
Tight Bounds for Protocols with Hybrid Security

Matthias Fitzi1 and Dominik Raub2

1 ETH Zürich
Department of Computer Science

CH-8092 Zürich, Switzerland
fitzi(at)inf.ethz.ch

2 Aarhus University
Department of Computer Science

DK-8000 Aarhus C, Denmark
raub(at)cs.au.dk

Abstract. We consider broadcast and multi-party computation (MPC) in the setting where a digital signature
scheme and a respective public-key infrastructure (PKI) are given among the players. However, neither the sig-
nature scheme nor the PKI are fully trusted. The goal is to achieve unconditional (PKI- and signature-independent)
security up to a certain threshold, and security beyond this threshold under stronger assumptions, namely, that the
forgery of signatures is impossible and/or that the given PKI is not under adversarial control. We give protocols for
broadcast and MPC that achieve an optimal trade-off between these different levels of security.

1

1 Introduction

1.1 Multi-Party Computation

In [Yao82], Yao introduced the concept of secure multi-party computation (MPC): Given an arbitrary but
fixed function f and a set of N mutually distrusting players, an MPC protocol allows these players to
compute the function f on their inputs securely, even if some of the players are corrupted by an adversary.
This first notion (often called secure function evaluation) has meanwhile been extended to reactive and
randomized functionalities.

Security requirements for MPC in the literature (e.g. [Gol01]) include privacy, correctness, robustness,
fairness, and agreement on abort. Privacy is achieved if the adversary cannot learn more about the honest
players’ inputs than what is implied by the inputs and outputs of the corrupted players. Correctness means
that the protocol output is correct for the given inputs according to the specification, or that there is no
output. In this paper, our notion of security generally encompasses these two basic requirements, privacy
and correctness. Possible additional requirements are notions of output guarantees, which we discuss in
order of decreasing strength: A protocol achieves robustness if the adversary cannot prevent the honest
players from obtaining output, i.e., if it is guaranteed that no honest player aborts the protocol. Fairness is
achieved if the adversary cannot get any information about the honest players’ inputs in case that any honest
player aborts. Agreement on abort means that either all honest players abort or none of them does. Security
(privacy and correctness) with robustness is often referred to as full security. Accordingly, we use the term
fair security for privacy, correctness, agreement on abort, and fairness (without robustness), and the term
abort security for privacy, correctness, and agreement on abort (without robustness or fairness).

1.2 Full Security

A first general solution to the MPC problem was given by Goldreich et al. [GMW87] based on computa-
tional intractability assumptions and the availability of a broadcast (BC) channel. They achieve full security
against t < N

2 actively corrupted players. Ben-Or et al. [BGW88] and Chaum et al. [CCD88] presented
protocols which are information-theoretically (IT) secure and require no BC channel. They achieve full se-
curity against t < N

3 actively corrupted players. When additionally assuming BC channels IT full security
can be achieved for up to t < N

2 actively corrupted players as was shown by Beaver [Bea89] and Rabin et
al. [RB89].

1.3 Hybrid Security

For MPC protocols, reliance on computational intractability assumptions (e.g. difficulty of factoring) or
trusted setup (e.g. broadcast or correct PKI) is undesirable. Such assumptions are generally unproven or
even unprovable, and their invalidation generally leads to a complete loss of security for protocols based
on the assumption, even if only a single player is corrupted. On the other hand, IT secure MPC can only
tolerate a relatively small fraction of actively corrupted players. This leads to the natural question whether
it is possible to construct protocols that are fully IT secure against a small portion of corrupted players but
that, at the same time, still provide some weaker security guarantees for the case that some larger portion
of players is corrupted. That is, are there protocols that allow for a graceful degradation of security as the
number of corrupted players rises?

For the standard models with a given broadcast channel or without broadcast nor a public-key infras-
tructure (PKI) a full characterization of such degradation was given in [FHHW03,LRM10].

In [FHW04] another natural model was treated where no broadcast channels are given but a digital
(pseudo-)signature scheme and a respective public-key infrastructure (PKI) — but where the PKI might
be inconsistent or the adversary might be able to forge respective signatures. In this model, protocols are

2

defined with respect to three thresholds tσ, tp, and T , where tσ, tp ≤ T . A protocol is said to achieve hybrid
security if it is secure under the following condition:

– t ≤ T players are corrupted, AND
– if t > tσ players are corrupted then the adversary cannot forge signatures, AND
– if t > tp players are corrupted then the underlying PKI is consistent.

We refer to such protocols as hybrid protocols. Note that assuming a PKI is a much more realistic assump-
tion than assuming broadcast channels since secure physical broadcast channels do not exist. Furthermore,
allowing for a possibly inconsistent PKI or possible forgeries by the adversary makes the model even more
realistic.

Gupta et al. [GGBS10] and Gordon et al. [GKKY09] consider a related setting, where the private keys
of tc parties may be compromised while ta parties may additionally be actively corrupted. In [GKKY09]
it is claimed that the model in [FHW04] constitutes the special cases tc = 0 and tc = N of their model.
Note that this is not correct since the model in [FHW04] allows that the adversary either corrupts a large
number of players but cannot forge signatures or corrupts a small number of players while being able to
forge signatures; whereas both alternatives are tolerated by the same protocol.

1.4 Contributions

The treatment in [FHW04] was restricted to fully secure hybrid MPC (its robustness implying T < N/2
by an argument in [Cle86]) — for which they give a tight bound. In particular, they did not give bounds on
the achievability of hybrid broadcast for T ≥ N/2. In this paper we give a tight bound for the achievability
of hybrid broadcast for general T , tσ, and tp. This result then naturally extends to hybrid MPC for general
thresholds. In the case of broadcast, our protocols will always achieve full-fledged broadcast. In the case
of MPC, we have to allow the possibility of unfair abort whenever necessary (i.e., exactly under the tight
conditions in the model with broadcast [LRM10]) — but still abort with agreement, i.e., either no honest
player aborts or all honest players do.

The considered adversary is assumed to be static. Note that adaptive security is provably unachievable
for T > N/2 [HZ10]. We show that hybrid broadcast is possible if and only if

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) . (1)

Furthermore, we show that, essentially, Bound (1) is also tight for the achievability of hybrid MPC.

1.5 Model

As is common for MPC we consider a setP of |P| = N players connected by a complete network of secure3

channels. No broadcast channels are available. Instead, the players share a public-key infrastructure (PKI)
with respect to a given (pseudo-)signature scheme. When discussing universally composable (UC) MPC pro-
tocols we also require a common reference string (CRS) to avoid the impossibility results of [Can01,CF01].
The adversary may actively corrupt an arbitrary subset of t players, taking full control of them.

Furthermore, the public-key infrastructure (PKI) may or may not be controlled by the adversary (and
inconsistent, in particular). If not under adversarial control the PKI provides, with respect to each player
Pi ∈ P , a random signing-key/verification-key(s) pair for a secure4 (pseudo)-signature scheme such that

3 As an exception, authenticated channels are sufficient for the special case of broadcast when based on standard (non-IT) signa-
tures.

