenge pair
(m, X). If an attacker learns the β most significant bits of sB, then it can generate a valid
signature with respect to B̂’s public key, on any message–challenge pair (m, X1) (the message is

unchanged); this requires O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity.

Proof. From Shank’s Baby Step Giant Step (BSGS) lemma [25], given σB = XsB , X ∈ 〈G〉, and

the β most significant bits of sB, one can compute sB in O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space complexity. Hence given a message–challenge pair (m, X1), the attacker replays Y (since
Y is chosen by the signer) and produces (Y, XsB

1) as a signature.

Shank’s method is deterministic, but requires a large storage; using the Pollard’s Kangaroo

method [24, 25] one can compute sB with negligible storage in probabilistic run time O
(

2
|q|−β

2
)

.

Definition 2 (Dual XCR Signature [11]). Let Â and B̂ be two parties with keys A, B ∈
G; and m1, m2 two messages. The Dual XCR (DCR) signature of Â and B̂ on m1, m2 is
DSig

Â,B̂
(m1, m2, X, Y) = G(x+da)(y+eb), where X = Gx, Y = Gy ∈R G∗ are chosen respectively

by Â and B̂, d = H̄(X, m1), and e = H̄(Y, m2).

1When regarded through a XCR scheme, the XCR variant corresponding to MQV does not use a message in
the computation of sB (sB = y + Ȳ b, with Ȳ = 2l + (Ẏ mod 2l) where Ẏ is the integer representation of Y), and
thus can be analyzed as if it takes a constant message.

2

The DCR signature of Â and B̂ on messages m1, m2 is a XCR signature of Â on m1 and
challenge Y Be. Hence, an attacker which learns the β most significant bits of sA = x + da
can, for any message m′

2, and any challenge Y ′ from B̂, compute a valid DCR signature of Â

and B̂ on messages m1, m′
2 and challenges X, Y ′. This requires O

(

2
|q|−β

2
)

time complexity and

O
(

2
|q|−β

2
)

space complexity.

2.2 Exploiting Session Secret Leakages in the HMQV Protocol

A HMQV key exchange between two parties Â and B̂ is as in Protocol 1; if any verification fails,
the execution aborts.

Protocol 1 HMQV key exchange

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Send (B̂, Â, Y) to Â.
(d) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
(e) Compute sB = y + eb mod q, σB = (XAd)sB , and K = H(σB).

III) At receipt of (B̂, Â, Y), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, B̂) and e = H̄(Y, Â).
(c) Compute sA = x + da mod q, σA = (Y Be)sA , and K = H(σA).

IV) The shared session key is K.

Roughly speaking, the secret shared between Â and B̂ is a DCR signature with messages
fixed to Â and B̂. In [11], Krawczyk presents the XCR scheme as a new variant of the following
Schnorr’s identification scheme:
(a) The signer B̂ chooses y ∈R [1, q − 1] and sends Y = Gy to Â.
(b) The verifier Â chooses e ∈R [1, q − 1] and sends e to B̂.
(c) B̂ computes s = y + eb and sends s to Â.
(d) Â accepts s as a valid signature if Y ∈ G∗ and Gs = Y Be.

There is however a subtlety: in Schnorr’s scheme the random element e, used by B̂ when
computing s, is always provided by the verifier Â; while in the XCR and DCR schemes, when
Â’s message m1 is fixed (to B̂ as in all the sessions between Â and B̂) the value of e, used when
computing sB, depends only on the ephemeral key Y provided by (the signer) B̂. This is what
makes the replay attacks possible against the XCR and DCR schemes, and the (C, H)MQV(–C)
protocols, when ephemeral secret exponent leakage happens.

2.2.1 Impersonation Attack using Session Secret Leakage

We show in this section how ephemeral secret exponent (sA or sB) leakage can be used for
impersonation attack2. The following definition gives a broader view of the points needed for
impersonation attack; these points are recalled to make the analysis reading easier.

2This attack is also reported in [3] (Appendix C). This work is however independent from [3], as we submitted
at WCC 2009 (on February 9th, 2009) a paper (#1569187679) which describe this attack, therefore before [3] was
posted at http://eprint.iacr.org/2009/079 (on February 12th, 2009).

3

http://eprint.iacr.org/2009/079

Definition 3 (Point for impersonation attack, i–point). Let Â and B̂ be two entities with
respective keys A, B ∈ G∗. A group element R ∈ G∗ is said to be a HMQV i–point for Â to B̂

if there exists some k ∈ [1, q − 1] such that R = GkA−H̄(R,B̂); k is said to be the decomposition.

Proposition 2. Let G = 〈G〉 be a group with prime order q, Â and B̂ two entities with respective
keys A, B ∈ G∗. There is at least q − (2l + 1) HMQV i–points for Â to B̂.

Proof. Let G be the image of G through (R
H̄

−→ R̄ = H̄(R, B̂)). Since H̄ is a l–bit hash function,
the cardinal of G is 6 2l. For every Ȳ ∈ G there is at most one element R0 ∈ G such that
R̄0 = Ȳ and R0AR̄0 = 1̄; since the existence of another element R′

0 ∈ G, which satisfies R̄′
0 = Ȳ

and R′
0AR̄′

0 = 1̄, would imply R0AȲ = R′
0AȲ i.e. R′

0 = R0.
Let R0 be the set of such R0 points. The cardinal of R0 is at most 2l. Every element

R ∈ G∗ \ R0 is a HMQV i–point for Â to B̂. Indeed for a such element R, RAR̄ 6= 1̄ and

since R and A are in G∗, there exists some k ∈ [1, q − 1] such that RAR̄ = Gk, or equivalently

R = GkA−R̄. Hence there is at least q − (2l + 1) HMQV i–points for Â to B̂.

As shown in Attack 2 given a HMQV i–point for Â to B̂ X ′ and its decomposition k, one can
impersonate Â to B̂ with no more computations than needed by a HMQV execution. Notice that
the important aspect is knowing the decomposition of an i–point.

Attack 2 HMQV impersonation of Â to B̂

Require: A HMQV i–point for Â to B̂ X ′ and its decomposition k.
(1) Send (Â, B̂, X ′) to B̂.
(2) Intercept B̂’s message to Â (B̂, Â, Y) and do the following:

(a) Verify that Y ∈ G∗.

(b) Compute σA =
(

Y Be
)k

where e = H̄(Y, Â).
(c) Compute K = H(σA).

(3) Use K to communicate with B̂ on behalf of Â.

A naive approach for decomposed i–point for Â to B̂ search consists in choosing u ∈ {0, 1}l

and computing the 2l points Rku = GkA−u, for k = 1, . . . , 2l. If the hash function H̄ is supposed
to be a random oracle, the probability that H̄(Rku, B̂) equals u is Pr(H̄(Rku, B̂) = u) = 1/2l.
The number of successes (Rku : H̄(Rku, B̂) = u) in these computations is a binomial random
variable with parameters (2l, 1/2l); hence these computations lead to a decomposed i–point with

probability Prs = 1 − (1 − 1/2l)2l
≈ 1 − e−1 ≈ 0.63 > 1/2 for l sufficiently large. Pollard’s rho

algorithm [24, 26, 25] can be modified to take into account decomposed i–points detection, the
resulting algorithm produces either a decomposed i–point or a discrete logarithm; this approach
is expected to duplicate the efficiency of the rho algorithm.

It is worthwhile to mention that the MQV variant wherein the shared secret between two

parties Â and B̂ is computed as σ =
(

XAH̄(X)
)y+H̄(Y)b

=
(

Y BH̄(Y)
)x+H̄(X)a

(and the session
as K = H(σ)) presents the following unfortunate aspect. If an attacker finds x0 ∈ [1, q − 1]
such that H(Gx0) = 0, then it can impersonate any entity to any other entity. Finding such an
x0 requires O(2l) operations. To impersonate a party, say Â, to a party B̂ the attacker sends

(Â, B̂, X0) to B̂, intercepts B̂’s message to B̂, and computes σ = (Y BH̄(Y))x0 and K = H(σ);
it then uses K to communicate with B̂ on behalf of Â.

In the following proposition, we link partial ephemeral secret exponent leakage to imperson-
ation attack.

Proposition 3. Let Â be an entity executing the HMQV protocol with some peer B̂. If an
attacker learns the β most significant bits of the ephemeral secret exponent at Â, then it can

4

indefinitely impersonate Â to B̂. This requires O
(

2
|q|−β

2
)

time complexity and O
(

2
|q|−β

2
)

space
complexity.

Proof. If an attacker learns sA, then it knows a HMQV i–point for Â to B̂ and its decomposition

(XAH̄(X,B̂) = GsA i.e. X = GsAA−H̄(X,B̂)); using Attack 2, it impersonates Â to B̂.

Remark 1.
(a) For the MQV(–C) protocol, if an attacker (partly) learns the ephemeral secret exponent in

a session at Â, it can not only impersonate Â to its peer in the leaked session, but also to
any other entity. A weaker form of this attack was proposed in [15].

(b) To meet the two–and–half exponentiations per party performance, which partly makes the
attractiveness of the HMQV protocol, the ephemeral secret exponents have to be computed,
and the exponentiation ((Y Be)sA or (XAe)sB) performed. Ephemeral secret exponent leak-
age may happen (through side channel attacks for instance), independently of the ephemeral
private keys.

(c) Ephemeral secret exponent leakage does not imply neither static of ephemeral private key
discloser. Indeed, one can show that from any algorithm A with complexity CA, which
given sA, X, A and B̂, finds Â’s ephemeral private key x or the static one a, one can derive
an algorithm which solves two instances of the DLP in G∗, in CA + CDLP time complexity
where CDLP is the complexity for solving one instance of the DLP in G.

(d) The leakage of consecutive middle part bits on an ephemeral secret exponent is not discussed,
but with tools from [7], the analysis we propose applies in this case with minor modifications.

Ephemeral secret exponent leakage implies (but is not equivalent to) session key reveal, and
does not imply neither static key reveal nor ephemeral key reveal; while it is not difficult to see
that both ephemeral secret exponent and ephemeral key leakages on the same session imply the
session owner’s static key discloser.

2.2.2 Man in the Middle Attack using Session Secret Leakages

If in addition to sA, an attacker learns sB in a session at B̂, it can perform man in the middle

attacks, between Â and B̂, as in Algorithm 3. We denote by s
(l)
A and s

(l)
B the ephemeral secret

exponents the attacker learned at Â and B̂ respectively; X(l) and Y (l) are Â and B̂’s outgoing
ephemeral keys in the sessions in which leakages happened. Notice that it is not required that
the (sA and sB) leakages happened in matching sessions.

Attack 3 Man in the middle attack

(a) Send (Â, B̂, X(l)) to B̂.
(b) Intercept B̂’s response to Â (B̂, Â, Y).
(c) Send (B̂, Â, Y (l)) to Â.
(d) Intercept Â’s response to B̂ (Â, B̂, X).

(e) Compute dA = H(X, B̂) and KA = H((XAdA)s
(l)
B).

(f) Compute eB = H(Y, Â) and KB = H((Y BeB)s
(l)
A).

(g) Use KB to communicate with B̂ on behalf of Â.
(h) Use KA to communicate with Â on behalf of B̂.

Algorithm 3 is merely a simultaneous impersonation of Â to B̂, and B̂ to Â. The session

key that Â derives is KA = H((Y (l)BeA)x+dAa) = H((XAdA)s
(l)
B), where eA = H(Y (l), Â) and

dA = H(X, B̂). This is the KA the attacker computes at step (e). Similarly, the session

key that B̂ derives is KB = H((Y BeB)s
(l)
A). Notice that the attack remains possible when

communications are initiated by Â (or B̂).

5

3 Security Model

We define a security model, inspired by the (extended) Canetti–Krawczyk model [5, 13], for the
(H)MQV type protocols. We aim to a better capture of session specific information leakages.
While both ephemeral secret exponent and ephemeral key leakages on the same session imply the
session owner’s static private key disclosure, resistance to ephemeral secret exponent leakage is a
desirable security attribute. We propose a security model which takes into account this security
attribute.

Rationale of the model. In the extended Canetti–Krawczyk (eCK) model [13], session–
specific information leakages are captured through an ephemeral key reveal query. The ephemeral
key of a session is required to contain all session specific information. When this requirement
is fully satisfied, it becomes difficult to simulate consistently information leakages. In prac-
tice, ephemeral keys are not always defined to contain all session specific information; in the
NAXOS[13] and CMQV [27] security arguments, ephemeral keys are not defined to contain the
ephemeral Diffie–Hellman (DH) exponents.

In addition, session key derivation generally involves some intermediate results, on which
leakages may happen; these intermediate results cannot always be computed, given only the ses-
sion’s ephemeral key. Hence leakages on these intermediate results are not necessarily captured
in the eCK model. In the CMQV protocol (shown eCK secure) an ephemeral secret exponent
leakage, allows an attacker to impersonate indefinitely the leaked session owner.

In the Canetti–Krawczyk (CK) model [5], session secret leakages are captured through a
session state reveal query. However, it is not always clear, which information in a session can be
revealed, as this is left to be specified by each protocol. Moreover, the ephemeral information
that can be available in a session depend on the reached step in the session’s computations.
Contrary to the ephemeral key reveal query, the session state reveal query cannot be issued on
a test session, while it is desirable that an attacker which does not know both the static and
ephemeral DH exponents of an entity implicated in a session should not be able to compute
the session key. It is also difficult to figure out the practical meaning of the CK–security, as
a protocol (HMQV for instance) may be both secure and insecure, depending on the session
state’s definition.

The ephemeral information that can be available in a session state depends on the reached
step in the session’s tree of computations. To capture precisely ephemeral information leakages,
one has to consider sessions’ tree of computations. In the model we propose, the eCK model
is completed with reveal queries on sessions intermediate results. We define a reveal query on
any intermediate value which computation requires a secret information. With these queries,
we aim to an exhaustive capture of ephemeral information leakages. It is however difficult to
simultaneously and consistently simulate leakages on both ephemeral keys and intermediate
results. This is the reason why our model follows two stages. In the first, leakages on the
intermediate results are considered; the second deals with ephemeral private keys leakages.

Session. We suppose n 6 P(|q|) (for some polynomial P) parties P̂i,i=1,...,n modeled as proba-
bilistic polynomial time machines, and a certification authority (CA) trusted by all parties. All
the static public keys are supposed to belong to G∗, this corresponds to the fact that the CA
is (only) required to verify that public keys are valid ones. Each party has a static public key
together with a certificate binding his identity to his public key.

A session is an instance of a protocol run at a party. A session at Â (with peer B̂) can
be created with parameter (Â, B̂) or (B̂, Â, Y); Â is the initiator if the creation parameter is
(Â, B̂), otherwise the responder. At session activation, a session state is created to contain
the information specific to the session. Each session is identified with a quadruple (Â, B̂, X, ⋆),
where Â is the session holder, B̂ is the peer, X is the outgoing ephemeral key, and ⋆ is the
incoming key Y if it exists, otherwise a special symbol meaning that an incoming ephemeral key
is not received yet; in that case when Â receives the ephemeral public key Y, the session identifier

6

is updated to (Â, B̂, X, Y). Two sessions with identifiers (B̂, Â, Y, X) and (Â, B̂, X, Y) are said
to be matching. Notice that the session matching (B̂, Â, Y, X) can be any session (Â, B̂, X, ⋆);
as X and Y are chosen uniformly at random in G∗, a session cannot have (except with negligible
probability) more than one matching session.

Adversary and Security. The adversary, denoted A, is a probabilistic polynomial time ma-
chine. It is a common assumption that an adversary is able to eavesdrop, modify, delete any mes-
sage sent in a cryptographic protocol, or inject its own messages. This is captured through the
assumption that outgoing messages are submitted to A for delivery (A decides about messages
delivery); A is also supposed to control session activations at each party P̂i via the Send(P̂i, P̂j)
and Send(P̂j , P̂i, Y) queries, which make P̂i initiate a session with peer P̂j or respond to P̂j .

Y Â B̂ a x

W = Y BH̄(Y,Â) sA = x + H̄(X, B̂)a

Z = W sA

K = H(Z)

Figure 1: Tree of computations in a HMQV session.

The adversary is also provided with the reveal queries from one of the following sets. At the
beginning of its run, it adopts one of the following sets of queries; it can then perform queries
from the selected set (and only those queries).
In Set 1, the following queries are allowed.

• StaticKeyReveal(party) to obtain the static private key of a party.
• SessionKeyReveal(session) to obtain the derived key in a session.
• SecretExponentReveal(session) to obtain the ephemeral secret exponent (s = x + da or

y + eb) in a session.
• SecretGroupElementReveal(session) to obtain the session signature Z = W sA .
• EstablishParty(party) to register a static public key on behalf of a party; from there,

the party is supposed totally controlled by A. A party against which this query is not
issued is said to be honest.

Notice that, we consider only the intermediate values which evaluation requires a secret informa-
tion; as the attacker is supposed to control the communication links between parties, considering
leakages on the other intermediate values is superfluous. We also implicitly assume that the con-
sidered protocol has a tree of computations “matching” that of the (H)MQV protocols; otherwise
some queries (SecretExponentReveal for instance) may become meaningless.
In Set 2, the allowed queries are the following; the definitions remain unchanged for the queries
belonging also to Set 1.

• EphemeralKeyReveal(session) to obtain the ephemeral private key used by the session
owner.

• StaticKeyReveal(party).
• SessionKeyReveal(session).
• EstablishParty(party).

Definition 4 (Session Freshness). Let sid be the identifier of a completed session at an honest
party Â, with some honest peer B̂, and sid∗ the matching session’s identifier. The session sid is
said to be ck–fresh, if none of the following conditions hold:

• A issues a SecretExponentReveal query on sid or sid∗ (if sid∗ exists);
• A issues a SecretGroupElementReveal query on sid or sid∗;
• A issues a SessionKeyReveal query on sid or sid∗;
• sid∗ does not exist and A makes a StaticKeyReveal query on B̂.

And sid is said to be eck–fresh, if none of the following conditions hold:
• A issues a SessionKeyReveal query on sid or sid∗ (if sid∗ exists);

7

• A issues a StaticKeyReveal query on Â and an EphemeralKeyReveal query on sid;
• sid∗ exists and A makes a StaticKeyReveal query on B̂ and an EphemeralKeyReveal query

on sid∗;
• sid∗ does not exist and A makes a StaticKeyReveal query on B̂.

Definition 5 (Protocol Security). Let Π be a protocol, such that if two honest parties complete
matching sessions, then they both compute the same session key.