4 We require the signature scheme to be existentially unforgeable under adaptive chosen-message attacks (UF-CMA), e.g. [CS99].
Alternatively an IT secure pseudo-signature scheme, e.g. [PW96], can be used.

3

Pi has exclusive access to his own signing key and each player Pj has access to a verification key for the
verification of signatures by Pi. If under adversarial control the adversary receives all inputs to and arbitrarily
fixes all outputs by the PKI, i.e., defines all involved keys in any possible way. Additionally, the adversary
may be able to forge signatures. We model such adversaries by giving them access to all players’ signing
keys. More precise UC formalizations can be found in App. A.

Note that the above modelling implies that controlling the PKI is strictly more powerful than the ability
to forge signatures. This implies that we can generally assume that tp ≤ tσ.

2 Hybrid Broadcast (HBC)

In this section we discuss constructions for hybrid-secure broadcast (HBC). We begin by defining broadcast:

Definition 1 (BC). A protocol among a player set P of size |P| = N where a player Ps ∈ P (the sender)
inputs a value xs and every player Pi ∈ P outputs a value yi achieves broadcast (BC) if the following
conditions hold:

VALIDITY. If the sender Ps is honest then every honest player Pi outputs yi = xs.
CONSISTENCY. Every honest player Pi outputs the same value yi = y.
TERMINATION. All honest players terminate the protocol. �

A BC protocol is hybrid-secure if it tolerates t ≤ T corrupted players, tolerates an adversarially con-
trolled PKI in presence of t ≤ tp corrupted players, and tolerates an adversary capable of forging signatures
in presence of t ≤ tσ corrupted players:

Definition 2 (HBC). A protocol among N players with thresholds tσ, tp, and T (tp ≤ tσ ≤ T) achieves
hybrid broadcast (HBC) if it achieves broadcast under corruption of t players and the following conditions:

• if t ≤ tp (unconditionally),
• if tp < t ≤ tσ and the PKI is correct (trusted),
• if tσ < t ≤ T , the PKI is correct, and the adversary cannot forge signatures of honest players. �

Let us recall the claimed bound for the achievability of HBC:

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

In order to demonstrate achievability of this bound we can restrict our treatment to the case where tp = 0,
i.e., we tolerate an adversarially controlled PKI only if no player is corrupted. This is sufficient, since tp > 0
implies T < N/2 — a sub-case for which a protocol has already been given in [FHW04].

For the following construction of a HBC protocol, we will first assume that the PKI is correct. In Sec. 2.3,
we then exhibit a generic way of how to fix a possibly adversarially controlled PKI. For our construction, a
protocol to satisfy the following definition will be constructed as a building block first.

Definition 3 (Broadcast with extended validity (BCEV) [FHHW03]). A protocol amongN players achieves
broadcast with extended validity with respect to thresholds tσ and T ≥ tσ if

tσ-BROADCAST: if t ≤ tσ players are corrupted the protocol achieves broadcast unconditionally,
T -VALIDITY: if tσ < t ≤ T players are corrupted and the adversary cannot forge signatures then the

protocol achieves the validity condition of broadcast.
TERMINATION: All honest players terminate the protocol. �

For simplicity, we will restrict our treatment to binary input-message domains in the sequel. Protocols
for larger domains can be easily achieved by running binary protocols in parallel.

4

2.1 An Efficient Protocol for BCEV

Protocol Πbcev is described by the local view of each player Pi (see Figure 1). Let BGP be the efficient,
perfectly secure broadcast protocol in [BGP89] tolerating t < N/3 corrupted players — it starts with its
sender sending his input to every player in the first round. We construct protocol Πbcev by combining BGP
with selective use of signatures: the idea being that, for t ≤ tσ, BGP will work correctly and dominate the
final outcome whereas, for tσ < t, at least one forgery would be necessary in order to violate validity of the
protocol. The protocol works as follows and is summarized in Figure 1:

– In Step 1 of Protocol Πbcev, the sender Ps distributes the pair (xs, σs(xs)) where xs is his input and
σs(xs) is a signature by Ps on xs.

– In Step 2, each player Pj redistributes the received pair with an instance of the BGP protocol. Let
(vj,0i , σj,0i) be the initial (first-round) message that Pi receives during the BGP instance with sender Pj ,
and (vji , σ

j
i) the respective final broadcast result. Player Pi now assembles player sets Sv,0i and Svi for

each possible input value v ∈ {0, 1}, where j ∈ Sv,0i means that Pj sent v with a valid signature by Ps
during the first round of his BGP protocol, and j ∈ Svi means that v together with a valid signature by
Ps was received as the final result of Pj’s BGP.

– Depending on the cardinalities of the sets Sv,0i and Svi , Pi now decides as depicted in Figure 1, Step 3.

1. Ps: send (xs, σs(xs)). [receive (xi, σi)]

2. ∀Pi: BGP((xi, σi)). [∀j: receive ((vj,0i , σj,0i), (vji , σ
j
i))]

Sv,0i := {j|vj,0i = v ∧ σj,0i valid}; Svi := {j|vji = v ∧ σji valid};

3. if |Sxi,0i | ≥ N − T ∧ |S1−xi
i | = 0 then yi := xi (I)

elsif |S0
i | > |S1

i | then yi := 0 else yi := 1 (II)

fi

Fig. 1. Protocol Πbcev.

Lemma 1. Assuming a correct PKI, Protocol Πbcev (Figure 1) efficiently achieves BCEV if T + 2tσ < N .

Proof. Efficiency easily follows by inspection of the protocol. Let the number of corrupted players be t.
Note that T + 2tσ < N (tσ ≤ T) implies that tσ < N/3 and thus that BGP works correctly for t ≤ tσ.

• Broadcast (t ≤ tσ): Validity. If Ps is honest and t ≤ tσ then honest Pi sees |Sxs,0i | ≥ N − tσ, |Sxsi | ≥
N − tσ, and |S1−xs

i | ≤ tσ < N − tσ. Thus Pi decides on yi = xs according to either Branch (I) or (II).
• Broadcast (t ≤ tσ): Consistency. As t ≤ tσ < N/3, BGP is reliable. So, for all honest Pi, Pj BGP

results match, implying S0
j = S0

i and S1
j = S1

i . Hence, if no honest Pi decides according to Branch (I)
then all honest Pi decide on the same value since they have the same view of the sets Svi and consistency
is guaranteed. Thus, it only remains to consider the case that some honest Pi decides according to
Branch (I): Then, |Sxi,0i | ≥ N − T and |S1−xi

i | = 0. We distinguish two cases:
1. honest Pj also decides according to (I). As BGP is reliable (tσ < N/3), any honest player Ph

succeeds in broadcasting the message he first sent, so Ph ∈ Sxi,0i implies Ph ∈ Sxii . As at most tσ
of the players in Sxi,0i are corrupted, player Pj sees |Sxij | ≥ N − T − tσ > 0. Thus xj = 1− xi is
not possible since Sxij is not empty. Thus xj = xi, and consistency follows.