• The protocol Π is said to be ck–secure, if no polynomially bounded adversary (performing
queries from Set 1) can distinguish a ck–fresh session key from a random value, chosen
under the distribution of session keys, with probability (taken over the random coins of the
adversary and the choices of static and ephemeral public keys in G) significantly greater
than 1/2.

• Π is said to be eck–secure, if no polynomially bounded adversary (performing queries from
Set 2) can distinguish an eck–fresh session key from a random value, chosen under the
distribution of session keys, with probability significantly greater than 1/2.

• And Π is said to be secure, if it is both ck–secure and eck–secure.

4 A New Authenticated Diffie–Hellman Protocol

In this section, we define the Full Exponential Challenge Response (FXCR) and Full Dual expo-
nential Challenge Response (FDCR) schemes, which confine to the minimum the consequences
of ephemeral secret exponent leakages. Using these schemes, we define the Fully Hashed MQV
(FHMQV) protocol, which preserves the performance of the (H)MQV protocol, in addition to
provide resistance to the attacks we presented in section 2.

4.1 Full Exponential Challenge Response Signature Scheme

Definition 6 (FXCR signature scheme). Let B̂ be an entity with public key B ∈ G∗, and Â
a verifier. B̂’s signature on a message m and challenge X provided by Â (X = Gx, x ∈R [1, q−1]
is chosen and kept secret by Â) is FSig

B̂
(m, X) = (Y, XsB), where Y = Gy, y ∈R [1, q − 1]

is chosen by B̂, and sB = y + H̄(Y, X, m)b; the verifier Â accepts the pair (Y, σB) as a valid

signature if Y ∈ G∗ and (Y BH̄(Y,X,m))x = σB.

The FXCR scheme delivers all the security attributes of the XCR scheme; in addition the
“replay attack” we presented in section 2 does not hold anymore. Indeed, suppose an attacker
which has learned sB

(l) = y(l) + H̄(Y (l), X(l), m)b. When it is provided with a new challenge X
(chosen at random) and the same message m, except with negligible probability X 6= X(l) (and
H̄(Y (l), X(l), m) 6= H̄(Y (l), X, m)). Hence, to replay Y (l) on the message–challenge pair (m, X),
the attacker has to find sB = y(l) +H̄(Y (l), X, m)b; it is not difficult to see that if it can compute
sB from sB

(l), then he can find b from sB, which is not feasible.

Definition 7 (FXCR Scheme Security). The FXCR scheme is said to be secure in G, if given a
public key B, a challenge X0 (B, X0 ∈R G∗), together with hashing and signing oracles, no adap-
tive probabilistic polynomial time attacker, can output with non negligible success probability
a triple (m0, Y0, σ0) such that:

• (Y0, σ0) is a valid signature with respect to the key B, and the message–challenge pair
(m0, X0);

• (Y0, σ0) was not obtained from the signing oracle with a query on (m0, X0).

Using the “oracle replay” technique [22, 23], we show that the FXCR scheme is secure in the
sense of definition 7. Recall that a function F with parameter ζ is said to be negligible, if for
every polynomial P, and every sufficiently large ζ, F(ζ) < (||P(ζ)||)−1 (|| · || denotes here the
absolute value); otherwise F is said to be non–negligible.

Proposition 4. Under the CDH assumption in G and the RO model, the FXCR signature
scheme is secure in the sense of definition 7.

8

Proof. Suppose an attacker A, which given B, X0 ∈R G∗ succeeds with non–negligible probability
in forging a FXCR signature, with respect to the public key B and the challenge X0. Using A
we build a polynomial time CDH solver S which succeeds with non–negligible probability. The
solver S provides A with random coins, and simulates the digest and signature queries. The
interactions between S and A are described in Figure 4.

Figure 4 A CDH solver from A

Run of A:
(a) At A’s digest query on (Y, X, m), S responds as follows: (i) if a value is already assigned

to H̄(Y, X, m), S returns H̄(Y, X, m); (ii) otherwise S responds with e ∈R {0, 1}l, and
sets H̄(Y, X, m) = e.

(b) At A’s signature query on (m, X), S responds as follows: (i) S chooses sB ∈R [1, q − 1],
e ∈R {0, 1}l, sets Y = GsB B−e and H̄(Y, X, m) = e. If H̄(Y, X, m) was previously
defined, S aborts. (ii) Else, S responds with (Y, XsB).

(c) At A’s halt, S verifies that A’s output (m0, Y0, σ
(1)
0) (if any) satisfies the following

conditions. If not, S aborts.
• Y0 ∈ G∗ and H̄(Y0, X0, m0) was queried from H̄.

• (Y0, σ
(1)
0) was not returned by B̂ at signature query on (m0, X0).

Repeat: S executes a new run of A, using the same input and coins; and answering to all the
digest queries before H̄(Y0, X0, m0) with the same values as in the previous run. The
new query of H̄(Y0, X0, m0) and subsequent H̄ queries are answered with new random
values.

Output: If A outputs a second forgery (m0, Y0, σ
(2)
0) satisfying the conditions of step (c),

with a hash value H̄(Y0, X0, m0)2 = e
(2)
0 6= e

(1)
0 = H̄(Y0, X0, m0)1, then S outputs

(σ
(1)
0 /σ

(2)
0)(e

(1)
0 −e

(2)
0)−1

as a guess for CDH(B, X0).

Under the RO model, the distribution of the simulated signatures is indistinguishable from
the that of the real signatures generated by B̂, except the deviation that happens when H̄(Y, X, m)
was queried before. Let Qh and Qs be respectively the number of queries that A asks to the
hashing and signing oracles. Since A is polynomial (in |q|) and Y is chosen uniformly at ran-
dom in G, this deviation happens with probability less than (Qh + Qs)/q, which is negligible.
Hence this simulation is perfect, except with negligible probability. Moreover the probability of
producing a valid forgery without querying H̄(Y0, X0, m0) is 2−l. Thus under this simulation, A

outputs with non–negligible probability a valid forgery (m0, Y0, σ
(1)
0); we denote H̄(Y0, X0, m0)

by e
(1)
0 . From the Forking lemma [23], the repeat experiment produces with non–negligible

probability a valid forgery (m0, Y0, σ
(2)
0) with a digest e

(2)
0 , which with probability 1 − 2−l, is

different from e
(1)
0 . Then the computation

(

σ
(1)
0

σ
(2)
0

)

(

e
(1)
0 −e

(2)
0

)

−1

=

(

(

Y0Be
(1)
0

)
x0

(

Y0Be
(2)
0

)x0

)

(

e
(1)
0 −e

(2)
0

)

−1

= Bx0

gives CDH(B, X0) with non–negligible success probability.

4.2 Full Dual Exponential Challenge Response Signature Scheme

Definition 8 (FDCR Signature Scheme). Let Â and B̂ be two entities with public keys
A, B ∈ G∗, and m1, m2 two messages. The FDCR signature of Â and B̂ on messages m1, m2

is FDSig
Â,B̂

(m1, m2, X, Y) = (XAd)y+eb = (Y Be)x+da, where X = Gx and Y = Gy (x, y ∈R

[1, q − 1]) are chosen respectively by Â and B̂, d = H̄(X, Y, m1, m2), and e = H̄(Y, X, m1, m2).

Notice that contrary to the DCR and XCR schemes, the FDCR signature of Â and B̂ on
messages m1, m2 and challenges X, Y , is not a FXCR signature of Â on the message m1 and
challenge Y Be.

9

Definition 9 (Security of the FDCR Scheme). Let A = Ga, B, X0 ∈R G∗ (A 6= B). The
FDCR scheme is secure in G, if given a, A, B, X0, and a message m10 , together with hashing
and signing oracles, no adaptive probabilistic polynomial time attacker can output with non
negligible success probability a triple (m20 , Y0, σ0) such that:

• (m10 , m20 , X0, Y0, σ0) is a valid FDCR signature with respect to the public keys A, B.
• (Y0, σ0) was not obtained from the signing oracle with a query on a message–challenge pair

(m′
1, X0) such that (m′

1, m′
2) = (m10 , m20), where (m10 , m20) denotes the concatenation of

m10 and m20 , and m′
2 is the message returned at signature query on (m′

1, X0) (if any).

Remark 2. Since we suppose that if Â 6= Â′, no substring of Â equals Â′ (and conversely), if
Â 6= Â′ or B̂ 6= B̂′ then (Â, B̂) cannot equal (Â′, B̂′).

Proposition 5. Under the RO model, and the CDH assumption in G, the FDCR scheme is
secure in the sense of Definition 9.

Proof. Suppose an attacker A, which given a, A, B, X0, m10 (A 6= B) outputs with non–negligible
probability a valid and fresh FDCR forgery (m20 , Y0, σ0). Using A we build a polynomial time
FXCR forger which succeeds with non–negligible probability. The FXCR forger S provides A
with random coins, a, A, B , X0, m10 , and simulates B̂’s role as follows.

(a) At A’s digest query on (X, Y, m1, m2), S responds as follows: (i) if a value is already assigned
to H̄(X, Y, m1, m2), S returns H̄(X, Y, m1, m2); (ii) else S responds with d ∈R {0, 1}l, and
sets H̄(X, Y, m1, m2) = d.

(b) At signature query on (m1, X), S responds as follows: (i) S chooses m2 ∈R {0, 1}∗,
sB ∈R [1, q − 1], d, e ∈R {0, 1}l, computes Y = GsB B−e, and sets H̄(X, Y, m1, m2) = d
and H̄(Y, X, m1, m2) = e; if H̄(X, Y, m1, m2) or H̄(Y, X, m1, m2) was previously defined, S
aborts. (ii) S provides A with the signature (m2, Y, (XAd)

sB).

The simulated environment is perfect, except with negligible probability. The deviation happens
when the same message–challenge pair (m2, Y) is chosen twice in two signature queries on the
same pair (m1, X). Let Qmax is the maximum number of queries that A asks to the signing
oracle. Since Y is chosen uniformly at random in G and A is polynomial, the deviation occurs
with probability less than Qmax/q, which is negligible (as A is polynomial in |q|.) Then, if A
succeeds with non–negligible probability in FDCR forging attack, it succeeds also with non–
negligible probability under this simulation. And since S knows a, it outputs, from any valid
forgery σ0,

σ0(Y0Be)−da = (Y0Be)x0+da(Y0Be)−da = X0
y0+eb.

This is valid FXCR forgery on the message (m10 , m20) (the concatenation of m10 and m20)
and challenge X0 with respect to the public key B. And if A succeeds with non–negligible
probability, so does S, contradicting Proposition 4.

4.3 The Fully Hashed MQV Protocol.

We can now derive the FHMQV protocol, which provides the efficiency and security attributes
of the (H)MQV protocols, in addition to ephemeral secret exponent leakage resilience.

The FHMQV protocol does not only provide a stronger security than the (C, H)MQV pro-
tocols; it seems more suited for implementations using computationally limited devices, to store
(and protect) the private keys. Suppose an implementation of FHMQV or (H)MQV (using such
devices) in which session keys are used by some application running in a untrusted host ma-
chine. Suppose that the ephemeral keys are computed in the device in idle–time. This idle–time
pre–computation is common in practice. As (H)MQV is not ephemeral secret exponent leakage
resilient, the exponentiation σ = (Y Be)sA = (XAd)sB has to be performed in the device (in
non idle–time). In contrast, for FHMQV, σ can be computed in the host machine, after the
ephemeral secret exponent (sA or sB) is computed in the device. (Because the session key is

10

Protocol 5 FHMQV key exchange

I) The initiator Â does the following:
(a) Choose x ∈R [1, q − 1] and compute X = Gx.
(b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X), B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1] and compute Y = Gy.
(c) Send (B̂, Â, Y) to Â.
(d) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(e) Compute sB = y + eb mod q, σB = (XAd)sB , and K = H(σB, Â, B̂, X, Y).

III) At receipt of (B̂, Â, Y), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(c) Compute sA = x + da mod q, σA = (Y Be)sA , and K = H(σA, Â, B̂, X, Y).

IV) The shared session key is K.

used in the host machine, and a leakage of only the ephemeral secret exponent, in a FHMQV
session, does not compromise any other session.)

In FHMQV the computational effort of the device, in non idle–time can be safely reduced
to few non–costly operations (two integer additions, one integer multiplication, and two digest
computations), while for (H)MQV at least one exponentiation has to be performed in the device
in non idle–time (in addition to few non–costly operations).

5 Security Analysis of the FHMQV Protocol

We suppose n 6 P(|q|) (for some polynomial P) parties modeled as probabilistic polynomial
time machines. In accord with our security model, the following queries are allowed.

• Send(Â, B̂) which makes Â perform the step I of Protocol 5.
• Send(Â, B̂, X) which makes B̂ perform the step II of Protocol 5.
• Send(Â, B̂, X, Y) which makes Â update the session identifier (Â, B̂, X, ⋆) (if any) to

(Â, B̂, X, Y), and perform the step III of Protocol 5; if Â does not hold a session with
identifier (Â, B̂, X, ⋆), the call is ignored.

5.1 Ck–Security Arguments

Proposition 6. Under the CDH assumption in G, and the RO model, the FHMQV protocol is
ck–secure.

It is immediate from the FHMQV definition that, if two honest parties complete matching
sessions, then they both compute the same session key. Suppose an adversary A which succeeds,
with probability significantly greater than 1/2, in distinguishing a session key of a ck–fresh session
(that we designate by (Â, B̂, X0, Y0) or test session) from random a value chosen under the
distribution of session keys. A can only distinguish a ck–fresh session key from a random value
in one of the following ways.
Guessing attack: A guesses correctly the test session key.
Key replication attack: A succeeds in making two non–matching sessions yield the same

session key, it can then query a session key reveal on one of the two sessions and use the
other as test session.

Forging attack: A computes the test session signature and issues digest query to compute the
session key.

11

Under the RO model, the probability of guessing correctly the output of the hash function
is 2−k; and non–matching sessions cannot have (except with negligible probability) the same
session key. It thus remains that if A succeeds with probability significantly greater than 1/2
in distinguishing a ck–fresh session key, from a random value chosen under the distribution of
session keys, then it succeeds with non–negligible probability in forging attack. We thus suppose
that A interacts in an n parties environment, and ends its run with non–negligible probability
with an output (sid0, σ0), where sid0 is a ck–fresh session identifier, and σ0 a guess of the sid0

session signature.
Let E denote the event “A succeeds in forging the session signature of some ck–fresh session.”

The event E divides in: (a) E.1: “A succeeds in forging the session signature of some ck–fresh

session, which matching session exits”, and (b) E.2: “A succeeds in forging the session signature

of some ck–fresh session without matching session.” Since a session is required to be ck–fresh,
in E.1 the StaticKeyReveal query is allowed on both Â and B̂. In E.2 the StaticKeyReveal query
is allowed on Â (but not on B̂). Now since A succeeds with non–negligible probability, either E.1

or E.2 occurs with non–negligible probability; it then suffices to show that neither E.1 nor E.2

can happen with non–negligible probability.

5.1.1 Analysis of E.1

Suppose that E.1 occurs with non–negligible probability. Using A, we build a polynomial
time CDH solver which succeeds with non–negligible probability. The solver S takes as input
X0, Y0 ∈R G∗ and interacts with A as described below.
(1) S simulates A’s environment, with n parties P̂1, . . . , P̂n; recall that A is supposed to be

polynomial, we thus suppose that each party is activated at most m times, m 6 P(|q|) for
some polynomial P.

(2) S chooses i, j ∈R {1, . . . , n}, i 6= j (the case i = j, reflection attack, is analyzed in subsec-
tion 5.1.3), and t ∈R {1, . . . , m} (with the choice of (i, j, t), S is guessing the test session).
We refer to P̂i as Â and P̂j as B̂. S assigns to each P̂k a random static key pair (pk, Pk = Gpk),
and answers to A queries as follows; H̄ queries are simulated in the usual way (see the proof
of Proposition 5).

(3) At A’s Send(P̂l, P̂m) query, S chooses x ∈R [1, q − 1], computes X = Gx, creates a session
state with identifier (P̂l, P̂m, X, ⋆), and provides A with the message (P̂l, P̂m, X).

(4) At A’s Send(P̂m, P̂l, Y) S chooses x ∈R [1, q − 1], computes X = Gx, creates a session
state with identifier (P̂l, P̂m, X, Y), provides A with the message (P̂l, P̂m, X); and completes
the session with identifier (P̂l, P̂m, X, Y) as responder (step IIe of Protocol 5).

(5) At A’s Send(P̂l, P̂m, X, Y) query, S updates the session identifier (P̂l, P̂m, X, ⋆) to (P̂l, P̂m, X, Y);
and completes the session with identifier (P̂l, P̂m, X, Y) as initiator (step IIIc of Protocol 5).
(Notice that S can compute the session FDCR signature of any session different from the
t–th session at Â — and its matching session.)

(6) When A activates the t–th session at Â, if the peer is B̂, S provides A with the message
(Â, B̂, X0); otherwise, S aborts.

(7) When A activates the session matching t–th session at Â, S provides A with (B̂, Â, Y0).
(8) At A’s digest query on (σ, P̂l, P̂m, X, Y), S responds as follows:

• If there exists a completed session with identifier sid = (P̂l, P̂m, X, Y) or sid = (P̂m, P̂l, Y, X)
and with initiator P̂l, and if σ is the sid session’s FDCR signature, S returns the sid
session key.

• Else, if the same query was made previously, S returns the previously returned value.
• Else S responds with π ∈R {0, 1}λ, and sets H(σ, P̂l, P̂m, X, Y) = π.

(9) If A issues a StaticKeyReveal, SecretExponentReveal, SecretGroupElementReveal, Session-
KeyReveal, or an EstablishParty query, S answers faithfully.

(10) In any of the following situations, S aborts.
• A halts with a test session different from the t–th session at Â.
• A issues a SecretExponentReveal, a SecretGroupElementReveal, or a SessionKeyReveal

12

query on the t–th session at Â or its matching session.
• A issues an EstablishParty query on Â or B̂.

(11) If Â provides a guess σ0 of the signature of the t–th session at Â, S outputs (σ0)(X0Ad)
−eb

Y −da
0

as a guess for CDH(X0, Y0). Otherwise S aborts.

Fact. If A succeeds with non–negligible probability in E.1, S outputs with non–negligible proba-
bility CDH(X0, Y0).

Proof. The simulation of A’s environment is perfect except with negligible probability; when A
activates the t–th session at Â, the X0 provided to A is chosen uniformly at random in G∗, its
distribution is the same as that of the real X. The same argument holds for Y0. The probability
of guessing correctly the test session is (n2m)−1; and if E.1 occurs and S guesses correctly
the test session, S does not abort. Thus S succeeds with probability (n2m)−1 Pr(E.1) where
negligible terms are ignored. In addition, when A outputs a correct guess for the test session
signature, S outputs

(σ0)(X0Ad)
−ea

Y −da
0 = (X0Ad)y0+ae(X0Ad)

−ea
Y −da

0 = Y x0+da
0 Y −da

0 = CDH(X0, Y0).