2. honest Pj decides according to (II). Since BGP is reliable (tσ < N/3), it follows that S1−xi
j =

S1−xi
i = ∅. Furthermore, by the same argument as above |Sxij | ≥ N − T − tσ > 0 and consistency

follows by majority in Branch (II).

5

• T -Validity. It remains to demonstrate validity for tσ < t ≤ T . Since the adversary cannot forge signatures
in this case, for honest sender Ps an honest player Pi sees |Sxs,0i | ≥ N − T and S1−xs

i = ∅ and thus
computes yi = xs. ut

2.2 Achieving HBC from BCEV

We now construct an HBC protocol by combining the BCEV protocol above with the PKI-based BC protocol
of [DS82]. ProtocolΠpki

hbc (see Figure 2) is described by the local view of each player Pi. Let Ps be the sender,
ins the sender input, and outi the broadcast output of player Pi. Let DS-BC denote the efficient broadcast
protocol of [DS82] tolerating any number of corrupted players, relying on a PKI and respective signatures.

– In Step 1 of Protocol Πpki
hbc, the sender Ps distributes his input ins using an instance of DS-BC.

– In Step 2 the sender distributes his input ins using an instance of Πbcev (see previous section).
– In Step 3, each player Pi signs his BCEV result and sends the BCEV result together with the signature

to every player.5

– Now, for each Pi,
• if some value v was received in Step 3 by at least N − tσ different players Pj together with correct

signatures by these Pj then player Pi broadcasts the respective signatures with an instance of DS-BC
and outputs outi = v;
• else Pi distributes the empty set with an instance of DS-BC and then computes his output in the

following way: If there is a value v such that at least N − tσ valid signatures (originating from
different players) were received by some player during this step then outi = v, otherwise Pi accepts
the result of the initial DS-BC by the sender as his final output.

1. Run Protocol DS-BC on sender input ins. [receive xi]
2. Run Protocol Πbcev on sender input ins. [receive yi]
3. Multi-send yi, signed. [for each Pj , receive zji]
4. if some value v was received at leastN−tσ times as zji = v for different j’s with valid signatures

then DS-broadcast the respective signatures and outi := v, [for each Pk, receive Ski]
(I)

else DS-broadcast ∅. [for each Pk, receive Ski]
If ∃ value v with a set Sji of valid signatures on v and |Sji | ≥ N − tσ then outi := v (II)
else outi := xi (III)
fi

fi

Fig. 2. Protocol Πpki
hbc.

Achieving HBC given a correct PKI means that our protocol Πpki
hbc has to be able to tolerate signature

forgeries in presence of adversaries corrupting at most t ≤ tσ players, while providing BC in presence of
adversaries corrupting at most t ≤ T players. We now show that protocol Πpki

hbc achieves this efficiently for
any choice of thresholds tσ and T where T + 2tσ < N .

Lemma 2. Assuming a correct PKI, protocol Πpki
hbc efficiently achieves hybrid broadcast if T + 2tσ < N .

Proof. Efficiency easily follows by inspection of the protocol. Let the number of corrupted players be t.

• t ≤ tσ. Protocol Πbcev achieves broadcast, all N − tσ honest players correctly sign their values yj and
resend them in Step 3. SinceN−tσ > N/2, every honest player Pi uniquely decides on outi = yi = ins
in Step 4 and broadcast is achieved.

5 We use some unique message tag in order to separate these signatures from those in DS-BC.

6

• tσ < t ≤ T . In this case we can restrict our attention to adversaries that cannot forge signatures.
Validity. If honest Pi decides on (I) then value outi was propagated by at least N − tσ−T > tσ honest

players in Step 3, and thus outi = ins because of T -validity of BCEV. If honest Pi decides on (II)
then at least N − tσ − T > tσ honest players must have signed value outi (with Step-3 tagging),
and thus outi = ins because of T -validity of BCEV. If honest Pi decides on (III) then outi = ins
by validity of DS-BC.

Consistency. If no honest player decides on (I) then all honest players agree since their decisions are
based solely on information that was DS-broadcasted, and thus on a common view. Thus, assume
that there is an honest player Pj who decides on (I). Then an honest Pi cannot decide on (III) because
|Sji | ≥ N − tσ.
1. Honest Pi decides on (I): because of Pj’s situation Pi sees at leastN−tσ−T > tσ signatures on
outi by honest players, and thus outi = outj since value 1− outi cannot have enough support.

2. Honest Pi decides on (II): for some Pk, |Ski | ≥ N − tσ, and at least N − tσ − T > tσ honest
players signed outi (but no other value with the message tag for Step 3). Thus less than N − tσ
players ever signed value 1− outi, and thus outj = outi. ut

2.3 Fixing the PKI

Previously we assumed that the given PKI was always correct. However, it is our goal to provide a secure
BC protocol for any choice of parameters tσ, tp, and T where T +2tσ < N ∧ (tp > 0 ⇒ 2T +tp < N) .
This protocol must tolerate and adversarially controlled PKI in presence of t ≤ tp corruptions. Our solution
for the case tp = 0 must thus be adapted to tolerate an adversarially controlled PKI for the case that t = 0
players are corrupted, i.e., for the case that all players are honest. We achieve this by giving a generic
construction that transforms a possibly adversarially controlled PKI into a correct one under the condition
that all players are honest. The transformation is based on Protocol FGHHS in [FGH+02] for detectable
precomputation of a PKI tolerating any number of corrupted players. This protocol sets up a PKI such that

– either all honest players accept the protocol outcome, or all honest players reject;
– if no player is corrupted then all players accept the protocol outcome;
– if an honest player accepts the protocol outcome then the PKI is correct.

The transformation works as follows: Let PKI be the given PKI that might be adversarially controlled.
Before executing the HBC protocol Πpki

hbc, an instance of FGHHS is executed resulting in a second PKI
instance PKI′.

If one (and thus all) honest player accepts the new PKI′ then PKI′ is correct as guaranteed by the FGHHS
protocol. In this case the players use the new PKI′ in the HBC protocol instead of the original PKI. If one
(and thus all) honest player rejects the new PKI′ then some player must be corrupted as by the guarantee
of the FGHHS protocol. In this case we have t > tp = 0 and the protocol is not expected to tolerate an
adversarially controlled PKI; and the players can use the original PKI in the HBC protocol.

Denote by Πhbc the protocol that, for tp = 0, runs FGHHS and Πpki
hbc, and for tp > 0, runs the BC

protocol from [FHW04]. We then arrive at the following

Lemma 3. Protocol Πhbc efficiently achieves HBC if T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

Proof. The case tp > 0 follows from [FHW04]. The case tp = 0 follows from Lem. 2 and the discussion of
this section. ut

Combining this result with the impossibility results of Sec. 4 we get:

7

Theorem 1. HBC is achievable (and then efficiently) if and only if

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

Proof. Achievability follows from Lem. 3. Impossibility beyond the given bounds follows from Lem. 6 in
Sec. 4. ut

3 Hybrid Multi-Party Computation (HMPC)

We now discuss Hybrid Multi-Party Computation (HMPC) in the setting where players are provided with a
complete network of secure channels and a possibly adversarially controlled PKI.

As for HBC, the exact guarantees provided by HMPC depend on the number t of corrupted players.
As in the treatment of HBC, we define a threshold tσ for tolerating adversaries that may forge signatures
and a threshold tp for tolerating an adversarially controlled PKI. Additionally, we define a threshold tc for
tolerating the adversary to be computationally unbounded (given that the PKI is based on unconditionally
secure pseudo-signatures). This threshold is independent from the other ones as we will always be able to
tolerate tc < N/2 which is optimal by arguments in [RB89,Kil00].

Furthermore, as suggested by the different standard property increments of the literature, we may also
define different thresholds for robustness `r (i.e., full security for t ≤ `r), fairness `f (i.e., fair security for
t ≤ `f), and abort L (i.e., abort security for t ≤ L) — see Sec. 1.1. We refer to these thresholds as limits.
Note that thresholds refer to adversarial constraints whereas limits refer to the different increments of MPC.
In consistency with this separation, limit L has taken the role of the upper threshold T in HBC, L = T .

Naturally, we assume that `r ≥ max(tp, tσ) = tσ since we want to demand full security at least as long
as the adversary cannot forge signatures. That is, degradation of security properties shall only be tolerated
under the strongest possible adversary.

Note that, although we are dealing with a large number of different threshold parameters for the moment,
we will end up at a concise simplification in Sec. 3.2 — without loss of generality. This simplification will
allow to fix the single threshold parameter L whereas all other threshold parameters will be able to be
maximized independently of each other, i.e., any optimally resilient protocol will be characterized by the
single parameter L.

Definition 4 (Hybrid Multi-Party Computation (HMPC)). Let tσ, tp, tc be thresholds, and `r, `f , L be
limits, with the additional constraint that tp ≤ tσ ≤ `r ≤ `f ≤ L. Let a PKI and a complete network of
secure channels be given. Consider an adversary corrupting t players in the following adversarial setting:

1. if t > tc then the adversary is computationally bounded, otherwise it may be unbounded,
2. if t > tσ then the adversary cannot forge signatures, otherwise it may be able to do so,
3. if t > tp then the PKI is correct, otherwise it may be controlled by the adversary.

A protocol then achieves hybrid multi-party computation (HMPC) if it achieves

1. fully secure MPC (privacy, correctness, and robustness) for t ≤ `r,
2. fair secure MPC (privacy, correctness, and fairness) for `r < t ≤ `f ,
3. abort secure MPC (privacy, correctness, and agreement on abort) for `f < t ≤ L. �

In [LRM10], for the model with broadcast channels, N -player MPC is defined with respect to a limit
`r = ρ and implicitly defined limits `f , and L. In keeping with the above definition of these limits, the MPC
protocol πρSA of [LRM10] is fully secure against t ≤ `r, fair secure against t ≤ `f , and abort secure against
t ≤ L corrupted players.6 They demonstrate the following bound for the achievability of such MPC:

2tc < N ∧ 2`f < N ∧ L+ `r < N . (2)
6 For now, we use the stand-alone secure protocol variant πρSA of the protocol of [LRM10]. The UC setting is discussed in App. A.

8

This bound is tight as shown in [IKLP06,Kat07,Cle86,Kil00] and discussed in [LRM10]. We will show that
HMPC is achievable if and only if both the bounds of Eq. (2) and Thm. 1 are satisfied, i.e.,

Theorem 2 (Bounds for HMPC). HMPC with thresholds tσ, tp, tc, and limits `r, `f , and L, where tp ≤
tσ ≤ `r ≤ `f ≤ L, is achievable if and only if

L+ 2tσ < N ∧ (tp > 0 ⇒ 2L+ tp < N) ∧ 2tc < N ∧ 2`f < N ∧ L+ `r < N . (3)

Actually, our impossibility results in Sec. 4 even imply that agreement in MPC comes for free: limiting our
requirements to privacy and correctness without agreement allows for no higher threshold L.

3.1 Proof of Thm. 2

Necessity of the right part (Eq. (2)) of Bound (3) directly follows from [LRM10] as their model is strictly
more powerful. It remains to demonstrate necessity of the left part of Bound (3). For this, we exhibit a special
case of HMPC that is not achievable beyond. Note that HBC itself cannot be such a candidate instance since
HMPC does not imply HBC (as HMPC does not require robustness). However, if we augment HBC with
the possibility of such non-robustness, we arrive at exactly such an instance: hybrid broadcast with abort,
HBCA for short. That is, HBCA is the same as HBC except for the additional limit `r ≥ tσ and the additional
property that robustness is only required if t ≤ `r. In Sec. 4, impossibility of HBCA beyond L+ 2tσ < N
and tp > 0 ⇒ 2L+ tp < N is demonstrated. This finishes the necessity argument of the proof.

We now argue sufficiency by exhibiting an HMPC protocol that achieves the bounds above. We combine
the MPC protocol πρSA of [LRM10] with our HBC protocolΠhbc, thus deriving an MPC protocol πρSA ◦Πhbc

for the model with a PKI instead of a BC channel.6 The MPC protocol πρSA of [LRM10] is fully secure for
t ≤ `r, fair secure for t ≤ `f , and abort secure for t ≤ L corrupted players. The protocol Πhbc is secure
under the bounds of Thm. 1.

As the MPC protocol πρSA ◦ Πhbc exhibits the same security properties as protocol πρSA when run with
BC channels, we arrive at the following:

Theorem 3 (Security of πρSA ◦Πhbc). Let a PKI and a complete network of secure channels be given. Let
tσ, tp, tc be thresholds and `r, `f , L be limits where tp ≤ tσ ≤ `r ≤ `f ≤ L as in Thm. 2, i.e.,

L+ 2tσ < N ∧ (tp > 0 ⇒ 2L+ tp < N) ∧ 2tc < N ∧ 2`f < N ∧ L+ `r < N .

Then Protocol πρSA ◦Πhbc achieves hybrid multi-party computation (HMPC) secure against a static active
adversary corrupting up to t of the players.

Proof. The theorem follows from the discussion above. ut

This completes the proof of Thm. 2. ut
A discussion of HMPC in the UC setting including a UC restatement of Thm. 2 can be found in App. A.

3.2 Simplification

We now simplify Thm. 3 by expressing all bounds implicitly by the parameterL. Parameter tc is independent
of all other parameters and we may already fix it to its maximal possible value tc =

⌊
N−1
2

⌋
. We distinguish

the cases L < N/3, N/3 ≤ L < N/2, and L ≥ N/2, where the first case is covered by [BGW88,CCD88].
For N/3 ≤ T < N/2 we arrive at HMPC with the properties in [FHW04]. Note that the constraint

N/3 ≤ T together with the implicit bounds in the following proposition automatically imply that tp ≤ tσ
as required by the model.