Moreover if A is polynomial, S is also polynomial. This shows that E.1 cannot happen with
non–negligible probability.

5.1.2 Analysis of E.2

If E.2 occurs with non–negligible probability, using A, we build a polynomial time FDCR forger,
with non–negligible success probability. For this purpose, we modify the simulation in the
analysis of E.1 as follows.

• S takes as input a ∈R [1, q − 1], and X0, B ∈R G∗.
• Â’s key pair is set to (a, Ga), and B̂’s public key to B (B̂’s private key is unknown to S).
• At A’s Send(P̂l, B̂, X) query, S answers as follows:

– S chooses sB ∈R [1, q − 1], d, e ∈R {0, 1}l, and sets Y = GsB B−e, H̄(X, Y, P̂l, B̂) = d,
and H̄(Y, X, P̂l, B̂) = e; if Y was previously used as outgoing ephemeral key in a
session at B̂ with peer P̂l, S aborts.

– S creates a session state with identifier (B̂, P̂l, Y, X), and provides A with (B̂, P̂l, Y).
– S completes the session (B̂, P̂l, Y, X) as responder.

• At A’s Send(B̂, P̂l) query:
– S chooses sB ∈R [1, q − 1], d, e ∈R {0, 1}l, and sets3 Y = GsB B−e, H̄(⋆, Y, B̂, P̂l) = d,

H̄(Y, ⋆, B̂, P̂l) = e; if Y was previously used as outgoing ephemeral key in a session
at B̂ with peer P̂l, S aborts.

– S creates a session state with identifier (B̂, P̂l, Y, ⋆), and provides A with the message
(B̂, P̂l, Y).

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; else, S provides A
with (Â, B̂, X0).

• S aborts in any of the following situations.
– A activates at B̂ a session matching the t–th session at Â.
– A halts with a test session different from the t–th session at Â.
– A issues a StaticKeyReveal query on B̂, or an EstablishParty query on Â or B̂.
– A issues a SecretExponentReveal, SessionSignatureReveal, or a SessionKeyReveal query

on the t–th session at Â.
• If Â halts with the t–th session at Â, (Â, B̂, X0, Y0) as test session, and with a guess σ0 of

the session’s signature, S outputs the triple ((Â, B̂), Y0, σ0) as a FDCR forgery on messages
Â, B̂, and challenges X0, Y0 with respect to public keys A, B. Otherwise S aborts.

3To simulate consistently the ephemeral exponent leakage on B̂, S has to assign values to H̄ query with a par-
tially unknown input, namely the incoming ephemeral key is unknown. For these queries, random values are taken
in {0, 1}l as H̄(Y, ⋆, B̂, P̂l) and H̄(⋆, Y, B̂, P̂l); and when S is later queried H̄(Y, X, B̂, P̂l) (resp. H̄(X, Y, B̂, P̂l),
it responds with H̄(Y, ⋆, B̂, P̂l) (resp. H̄(⋆, Y, B̂, P̂l)).

13

The simulation of A’s environment is perfect, except with negligible probability. The deviation
happens when the same Y is chosen twice as ephemeral key in two sessions at B̂ with the same
peer P̂l; this happens with probability less than m/q, which is negligible. Hence, under this
simulation, A succeeds with non–negligible probability in E.2. And when A outputs a correct
forgery, and S guesses correctly the test session, S outputs a valid FDCR forgery on messages Â,
B̂, and challenges X0, Y0, with respect to the public keys A and B; contradicting Proposition 5.

Neither E.1 nor E.2, can happen with non–negligible probability; the FHMQV protocol is
ck–secure.

5.1.3 Resistance to Reflection Attacks

We show here that the FHMQV protocol provides resistance to reflection attacks (for ck–fresh
sessions). A session with identifier sid = (Â, Â, X, Y) is said to be ck–fresh if none of these
conditions hold:

• A issues a SecretExponentReveal, a SecretGroupElementReveal, or a SessionKeyReveal
query on sid or sid∗ (if sid∗ exists);

• sid∗ does not exist and A makes a StaticKeyReveal query on Â.
Recall that under the RO model, guessing and key replication attacks cannot succeed, except
with negligible probability. It suffices to show that no polynomially bounded adversary can
compute, with non–negligible success probability, the session signature of a ck–fresh session
(Â, Â, X0, Y0).

Let F be the event “A succeeds in forging the session signature of some ck–fresh session

(Â, Â, X0, Y0).” The event F divides in F.1: “A succeeds in forging the session signature of some

ck–fresh session (Â, Â, X0, Y0), which matching session exists”, and F.2: “A succeeds in forging

the session signature of some ck–fresh session (Â, Â, X0, Y0) without matching session.” It thus
suffices to show that neither F.1 nor F.2 can happen with non–negligible probability.

Analysis of F.1. If F.1 happens with non–negligible probability, using A, we build a polyno-
mial time CDH solver which succeeds with non–negligible probability. To do this, we reuse the
simulation in the analysis of E.1, except the following differences.

• S takes as input a, X0, Y0; a ∈R [1, q − 1], X0, Y0 ∈R G∗.
• B̂’s key pair and identity are set to that of Â.

A’s simulated environment remains perfect except with negligible probability; and if A succeeds
with non–negligible probability, in event F.1, then under this simulation it outputs with non–
negligible probability a valid signature forgery σ0. And then S outputs with non–negligible
probability CDH(X0, Y0) from σ0, a, d, and e. This shows that under the CDH assumption and
RO model, F.1 cannot happen, except with negligible probability.

Analysis of F.2. If F.2 occurs with non–negligible probability, using A, we build a polynomial
time machine, which given A = Ga outputs with non–negligible probability G(a2). Such a
“squaring” CDH solver can in turn be used as a general CHD solver, which succeeds with
non–negligible probability [16].
We simulate A’s environment as in the analysis of E.1, with the following modifications.

• S takes as input A ∈R G∗ (Â = B̂).
• Â’s public key is set to A; its roles are simulated in the same way as that of B̂ in the

analysis E.2.
• When A activates the t–th session at Â, S chooses x0 ∈R [1, q − 1], and provides A with

the message (Â, Â, X0 = Gx0); and if A activates at B̂ a session matching t–th session at
Â, S aborts.

• If A issues a static key reveal on Â, S aborts.

14

The simulated environment remains perfect, except with negligible probability; and if A suc-
ceeds with non–negligible probability in F.2, then under this simulation, it outputs with non–
negligible probability a valid forgery σ0 of the test session’s signature. And then since S knows
x0 it outputs with non–negligible probability

(

(σ0)(Y0Ae)−x0
)d−1

=
(

(Y0Ae)x0+da(Y0Ae)−x0
)d−1

=
(

(Y0Ae)da)d
−1

= (Y0Ae)a = Ay0+ea.

Hence, given a public key A, S outputs with non–negligible probability a valid and fresh FXCR
signature, on message (Â, B̂) (concatenation of Â and B̂), and challenge A (the challenge equals
the public key) with respect to the public key A. Using the “oracle replay” technique (as in
the proof of Proposition 4), S yields a polynomial machine, which given A = Ga, outputs with
non–negligible probability Aa = G(a2); contradicting the CDH assumption.

5.2 Ephemeral Private Keys Leakage Resilience (eck–security)

The arguments for this security attribute do not derive from the analysis in section 4. The
reason is that we cannot simultaneously and consistently simulate both SecretExponentReveal
and EphemeralKeyReveal.

5.2.1 Hashed Full Dual Challenge Response Scheme

Definition 10 (Hashed FDCR (HFDCR) signature scheme). Let Â, B̂ be two entities with
public keys A, B ∈R G∗. The HFDCR signature of Â and B̂ on messages m1, m2 is

HFDCRA,B(X, Y, m1, m2) = H(σ, m1, m2, X, Y),

where σ is the FDCR signature of Â and B̂ on messages m1, m2, and challenges X, Y .

Definition 11 (Security of the HFDCR Signature Scheme). Let Â, B̂ be two entities with
public keys A, B ∈R G∗. The HFDCR scheme is secure, if given A, B, and x0, y0 ∈R [1, q −
1] together with hashing and signing oracles, no adaptive probabilistic polynomial time at-
tacker can produce with non negligible success probability a triple (m10 , m20 , π0) such that:
HFDCRA,B(X0, Y0, m10 , m20) = π0, and π0 was not obtained from the signing oracle with a
query on a quadruple (X0, Y0, m′

1, m′
2) such that (m10 , m20) = (m′

1, m′
2).

For the HFDRC security arguments, we need the Gap Diffie–Hellman (GDH) assumption.

Definition 12 ([21]). Let G = 〈G〉 be a cyclic group. An algorithm is said to be a Decisional
Diffie–Hellman Oracle (DDHO) for G, if on input G, X = Gx, Y = Gy, Z ∈ G, it outputs 1
if and only if Z = Gxy. The Gap Diffie–Hellman (GDH) assumption is said to hold in G,
if given a DDHO for G, no polynomially bounded algorithm can solve the CDH problem in G,
with non–negligible success probability.

We now prove the security of the HFDCR scheme, under the GDH assumption and the RO
model.