9

Corollary 1 ([FHW04] N/3 ≤ L < N/2). Let a PKI and a complete network of secure channels be given
and let L be fixed such that N/3 ≤ L < N/2. And let t ≤ L be the number of corrupted players. Then fully
secure HMPC is achievable exactly under the following adversarial constraints

1. the adversary is allowed to be computationally unbounded, and
2. if t < N − 2L then the adversary is allowed to control the PKI, and
3. if t < N−L

2 then the adversary is allowed to forge signatures.

In particular, these bounds are independent in the sense that the lowering of one threshold does not allow
for an increase of any other threshold.

For L ≥ N/2 we obtain new results that go beyond those of [FHW04]. Let us fix L anywhere such that
L ≥ N/2. Our bound then directly implies tp = 0. Without loss, we can now independently maximize the
thresholds tσ, `r, and `f , with respect to L without violating that tσ ≤ `r ≤ `f .

Corollary 2 (L ≥ N/2). Let a PKI and a complete network of secure channels be given and let L be fixed
such that L ≥ N/2. And let t ≤ L be the number of corrupted players. Then HMPC is achievable exactly
under the following adversarial constraints

1. if t < N
2 the adversary is allowed to be computationally unbounded, and

2. if t = 0 the adversary is allowed to control the PKI, and
3. if t < N−L

2 the adversary is allowed to forge signatures,

and providing the security properties

1. full security if t < N − L, and
2. fair security if t < N

2 , and
3. abort security.

In particular, these bounds are independent in the sense that the lowering of one threshold does not allow
for an increase of any other threshold.

4 Impossibility

We demonstrate impossibility of HBC and HMPC beyond the bounds of Thms. 1 and 2 by showing that
HBCA, i.e., hybrid broadcast with abort, is not achievable. HBCA is the same as HBC except that robustness
is only required if t ≤ tσ.

Definition 5 (HBCA). A protocol with parameters tp, tσ, and T , tp ≤ tσ ≤ T , among a player set P ,
|P| = N , where a player Ps ∈ P (the sender) inputs a value xs 6= ⊥ and every player Pi ∈ P outputs a
value yi achieves hybrid broadcast with abort (HBCA) if, under the condition that

• the PKI may be controlled by the adversary if t ≤ tp, and
• the adversary may forge signatures if t ≤ tσ,

the following holds:

• if t ≤ tσ then the protocol achieves broadcast, and
• if t ≤ T then the protocol either achieves broadcast or all honest players terminate the protocol with

output ⊥. �

Impossibility of HBCA beyond the bounds of Lem. 2 can be shown along the lines of [FLM86] and [FHW04]
by demonstrating the impossibility of the following two special cases:

1. First, we show that HBCA is impossible if tp = 0, tσ > 0, and T + 2tσ ≥ N .
2. Second, we show that HBCA is impossible if tp > 0 and 2T + tp ≥ N .

10

4.1 Impossibility of T + 2tσ ≥ N when tσ > 0.

For the sake of contradiction, assume a protocol that achieves HBCA under these conditions among a player
set P , |P| = N ≥ 3. We can partition the players in to three sets P0, P1, and P2, with cardinalities |P0| ≤ T
and |P1|, |P2| ≤ tσ where the sender Ps is inP0. Let P′i be a copy of player Pi ∈ P0 andP ′0 = {P′i|Pi ∈ P0}
where player P′i holds the same protocol information as Pi. We show that the assumed protocol leads to a
contradiction when we connect the players in P ′ = P0 ∪P1 ∪P2 ∪P ′0 in a certain way and let the protocol
run.

The players are connected in the following way — see Figure 3. Exactly all pairs in (P0∪P1)×(P0∪P1),
(P1 ∪ P2) × (P1 ∪ P2), and (P2 ∪ P ′0) × (P2 ∪ P ′0) are connected by pairwise channels meaning that a
message that normally would be sent from Pi ∈ P2 to Pj ∈ P0 is sent from Pi to P′j ∈ P ′0 instead, and
that P′j communicates with the players in P2 ∪ P ′0 as it would with the players in P2 ∪ P0 under normal
conditions. Note that no further connections exist.

Fig. 3. Simulated system by the adversary for the case tσ > 0

We first show that for input xs = 0 of the original sender Ps and input x′s = 1 of the sender’s copy P′s
the joint view among the different sets P0 ∪P1, P1 ∪P2, and P2 ∪P ′0, are indistinguishable from their joint
view in a protocol under normal conditions where the adversary corrupts the remaining players.

Joint view of P0 ∪ P1 with xs = 0. By corrupting all players in P2 in the original system the adversary
simulates all players in P2 ∪ P ′0 of the new system. Since |P2| ≤ tσ, the adversary can forge all signatures
by players in P ′0 required for the simulation. Thus the joint view of the players in P0 ∪ P1 in the original
system is exactly the same as their view in the new system.

Joint view of P2 ∪ P ′0 with x′s = 1. By symmetry, this case follows from the above paragraph.

Joint view of P1 ∪ P2. By corrupting all players in P0 in the original system the adversary can simulate all
players in P0 ∪P ′0 of the new system. Note that, by corrupting the players in P0, the adversary gains access
to all corresponding secret keys and thus is not required to forge any signatures for the simulation. Thus
the joint view of the players in P1 ∪ P2 in the original system is exactly the same as their view in the new
system.

Contradiction. The assumption that the given protocol achieves HBCA implies that the players Pi ∈ P0∪P1
must agree on yi = xs = 0 since the adversary corrupts the at most tσ players in P2. By the same argument,
the players Pj ∈ P2 ∪ P ′0 must agree on yj = x′s = 1. However, this implies that the players in P1 and the
players in P2 disagree on their outputs in contradiction to the definition of HBCA. This implies that HBCA
is not achievable under these conditions.

Lemma 4. If tσ > 0 then HBCA is not achievable if T + 2tσ ≥ N .

Proof. The proof follows from the above discussion. ut

11

4.2 Impossibility of 2T + tp ≥ N when tp > 0.

We proceed in the same way as in the previous section. We can partition the players in to three sets P0, P1,
and P2, with cardinalities |P0| ≤ tp and |P1|, |P2| ≤ T where the sender Ps is in P0. Let P′i, P ′0, and P ′ be
defined as in the previous section.

The players are connected in the following way — see Figure 4. Exactly all pairs in (P0∪P1)×(P0∪P1),
(P1 ∪ P2)× (P1 ∪ P2), and (P2 ∪ P ′0)× (P2 ∪ P ′0) are connected as in the previous section. Additionally,
for all players P′i ∈ P ′0 the old secret-key/public-key pair is erased and replaced by a random valid pair
(SK′i,PK′i); and for all players Pj ∈ P2 ∪ P ′0 Pj’s copy of PKi is replaced by PK′i.

Fig. 4. Simulated system by the adversary for the case tp > 0

We again show that for input xs = 0 of the original sender Ps and input x′s = 1 of the sender’s copy P′s
the joint view among the different sets P0 ∪P1, P1 ∪P2, and P2 ∪P ′0, are indistinguishable from their joint
view in a protocol under normal conditions where the adversary corrupts the remaining players.

Joint view of P0 ∪ P1 with xs = 0. By corrupting all players in P2 in the original system the adversary
simulates all players in P2 ∪ P ′0 of the new system. For all Pi ∈ P ′0 it generates a random valid secret-
key/public-key pair (SK′i,PK′i) and overwrites Pi’s own secret key, and, for all Pj ∈ P2 ∪ P ′0, overwrites
Pj’s copy of Pi’s public key. The PKI among the players in P0 ∪ P1 is still fully correct and thus the joint
view of the players in P0 ∪ P1 in the original system is exactly the same as their view in the new system.

Joint view of P2 ∪ P ′0 with x′s = 1. By symmetry, this case follows from the above case.

Joint view of P1 and P2. Since |P0| ≤ tp the adversary can control the PKI and may distribute keys
according to Figure 4. By corrupting all players in P0 in the original system the adversary can now simulate
all players in P0∪P ′0 of the new system. Thus the joint view of the players in P1∪P2 in the original system
is exactly the same as their view in the new system.

Contradiction. Assuming the protocol to achieve HBCA now implies that the players Pi ∈ P0 ∪ P1 must
output yi ∈ {xs,⊥} = {0,⊥} since at most T players are corrupted. By the same argumentation, the
players Pj ∈ P2 ∪ P ′0 must output yj ∈ {x′s,⊥} = {1,⊥}. However, this means that the players in P1 and
the players in P2 either disagree on their outputs or jointly output ⊥, which is, under corruption of t ≤ tp
players, in contradiction to the definition of HBCA. This implies that HBCA is not achievable under these
conditions.

Lemma 5. If tp > 0 then HBCA is not achievable if 2T + tp ≥ N .

Proof. The proof follows from the above discussion. ut

12

Lemma 6. HBC, HBCA, and HMPC are not not achievable if tσ > 0 and T + 2tσ ≥ N , or if tp > 0 and
2T + tp ≥ N (for HMPC, replace T with L).

Proof. The lemma follows from Lem. 4, Lem. 5, the fact that HBC implies HBCA, and the fact that HBCA
is an instance of HMPC. ut

Note that the impossibility result for HMPC even applies if we merely demand privacy and correctness
without robustness, fairness, or agreement for t > tσ, as private and correct MPC already implies BCA,
and thus such HMPC implies HBCA. As such our impossibility result implies that agreement in HMPC
comes for free: limiting our requirements to privacy and correctness without agreement allows for no higher
threshold L.

5 Conclusions

We presented tight bounds and optimal protocols for hybrid broadcast (HBC) and hybrid multi-party com-
putation (HMPC) for a setting where a (possibly adversarially controlled) PKI and a complete network of se-
cure channels, but no broadcast channels, are provided. This can be seen as extending the work of [FHW04]
to the setting where robustness is not always required, or as extending the work of [LRM10] to the setting
where a possibly unreliable PKI is given instead of a reliable BC channel.

13

References

[Bea89] Donald Beaver. Multiparty protocols tolerating half faulty processors. In Gilles Brassard, editor, CRYPTO, volume 435
of Lecture Notes in Computer Science, pages 560–572. Springer, 1989.

[BGP89] Piotr Berman, Juan A. Garay, and Kenneth J. Perry. Towards optimal distributed consensus (extended abstract). In
Proceedings of IEEE Symposium on the Foundations of Computer Science (FOCS) ’89, pages 410–415, 1989.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic fault-tolerant
distributed computation (extended abstract). In STOC, pages 1–10. ACM, 1988.

[BPW04] Michael Backes, Birgit Pfitzmann, and Michael Waidner. A general composition theorem for secure reactive systems.
In TCC’04, volume 2951 of LNCS, pages 336–354. Springer, 2004.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In Bob Werner, editor,
IEEE Symposium on Symposium on Foundations of Computer Science (FOCS) 2001, pages 136–147, Los Alamitos,
CA, October 14–17 2001. IEEE Computer Society.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols. In ACM Symposium
on the Theory of Computing (STOC) 1988, pages 11–19. ACM, 1988.

[CF01] Ran Canetti and Marc Fischlin. Universally composable commitments. In CRYPTO’01, pages 19–40. Springer, 2001.
[Cle86] R Cleve. Limits on the security of coin flips when half the processors are faulty. In STOC’86, pages 364–369. ACM,

1986.
[CS99] Ronald Cramer and Victor Shoup. Signature schemes based on the strong RSA assumption. In 6th ACM Conference

on Computer and Communications Security (CCS ’99), pages 46–51, New York, 1999. ACM Press.
[DS82] Danny Dolev and H. Raymond Strong. Polynomial algorithms for multiple processor agreement. In Proceedings of the

Fourteenth Annual ACM Symposium on Theory of Computing (STOC) ’82, pages 401–407. ACM, 1982.
[FGH+02] Matthias Fitzi, Daniel Gottesman, Martin Hirt, Thomas Holenstein, and Adam Smith. Detectable Byzantine agreement

secure against faulty majorities. In 21st ACM Symposium on Principles of Distributed Computing (PODC), pages
118–126, 2002.

[FHHW03] Matthias Fitzi, Martin Hirt, Thomas Holenstein, and Jürg Wullschleger. Two-threshold broadcast and detectable multi-
party computation. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, volume 265 of Lecture Notes
in Computer Science, pages 51–67. Springer-Verlag, May 2003.

[FHW04] Matthias Fitzi, Thomas Holenstein, and Jürg Wullschleger. Multi-party computation with hybrid security. In Christian
Cachin and Jan Camenisch, editors, Advances in Cryptology — EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 419–438. Springer-Verlag, May 2004.

[FLM86] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. Easy impossibility proofs for distributed consensus problems.
In Barbara B. Simons and Alfred Z. Spector, editors, Fault-Tolerant Distributed Computing, volume 448 of Lecture
Notes in Computer Science, pages 147–170. Springer, 1986.

[GGBS10] Anuj Gupta, Prasant Gopal, Piyush Bansal, and Kannan Srinathan. Authenticated byzantine generals in dual failure
model. In Krishna Kant, Sriram V. Pemmaraju, Krishna M. Sivalingam, and Jie Wu, editors, ICDCN, volume 5935 of
Lecture Notes in Computer Science, pages 79–91. Springer, 2010.

[GK08] Vipul Goyal and Jonathan Katz. Universally composable multi-party computation with an unreliable common reference
string. In TCC’08, volume 4948 of LNCS, pages 142–154. Springer, 2008.

[GKKY09] S. Dov Gordon, Jonathan Katz, Ranjit Kumaresan, and Arkady Yerukhimovich. Authenticated broadcast with
a partially compromised public-key infrastructure. Cryptology ePrint Archive, Report 2009/410, 2009. http:
//eprint.iacr.org/.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or a completeness theorem for
protocols with honest majority. In ACM Symposium on Theory of Computing, pages 218–229, 1987.

[GO07] Jens Groth and Rafail Ostrovsky. Cryptography in the multi-string model. In CRYPTO’07, volume 4622 of LNCS,
pages 323–341. Springer, 2007.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge University Press, 2001.
[Her05] Amir Herzberg. On tolerant cryptographic constructions. In CT-RSA’05, volume 3376 of LNCS, pages 172–190.