Proposition 7. Under the GDH assumption in G, and the RO model, the HFDCR scheme is
secure in the sense of definition 11.

Proof. Suppose a polynomially bounded attacker A, which given a DDHO, A, B ∈R G∗, and
x0, y0 ∈R [1, q−1], outputs with non–negligible success probability a valid and fresh HFDCRA,B

signature on some messages m10 , m20 with respect to challenges X0 = Gx0 , Y = Gy0 .
Non–matching HFDCR signature queries cannot have the same signature value, except with

negligible probability. And guessing the output of the hash function cannot be performed with
non–negligible success probability. We can thus suppose that A succeeds with non–negligible
probability in forging attack. Using A and a DDHO, we build a polynomial time CDH solver S
which succeeds with non–negligible probability. The solver S provides A with random coins and
simulates the signature queries; it takes as input A, B ∈R G∗, x0, y0 ∈R [1, q − 1], and outputs
with non–negligible probability CDH(A, B).

15

(1) At A’s H̄ digest query on (X, Y, m1, m2), S does the following:
• If a value is already assigned to H̄(X, Y, m1, m2), S provides A with the value of

H̄(X, Y, m1, m2).
• Else S chooses d ∈R {0, 1}l, sets H̄(X, Y, m1, m2) = d, and provides A with d.

(2) At A’s signature query on (X, Y, m1, m2), S responds as follows:
• If a value is already assigned to HFDCRA,B(X, Y, m1, m2), then S returns the value of

HFDCRA,B(X, Y, m1, m2); else S takes π ∈R {0, 1}λ, sets HFDCRA,B(X, Y, m1, m2)
= π, and provides A with π.

• If no value is assigned to H̄(X, Y, m1, m2) (resp. H̄(Y, X, m1, m2)), S chooses d ∈R

{0, 1}l and sets H̄(X, Y, m1, m2) = d (resp. H̄(Y, X, m1, m2) = d).
(3) At A’s digest query on (σ, m1, m2, X, Y), S does the following:

• If a value is assigned to HFDCRA,B(X, Y, m1, m2), and if σ = CDH(XAd, Y Be),
where d = H̄(X, Y, m1, m2), e = H̄(Y, X, m1, m2) (if a value is already assigned to
HFDCRA,B(X, Y, m1, m2), d and e are defined, and the verification is performed
using the DDHO), S returns the value of HFDCRA,B(X, Y, m1, m2).

• Else, (i) if the same query was made previously, S returns the previously returned
value; (ii) else S chooses π ∈R {0, 1}λ, sets H(σ, m1, m2, X, Y) = π, and provides A
with π.

• If no value is assigned to H̄(X, Y, m1, m2) (resp. H̄(Y, X, m1, m2)), S chooses d ∈R

{0, 1}l and sets H̄(X, Y, m1, m2) = d (resp. H̄(Y, X, m1, m2) = d); and if σ =
CDH(XAd, Y Be), S sets HFDCRA,B(X, Y, m1, m2) = π.

(4) If A halts with a forgery π0, X0, Y0, m10 , m20 , S verifies that the digests value π0 was queried
from the random oracle, as H(σ0, m10 , m20 , X0, Y0) for some σ0, and that σ0 = CDH(X0Ad,
Y0Be), where d = H̄(X0, Y0, m10 , m20), and e = H̄(Y0, X0, m10 , m20) (if π0 was queried from
the hashing oracle, H̄(X0, Y0, m10 , m20) and H̄(Y0, X0, m10 , m20) are defined).

Under the RO model, A’s simulated environment is perfect except with negligible probability;
hence if A succeeds with non–negligible probability in forging a HFDRC signature, it succeeds
under this simulation with the same probability, except a negligible difference. Since S knows
x0, y0, and A succeeds with non–negligible probability, S outputs with non–negligible probability

((

(σ0)(Y0Be)−x0
)d−1

A−y0
)e−1

=
((

(Y0Be)x0+da(Y0Be)−x0
)d−1

A−y0
)e−1

=
((

(Y0Be)da)d
−1

A−y0
)e−1

=
(

(Y0Be)aA−y0
)e−1

=
(

Ay0+ebA−y0
)e−1

= CDH(A, B);

contradicting the GDH assumption.

5.2.2 Application to FHMQV

Using the HFDCR security, we now show that the FHMQV protocol meets the eck–security
definition.

Proposition 8. Under the GDH assumption in G, and the RO model, the FHMQV protocol is
eck–secure.

Proof of Proposition 8. Since guessing and key replication attacks cannot succeed with non–
negligible probability, suppose A succeeds with non–negligible probability in forging attack.

Let E’ be the event “A succeeds in forging an eck–fresh session signature.” E’ divides in E’.1:
“A succeeds in forging the session signature of some eck–fresh session, which matching session

exists”, and E’.2: “A succeeds in forging the session signature of some eck–fresh session, without

matching session.” It suffices to show that neither E’.1 nor E’.2 can happen with non–negligible
probability.

16

Analysis of E’.1. Since the test session sid is required to be eck–fresh and sid∗ exists,
the strongest queries that A can perform are:(i) StaticKeyReveal queries on both Â and B̂;
(ii) EphemeralKeyReveal queries on both sid and sid∗; (iii) a StaticKeyReveal query on Â and
an EphemeralKeyReveal query on sid∗; (iv) an EphemeralKeyReveal query on sid and a Stat-
icKeyReveal query on B̂. As from any polynomial time machine which succeeds in E’.1, and
performs weaker queries than those above, one can build a polynomial time machine, which
succeeds with same probability and performs one of the strongest queries, it suffices to show
that none of the events
E’.1.1: “E’.1 ∧ A performs StaticKeyReveal queries on both Â and B̂”,
E’.1.2: “E’.1 ∧ A performs EphemeralKeyReveal queries on both sid and sid∗”,
E’.1.3: “E’.1 ∧ A performs a StaticKeyReveal query on Â and an EphemeralKeyReveal query on sid∗”,
E’.1.4: “E’.1 ∧ A performs an EphemeralKeyReveal query on sid and a StaticKeyReveal query on B̂”,
can occur with non–negligible probability.

Analysis of E’.1.1. Suppose that E’.1.1 occurs with non–negligible probability; using A,
we build a polynomial time CDH solver which succeeds with non–negligible probability. For this
purpose, we use the same simulation as in the analysis of E.1 with the following modifications
(recall that the allowed queries are that from Set 2):

• If A issues a SessionKeyReveal, EphemeralKeyReveal, or an StaticKeyReveal query, S an-
swers faithfully.

• In any of the following situations, S aborts.
– A halts with a test session different from the t–th session at Â.
– A issues a SessionKeyReveal query on the t–th session at Â or its matching session.
– A issues an EphemeralKeyReveal query on the t–th session at Â or its matching

session.
– A issues an EstablishParty query on Â or B̂.

The simulated environment remains perfect, except with negligible probability. The probability
of guessing correctly the test session is (n2m)−1. If A succeeds with non–negligible probabil-
ity in E’.1.1, under this simulation A outputs a valid forgery of the t–th session at Â with
non–negligible probability. Hence S outputs CDH(X0, Y0) (from A’s forgery and a, b, d, e) with
non–negligible probability.

Analysis of E’.1.2. We reuse the simulation of the analysis of E.1, with the following modi-
fications:

• S takes as input x0, y0 ∈R [1, q − 1], and A, B ∈R G∗.
• Â and B̂’s public keys are set to A and B (the private keys are unknown).
• At A’s Send(P̂m, P̂l, Y) query, with P̂l = Â or B̂, S responds as follows.

– S chooses x ∈R [1, q − 1], computes X = Gx, creates a session state with identifier
(P̂l, P̂m, X, Y), provides A with the outgoing message (P̂l, P̂m, X).

– S chooses π ∈R {0, 1}λ, d, e ∈R {0, 1}l and sets HFDCRPm,Pl
(Y, X, P̂m, P̂l) = π,

H̄(Y, X, P̂m, P̂l) = d, and H̄(X, Y, P̂m, P̂l) = e.
• At Send(P̂l, P̂m, X, Y) query, with P̂l = Â or B̂, S answers as follows:

– S updates the session identifier (P̂l, P̂m, X, ⋆) (if any) to (P̂l, P̂m, X, Y).
– If a no value is assigned to HFDCRPl,Pm(X, Y, P̂l, P̂m), S chooses π ∈R {0, 1}λ

and sets HFDCRPl,Pm(X, Y, P̂l, P̂m) = π; if no value is assigned to H̄(X, Y, P̂l, P̂m)
(resp. H̄(Y, X, P̂l, P̂m)), S chooses d ∈R {0, 1}l and sets H̄(X, Y, P̂l, P̂m) = d (resp.
H̄(Y, X, P̂l, P̂m) = d).

• At A’s digest query on (σ, P̂l, P̂m, X, Y), with P̂l = Â or B̂, or P̂m = Â or B̂, S does the
following:

– If a value is already assigned to HFDCRPl,Pm(X, Y, P̂l, P̂m), and if σ = CDH(XP d
l ,

Y P e
m), where d = H̄(X, Y, P̂l, P̂m), e = H̄(Y, X, P̂l, P̂m) (if HFDCRPl,Pm(X, Y, P̂l, P̂m)

is already defined, the values of d and e are already assigned), S returns the value of
HFDCRPl,Pm(X, Y, P̂l, P̂m).