Springer, 2005.
[HZ10] Martin Hirt and Vassilis Zikas. Adaptively secure broadcast. In Henri Gilbert, editor, EUROCRYPT, volume 6110 of

Lecture Notes in Computer Science, pages 466–485. Springer, 2010.
[IKLP06] Yuval Ishai, Eyal Kushilevitz, Yehuda Lindell, and Erez Petrank. On combining privacy with guaranteed output delivery

in secure multiparty computation. In CRYPTO’06, volume 4117/2006, pages 483–500. Springer, 2006.
[Kat07] Jonathan Katz. On achieving the “best of both worlds” in secure multiparty computation. In STOC’07, pages 11–20.

ACM, 2007.
[Kil00] Joe Kilian. More general completeness theorems for secure two-party computation. In STOC’00, pages 316–324.

ACM, 2000.
[LRM10] Christoph Lucas, Dominik Raub, and Ueli M. Maurer. Hybrid-secure mpc: trading information-theoretic robustness for

computational privacy. In Andréa W. Richa and Rachid Guerraoui, editors, PODC, pages 219–228. ACM, 2010. Full
version available at eprint.iacr.org/2009/009.

14

[PW96] Birgit Pfitzmann and Michael Waidner. Information-theoretic pseudosignatures and byzantine agreement for t >= n/3.
Research Report RZ 2882 (#90830), IBM Research, November 1996.

[PW00] Birgit Pfitzmann and Michael Waidner. Composition and integrity preservation of secure reactive systems. In ACM
CCS’00, pages 245–254, 2000.

[RB89] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In Proc. 21st
annual ACM symposium on theory of computing (STOC ’89), pages 73–85, 1989.

[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In IEEE Symposium on Symposium on Foun-
dations of Computer Science (FOCS) 1982, pages 160–164, Chicago, Illinois, 1982. IEEE.

15

A UC Security

In this section we place our result into the context of universally composable (UC) security.

A.1 Security Definitions and Notations

We follow the Universal Composability (UC) paradigm [PW00,Can01,BPW04]7, which defines a simulation-
based security model. The security of a protocol (the real world) is defined with respect to a Trusted Third
Party or Ideal Functionality F that correctly performs all desired computations (the ideal world). Informally,
a protocol π is secure if whatever an adversary can achieve in the real world could also be achieved in the
ideal world.

More precisely, let P = {P1, . . . ,PN} be the set of players, and define [N] := {1, . . . , N}. We only
consider static corruptions and useH ⊆ P to denote set of honest players, and A = P \H to denote the set
of corrupted players. In the real world, there is a given set of resources R (e.g., secure channels, broadcast
channels) to which for each honest player Pi ∈ H a protocol machine πi is connected. Corrupted players
access the resources directly. This real world is denoted by πH(R). In [Can01], resources are modeled as
ideal functionalities available in a hybrid model . The ideal world consists of the ideal functionality F and
an ideal adversary (or simulator) S connected to F via the interfaces of the corrupted players A. This ideal
world is denoted by SA(F).

A protocol π securely implements a functionality F if, for every possible set A of corrupted players,
there is a simulator S such that no distinguisher D can tell the real world and the ideal world apart.8 For
this purpose, the distinguisher directly interacts either with the real or with the ideal world, by connecting
to all open interfaces, and then outputs a decision bit. This interaction is denoted by D(X), where X ∈
{πH(R),SA(F)}.

In [Can01], all protocol machines, simulators, ideal functionalities, and distinguishers are modeled as
Interactive Turing Machines (ITM). We defineΣall as the set of all ITMs, andΣeff as the set of polynomially
bounded ITMs. In this paper, however, ITMs are specified on a higher level of abstraction.

Definition 6 (Universally Composable (UC) Security). A protocol π UC securely implements an ideal
functionality F if

∀A ∃SA ∈ Σeff ∀D ∈ Σeff/all : |Pr[D(SA(F)) = 1]− Pr[D(πH(R)) = 1]| ≤ ε(κ),
where ε(κ) denotes a negligible function in the security parameter κ. For D ∈ Σeff , the security is compu-
tational (CO). For D ∈ Σall, the security is information-theoretic (IT).

Simulators must be efficient not only in the CO, but also in the IT setting, since otherwise, IT security
does not imply CO security. We formalize hybrid security using ideal functionalities that are aware of both
the set of corrupted players and the computational power of the adversary. In other words, the behavior
of the functionality, and hence the security guarantees, varies depending on both parameters. A protocol π
UC securely implements an ideal functionality F with hybrid-security if π securely implements F in both
the CO and the IT setting. Note that in contrast to [Can01], we use a synchronous communication model
with static corruption. As resources R we will, unless otherwise stated, assume a complete network NetN of
synchronous secure channels. For MPC we will also need a common reference string (CRS) CRS to avoid
the impossibility results of [Can01,CF01].

7 We follow the UC model of [Can01] in spirit, but do not adhere to the notation of [Can01].
8 In this model, the adversary is thought of as being part of the distinguisher. Canetti [Can01] shows that this model without

adversary is essentially equivalent to a model with adversary, since the security definition quantifies over all distinguishers.

16

In the UC setting, a strong composition theorem can be proven [Can01,BPW04]. This theorem states
that wherever a protocol π is used, we can indistinguishably replace this protocol by the corresponding ideal
functionality F together with an appropriate simulator.9

We will, in the following, generally be interested in MPC, i.e., in securely implementing an arbitrary N -
player functionality F. We thus model implementing a functionality F with subsets of the security properties
privacy, correctness, robustness, fairness, and agreement on abort. We describe the following four specific
security notions:

Full Security. Computing functionality F with privacy, correctness and robustness, which implies all
the security notions mentioned above, is modeled by functionality F itself, since, in the setting we consider,
demanding a secure implementation of functionality F already amounts to demanding full security.

Fair Security. Demanding privacy, correctness and fairness (which implies agreement on abort) only
for functionality F is captured by the ideal functionality Ffair, which operates as follows: Ffair internally
runs F. Any inputs to F are forwarded, as are any messages F may output to the adversary. If F makes an
output y, then Ffair request an output flag o ∈ {0, 1} from the adversary, defaulting to o = 1 if the adversary
makes no suitable input. Finally, for o = 1 functionality Ffair makes output y to all players, for o = 0 it
halts.

Abort Security. The functionality Fab, specifying privacy, correctness and agreement on abort only,
works like Ffair but forwards output y to the adversary before requesting an output flag.10

No Security. The functionality FnoSec models demanding no security whatsoever: Functionality FnoSec

turns control over to the adversary by forwarding all inputs from the honest players to the adversary and
letting the adversary fix all outputs to honest players.

As a simulator SnoSec can use the inputs of honest players to simulate honest protocol machines, this
already proves the following (rather trivial) lemma:

Lemma 7. Any protocol π UC securely implements the ideal model FnoSec.