17

– Else, S chooses π ∈R {0, 1}λ, sets H(σ, P̂l, P̂m, X, Y) = π, and provides A with π.
– If no value is assigned to H̄(X, Y, P̂l, P̂m) (resp. H̄(Y, X, P̂l, P̂m)), S chooses d ∈R

{0, 1}λ and sets H̄(X, Y, P̂l, P̂m) (resp. H̄(Y, X, P̂l, P̂m)) = d; and if σ = CDH(XP d
l ,

Y P e
m) (this is verified using the DDHO), S sets HFDCRPl,Pm(X, Y, P̂l, P̂m) = π.

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; otherwise S provides
A with the outgoing message (Â, B̂, X0 = Gx0).

• When A activates the session matching t–th session at Â, S provides A with (B̂, Â, Y0 =
Gy0).

• If A issues an EphemeralKeyReveal query on the t–th session at Â or its matching session,
S answers faithfully.

• In the following situations S aborts.
– A halts with a test session different from the t–th session at Â.
– A issues a StaticKeyReveal query on Â or B̂.
– A issues an EstablishParty query on Â or B̂.

The simulated environment remains perfect, except with negligible probability, and the probabil-
ity of guessing correctly the test session is (n2m)−1. If A succeeds with a FDCR signature σ0, and
S guesses correctly the test session, S outputs a valid HFDCR forgery π0 = H(σ0, Â, B̂, X0, Y0),
contradicting Proposition 7.

Analysis of E’.1.3 and E’.1.4. Since Â and B̂ roles are symmetrical in E’.1.3 and E’.1.4,
it suffices to show that E’.1.3 cannot occur with non–negligible probability. We modify, the
simulation used in the analysis of E.1 as follows:

• S takes as input X0, B ∈R G∗.
• B̂’s public key is set to B (the private key is unknown to S), and Â’s key pair is (a =

pi, Ga), pi ∈R [1, q − 1].
• At A’s Send(P̂m, B̂, X) query, S responds as follows:

– S chooses y ∈R [1, q − 1], computes Y = Gy, creates a session state with identifier
(B̂, P̂m, Y, X), and provides A with the outgoing message (B̂, P̂m, Y).

– S chooses π ∈R {0, 1}λ, d, e ∈R {0, 1}l, and sets HFDCRPm,B(X, Y, P̂m, B̂) = π,
H̄(X, Y, P̂m, B̂) = d, and H̄(Y, X, P̂m, B̂) = e.

• At Send(B̂, P̂m, Y, X) query:
– S updates the session identifier (B̂, P̂m, Y, ⋆) to (B̂, P̂m, Y, X).
– If no value is assigned to HFDCRB,Pm(Y, X, B̂, P̂m), S chooses π ∈R {0, 1}λ and

sets HFDCRB,Pm(Y, X, B̂, P̂m) = π; and if no value is assigned to H̄(Y, X, B̂, P̂m)
(resp. H̄(X, Y, B̂, P̂m)), S chooses d ∈R {0, 1}l and sets H̄(Y, X, B̂, P̂m) = d (resp.
H̄(X, Y, B̂, P̂m) = d).

• At A’s digest query on (σ, P̂l, P̂m, X, Y), with P̂l = B̂, or P̂m = B̂, S responds as follows:
– If a value is assigned to HFDCRPl,Pm(X, Y, P̂l, P̂m), and if σ = CDH(XP d

l , Y P e
m),

where d = H̄(X, Y, P̂l, P̂m), e = H̄(Y, X, P̂l, P̂m), S returns HFDCRPl,Pm(X, Y, P̂l,
P̂m);

– Else, S chooses π ∈R {0, 1}λ, sets H(σ, P̂l, P̂m, X, Y) = π, and provides A with π;
– If no value is assigned to H̄(X, Y, P̂l, P̂m) (resp. H̄(Y, X, P̂l, P̂m)), S chooses d ∈R

{0, 1}λ and sets H̄(X, Y, P̂l, P̂m) = d (resp. H̄(Y, X, P̂l, P̂m) = d); and if σ =
CDH(XP d

l , Y P e
m), S sets HFDCRPl,Pm(X, Y, P̂l, P̂m) = π.

• When A activates the t–th session at Â, if the peer is not B̂, S aborts; otherwise, S
provides A with the outgoing message (Â, B̂, X0).

• When A activates the session matching t–th session at Â, S chooses y0 ∈R [1, q − 1], and
provides A with (B̂, Â, Y0 = Gy0).

• If A issues an EphemeralKeyReveal query on the session matching the t–th session at Â,
S answers faithfully.

• In any of the following situations S aborts.
– A halts with a test session different from the t–th session at Â.
– A issues a StaticKeyReveal query on B̂.

18

– A issues an EphemeralKeyReveal query on the t–th session at Â.
– A issues an EstablishParty query on Â or B̂.

The simulation remains perfect, except with negligible probability; if A succeeds with non–
negligible probability in event E’.1.3, S outputs with non–negligible probability CDH(X0, B),
from A’s forgery (and a, y0, d, and e); contradicting the GDH assumption.

Under the GDH assumption and the RO model, none of the events E’.1.1, E’.1.2, E’.1.3, or
E’.1.4 occur with non–negligible probability, this shows that E’.1 cannot happen, except with
negligible probability.

Analysis of E’.2 (sketch). The strongest query that A can perform in E’.2 are: a Static-
KeyReveal query on Â or an EphemeralKeyReveal query on sid (but not both). It thus suffices to
show that neither E’.2.1: “E’.2 ∧ A performs a StaticKeyReveal query on Â” nor E’.2.2: “E’.2 ∧ A
performs an EphemeralKeyReveal query on sid” can occur with non–negligible probability.

To show that E’.2.1 cannot happen with non–negligible probability, the simulation used in
the analysis of E’.1.3 can be modified such that if A activates a session matching the t–th session
at Â, S aborts. Since A succeeds with non–negligible probability, using A, S outputs with non–
negligible probability (Y0Be)x0 from A forgery and a. Hence, from the forking lemma, using S,
one can build a polynomial machine S ′ which given X0, B, outputs with non–negligible proba-
bility CDH(X0, B). One can then show that under the RO model and the GDH assumption,
E’.2.1 cannot occur, except with negligible probability.

For the analysis of E’.2.2, the simulation the analysis of E’.1.2 can be modified to take as
input x0, A, B, and aborts when A activates a session matching the t–th session at Â. If A
succeeds in E’.2.2 (and then under this simulation), using A’s forgery, S outputs (Y0Be)a; and
using the “oracle replay” technique, S can be transformed into a machine which given A, B
outputs with non–negligible probability CDH(A, B), contradicting the GDH assumption.

Reflection Attacks Resilience (sketch). With arguments similar to that of subsection 5.1.3,
one can show that reflection attacks cannot hold against eck–fresh sessions. Indeed, if Â = B̂,
and if the session matching the test session exists, A is not allowed to perform both a StaticK-
eyReveal query on Â, and an EphemeralKeyReveal query on the test session or its matching

session. And if the test session’s matching session does not exist, a StaticKeyReveal query on

Â is not allowed.
The analysis of E’.1.1 remains valid if Â = B̂. And in E’.1.2, when Â = B̂ a polynomial

time successful attacker, yields a polynomial machine which given A = Ga outputs G(a2). Under
these restrictions on the allowed queries if Â = B̂, and with minor modifications in the analysis
of E’.1.1 and E’.1.2, one can show that under the RO model and the GDH assumption, the
FHMQV protocol provides resistance to reflection attacks for eck–fresh sessions.

5.3 Main Differences between FHMQV and HMQV Security Arguments

We summarize the most important differences between the HMQV and FHMQV security argu-
ments.
Building blocks and adversary model. The design of FHMQV relies on the FXCR and

FDCR signature schemes. While in the XCR scheme as in the FXCR scheme, both sA

and x leakages in the same session imply Â’s private key discloser. In the FXCR scheme,
an adversary which learns sA is unable to forge A’s signature. The FHMQV adversary
model allows ephemeral secret exponent leakage. The impersonation and man in the
middle attacks we presented in section 2 do not hold against FHMQV.

Key replication attacks resilience. At session key derivation in FHMQV, ephemeral keys
and peers identities are hashed with the session’s FDCR signature (K = H(σ, Â, B̂, X, Y)).
Since non matching sessions cannot have (except with negligible probability) the same
ephemeral keys, and non matching digest queries cannot have (except with negligible

19

probability) the same digest value, the analysis of key replication attacks is immediate for
the FHMQV protocol.

Ephemeral private keys leakage resilience. To show this security attribute for FHMQV,
we define the Hashed FDCR signature scheme. For the HMQV protocol, it is used a
hashed variant of the XCR, namely the HCR signature scheme [11]. While both HFDCR
and HCR security arguments rely on the GDH assumption, for the HFDCR scheme the
Knowledge of Exponent Assumption (KEA1) [4] is not needed, whereas it is required for
the HCR scheme.

6 The FHMQV–C Protocol

As shown in [11], no implictely authenticated two message key agreement protocol can meet the
perfect forward secrecy security attribute; key confirmation security attribute (for both peers)
cannot be achieved also. Nevertheless these security attributes may be desirable; the FHMQV
protocol can be added with a third message, yielding the FHMQV–C protocol, we describe in
Protocol 6; KDF1 and KDF2 are key derivation functions, and MAC a message authentication
code. If any verification fails, the execution aborts.

Protocol 6 FHMQV–C key exchange

I) The initiator Â does the following
(a) Choose x ∈R [1, q − 1] and computes X = Gx.
(b) Send (Â, B̂, X) to B̂.