A.2 UC Security of HBC

In our synchronous variant of the UC setting, BC can be formalized by means of an ideal BC functional-
ity bc, which behaves as follows: When an arbitrary player Ps gives input xs, functionality bc outputs (xs, s)
to all players.

We are interested in implementing BC and MPC in a hybrid-setting where a PKI is provided, but where
the adversary may control the PKI if he corrupts less that t ≤ tp players, or where the adversary may be able
to forge signatures if he corrupts less that t ≤ tσ players.

We model this setting by providing an unreliable PKI resource PKItp,tσ that models the capabilities of the
adversary. For simplicity let an unconditionally secure pseudo-signature scheme (e.g. [PW96]) be given. We
could also use a signature scheme existentially unforgeable under adaptive chosen-message attacks (UF-
CMA) (e.g. [CS99]), but then unbounded adversaries can forge signatures, which complicates treatment.
Functionality PKItp,tσ then operates as follows:

– In case of t ≤ tp corruptions, functionality PKItp,tσ turns control over to the adversary, so the adversary
may fix all public and private keys arbitrarily.

9 This follows from the free interaction between the distinguisher and the system during the execution, which implicitly models
that outputs of the system can be used in arbitrary other protocols, even before the execution ends. This is in contrast to a
stand-alone definition of security where the distinguisher is restricted to providing input in the beginning of the computation,
and receiving output only at the end.

10 We could relax the definition further by allowing the adversary to send one output flag for each player, dropping agreement on
abort. However, all our protocols will achieve agreement on abort.

17

– In case of tp < t ≤ tσ corruptions, functionality PKItp,tσ independently and honestly generates keys for
each player Pi ∈ P according to the prescribed signature scheme and distributes them. Then functional-
ity PKItp,tσ reveals all signing keys to the adversary, to model that the adversary may forge signatures.

– In case of t > max(tσ, tp) corruptions, functionality PKItp,tσ independently and honestly generates
keys for each player Pi ∈ P according to the prescribed signature scheme and distributes them.

We can now restate the security of our HBC protocol Πhbc as claimed in Lem. 3 in the UC setting as
follows

Lemma 8 (UC security of HBC). Protocol Πhbc efficiently and UC securely implements functionality bc
in the IT setting11 from a PKI PKItp,tσ and a network NetN as resources in presence of at most t ≤ T
actively corrupted players whenever

T + 2tσ < N ∧ (tp > 0 ⇒ 2T + tp < N) .

Proof of Lem. 8 Efficiency easily follows by inspection of the protocols. We show that the protocol Πhbc

indeed implements functionality bc whenever at most t ≤ T players are corrupted and T+2tσ < N ∧ (tp >
0 ⇒ 2T + tp < N) by providing an appropriate simulator Sbc:

The simulator Sbc connects to the interfaces of corrupted players to functionality bc. Simulator Sbc

internally emulates the protocol machinesΠ i
hbc for the honest players Pi and an instance of the PKI PKItp,tσ .

The connections to corrupted players are exposed to the adversary.
Let Pi be the honest player with the smallest index i, and Pj be the corrupted player with the smallest

index j.
If the internally emulated protocol machine of player Pi outputs (xs, s) where Ps is corrupted, then Sbc

inputs xs to bc via the interface of Ps.
The simulator Sbc identically emulates the same protocol machines Π i

hbc in the ideal model that the
honest players run in the real model. This means ideal and real model are perfectly indistinguishable, as
long as the outputs of all emulated protocol machines match the outputs of the ideal functionality bc. This
amounts to nothing else then demanding consistency and validity as proven above.

A.3 UC Secure HMPC

We now translate Sec. 3 to the UC setting. First, we formalize HMPC by providing an ideal functional-
ity Fhyb

tc,`r,`f ,L
. This functionality evaluates an arbitrary N -player functionality F with the HMPC properties:

Definition 7 (Functionality Fhyb
tc,`r,`f ,L

). Given an arbitraryN -player functionality F, functionality Fhyb
tc,`r,`f ,L

behaves as follows:

1. If t > tc and the adversary is computationally unbounded, or
2. if t > L

functionality Fhyb
tc,`r,`f ,L

turns over control to the adversary by running FnoSec. Otherwise functionality Fhyb
tc,`r,`f ,L

behaves like

1. functionality F (full security) for t ≤ `r,
2. functionality Ffair (fair security) for `r < t ≤ `f ,
3. functionality Fab (abort security) for `f < t ≤ L. �

11 If we want to use a computational PKI, we have to restrict our attention to distinguishers that cannot forge signatures.

18

Consider the protocol πρ ◦ Πhbc obtained from the MPC protocol πρ of [LRM10] by using out HBC
protocol Πhbc for broadcasts. As for the stand-alone setting in Sec. 3 we now show that protocol πρ ◦Πhbc

is a UC secure HMPC protocol in the following sense: Protocol πρ ◦Πhbc can implement an HMPC for an
arbitrary N -player functionality F under the bounds of Eq. (3).

To avoid the impossibility results of [Can01,CF01], we have to move to the CRS-model where a common
reference string CRS drawn from a prescribed distribution is made available to all players. So, we will in
the following assume as resources R a common reference string CRS and a complete network NetN of
synchronous secure channels and an unreliable PKI PKItp,tσ .A correctly chosen CRS is a prerequisite to the
security of the protocols from [LRM10].12

Theorem 4 (Security of πρ ◦ Πhbc). Given an arbitrary N -player functionality F, protocol πρ ◦ Πhbc

UC securely implements functionality Fhyb
tc,`r,`f ,L

from an unreliable PKI PKItp,tσ , a complete network of

synchronous secure channels NetN , and a CRS for any choice of thresholds respecting

L+ 2tσ < N ∧ (tp > 0 ⇒ 2L+ tp < N) ∧ (4)

`r ≤ `f ≤ L ∧ 2tc < N ∧ 2`f < N ∧ L+ `r < N .

in presence of an active, static adversary.

Proof. The proof of Thm. 4 is almost trivial.
By Lem. 8 the BC protocol Πhbc implements functionality bc under the bounds of Lem. 3. Now, by

the choice of bounds in the definition of functionality Fhyb
tc,`r,`f ,L

, we then find: In any setting where func-

tionality Fhyb
tc,`r,`f ,L

does not turn over control to the adversary, the BC protocol Πhbc implements function-
ality bc. According to the UC Theorem it is hence sufficient to prove that protocol πρ ◦ bc implements
functionality Fhyb

tc,`r,`f ,L
. But on a plain bc, protocol πρ provides precisely the guarantees made by function-

ality Fhyb
tc,`r,`f ,L

(also see [LRM10]). ut

Results along the lines of Cor. 1 and Cor. 2 are easily translated to the UC setting. We refrain from
restating them here.

12 As noted in [LRM10], it is possible to minimize the reliance on the CRS such that our protocols tolerate an adversarially
chosen CRS for few corrupted players by applying techniques from [GK08,GO07] and a (t, 2t− 1)-combiner for commitments
(e.g. [Her05]). However, this construction is beyond the scope of this paper.