II) At receipt of (Â, B̂, X) B̂ does the following:
(a) Verify that X ∈ G∗.
(b) Choose y ∈R [1, q − 1], compute Y = Gy.
(c) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(d) Compute sB = (y + eb) mod q, σB = (XAd)sB .
(e) Compute K1 = KDF1(σB, Â, B̂, X, Y) and tB = MACK1(B̂, Y).
(f) Send (B̂, Â, Y, tB) to Â.

III) At receipt of (B̂, Â, Y, tB), Â does the following:
(a) Verify that Y ∈ G∗.
(b) Compute d = H̄(X, Y, Â, B̂) and e = H̄(Y, X, Â, B̂).
(c) Compute sA = (x + da) mod q, σA = (Y Be)sA .
(d) Compute K1 = KDF (σA, Â, B̂, X, Y)
(e) Verify that tB = MACK1(B̂, Y).
(f) Compute tA = MACK1(Â, X).
(g) Send tA to B̂.
(h) Compute K2 = KDF2(σB, Â, B̂, X, Y)

IV) At receipt of tA, B̂ does the following:
(a) Verify that tA = MACK1(Â, X).
(b) ComputeK2 = KDF2(σB, Â, B̂, X, Y).

V) The shared session key is K2.

When a party Â completes a FHMQV–C session with some honest peer B̂, and with incom-
ing ephemeral key Y , it is guaranteed that Y was chosen and authenticated by B̂, and that B̂
can compute the session key it derives. The FHMQV–C protocol provides also perfect forward
secrecy, the compromise of Â’s static private key, does not compromise the session keys estab-
lished in previous runs. This can be shown when the analysis of FHMQV is completed with the
session–key expiration notion [5].

20

7 Concluding Remarks

We proposed a complementary analysis of the Exponential Challenge Response and Dual Ex-
ponential Challenge Response signature schemes, which are the building blocks of the HMQV
protocol. On the basis of this analysis, we showed how impersonation and man in the middle
attacks can be performed against the HMQV protocol, when some session specific information
leakages happen.

We proposed the Full Exponential Challenge Response (FXCR) and Full Dual Exponential
Challenge Response (FDCR) signature schemes, with security arguments. Using these schemes,
we defined the Fully Hashed MQV (FHMQV) protocol, which preserves the efficiency and secu-
rity attributes of the (H)MQV protocols, and resists to ephemeral secret exponent leakage.

We defined a Canetti–Krawczyk type security model, based on session’s tree of computations,
which provides stronger reveal queries to the adversary, and showed that the FHMQV meets
this security definition. The FHMQV protocol can be added with a third message, yielding the
FHMQV–C protocol, which provides all the security attributes of the FHMQV protocol, added
with key confirmation and perfect forward secrecy.

In a forthcoming stage, we will be interested in the analysis of relations between the security
model we propose and the Canetti–Krawczyk and extended Canetti–Krawczyk security models.

Acknowledgments. The authors would like to thank Netheos R&D for supporting this work. We
also thank the EuroPKI 2009 reviewers for their useful comments.

References

[1] ANSI X9.42: Public Key Cryptography for the Financial Services Industry: Agreement of
Symmetric Keys Using Discrete Logarithm Cryptography. 2001.

[2] ANSI X9.63: Public Key Cryptography for the Financial Services Industry: Key Agreement
and Key Transport using Elliptic Curve Cryptography. 2001.

[3] Basin D., Cremers C.: From Dolev–Yao to Strong Adaptive Corruption: Analyzing Security
in the Presence of Compromising Adversaries. Cryptology ePrint Archive, Report 2009/079,
2009.

[4] Bellare M., Palacio A.: The Knowledge–of–Exponent Assumptions and 3–round Zero–
Knowledge Protocols. Lecture Notes in Computer Science, vol. 3152, 273–289, Springer–
Verlag, 2004.

[5] Canetti R., Krawczyk H.: Analysis of Key–Exchange Protocols and Their Use for Building
Secure Channels. Cryptology ePrint Archive, Report 2001/040, 2001.

[6] Cremers C.: Session-state Reveal is stronger than Ephemeral Key Reveal: Attacking the
NAXOS key exchange protocol. Lecture Notes in Computer Science, vol. 5536, 20–33,
Springer–Verlag, 2009.

[7] Gopalakrishnan K., Thériault N., Yao C. Z.: Solving Discrete Logarithms from Partial
Knowledge of the Key. Lecture Notes in Computer Science, vol. 4859, 224–237, Springer–
Verlag, 2007.

[8] Hankerson D., Menezes A., Vanstone S.: Guide to Elliptic Curve Cryptography. Springer–
Verlag, 2003.

[9] IEEE 1363: Standard Specifications for Public Key Cryptography. 2000.

[10] ISO/IEC IS 9798-3: Information Technology – Security techniques : Cryptography tech-
niques based on elliptic curves – Part 3 : Key Establishment. 2002.

21

[11] Krawczyk H.: HMQV: A Hight Performance Secure Diffie–Hellman Protocol. Cryptology
ePrint Archive, Report 2005/176, 2005.

[12] Kunz-Jacques S., Pointcheval D.: About the Security of MTI/C0 and MQV. Lecture Notes
in Computer Science vol. 4116, 156–172, Springer–Verlag, 2006.

[13] LaMacchia B., Lauter K., Mityagin A.: Stronger Security of Authenticated Key Exchange.
Lecture Notes in Computer Science, vol. 4784, 1–16, Springer–Verlag, 2007.

[14] Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An Efficient Protocol for Authenticated
Key Agreement. Designs, Codes and Cryptography, vol. 28(2), 119–134, Kluwer Academic
Publishers, 2003.

[15] Leadbitter P. J., Smart N. P.: Analysis of the Insecurity of ECMQV with Partially Known
Nonces. Lecture Notes in Computer Science, vol. 2851, 240–251, Springer–Verlag, 2003.

[16] Maurer U. M., Wolf S.: Diffie–Hellman Oracles. Lecture Notes in Computer Science,
vol. 1109, 268–282, Springer–Verlag, 1996.

[17] Menezes A.: Another Look at HMQV. Journal of Mathematical Cryptology, vol. 1, 148-175,
Walter de Gruyter, 2007.

[18] Menezes A., Ustaoglu B.: On the Importance of Public-Key Validation in the MQV and
HMQV Key Agreement Protocols, Lecture Notes in Computer Science, vol. 4329, 133–147,
Springer–Verlag, 2006.

[19] Menezes A., Ustaoglu B.: On Reusing Ephemeral Keys in Diffie–
Hellman Key Agreement Protocols. Preprint, 2008 (available at
http://www.cryptolounge.net/10.research.shtml).

[20] NIST Special publication 800-56: Recommendation on Key Establishment Schemes. 2003.

[21] Okamoto T., Pointcheval D.: The Gap–Problems: A new class of problems for the security
of cryptographic schemes. Lecture Notes in Computer Science, vol. 1992, 104-118, Springer–
Verlag, 2001.

[22] Pointcheval D.: Les preuves de connaissances et leurs preuves de sécurité. PhD thesis, Uni-
versité de Caen, 1996; (in french, available at http://www.di.ens.fr/users/pointche/).

[23] Pointcheval D., Stern J.: Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology, vol. 13, 361–396, Springer–Verlag, 2000.

[24] Pollard J. M.: Kangaroos, Monopoly and Discrete Logarithms. Journal of Cryptology, vol.
13, 437–447, Springer–Verlag, 2000.

[25] Teske E.: Square-root Algorithms for the Discrete Logarithm Problem (A survey). Public
Key Cryptography and Computational Number Theory, 283–301, Walter de Gruyter, 2001.

[26] Teske E.: On Random Walks for Pollard’s Rho Method. Mathematics of Computation, vol.
70, 809–825, American Mathematical Society, 2001.

[27] Ustaoglu B.: Obtaining a secure and efficient key agreement protocol from (H)MQV and
NAXOS. Designs, Codes and Cryptography, vol. 46(3), 329–342, Kluwer Academic Pub-
lishers, 2008.

[28] Wang S., Cao Z., Strangio M. A., Wang L.: Cryptanalysis and Improvement of an Elliptic
Curve Diffie–Hellman Key Agreement Protocol. Communications Letters, vol 12, 149–151,
IEEE, 2008.

22

http://www.cryptolounge.net/10.research.shtml
http://www.di.ens.fr/users/pointche/

	Introduction
	Complementary Analysis of the HMQV design
	Exploiting Secret Leakage in the XCR and DCR Signature Schemes
	Exploiting Session Secret Leakages in the HMQV Protocol
	Impersonation Attack using Session Secret Leakage
	Man in the Middle Attack using Session Secret Leakages

	Security Model
	A New Authenticated Diffie–Hellman Protocol
	Full Exponential Challenge Response Signature Scheme
	Full Dual Exponential Challenge Response Signature Scheme
	The Fully Hashed MQV Protocol.

	Security Analysis of the FHMQV Protocol
	Ck–Security Arguments
	Analysis of E.1
	Analysis of E.2
	Resistance to Reflection Attacks

	Ephemeral Private Keys Leakage Resilience (eck–security)
	Hashed Full Dual Challenge Response Scheme
	Application to FHMQV

	Main Differences between FHMQV and HMQV Security Arguments

	The FHMQV–C Protocol
	Concluding Remarks
	Bibliography

