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Abstract

Precise concurrent zero-knowledge is a new notion introduced by Pandey et al. [23] in
Eurocrypt’08 (which generalizes the work on precise zero-knowledge by Micali and Pass [19] in
STOC’06). This notion captures the idea that the view of any verifier in concurrent interaction
can be reconstructed in the almost same time. [23] constructed some (private-coin) concurrent
zero-knowledge argument systems for NP which achieve precision in different levels and all these
protocols use at least ω(log n) rounds. In this paper we investigate the feasibility of reducing
the round complexity and still keeping precision simultaneously. Our result is that we construct
a public-coin precise bounded-concurrent zero-knowledge argument system for NP only using
almost constant rounds, i.e., ω(1) rounds. Bounded-concurrency means an a-priori bound on
the (polynomial) number of concurrent sessions is specified before the protocol is constructed.
Our result doesn’t need any setup assumption. We stress that this result cannot be obtained
by [23] even in bounded-concurrent setting.
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1 Introduction

Zero-knowledge proofs were introduced by Goldwasser, Micali and Rackoff [15]. Their definition
essentially states that an interactive proof of x ∈ L provides zero (additional) knowledge if, for
any efficient verifier V , the view of V in the interaction can be “indistinguishably reconstructed”
by an efficient simulator S-interacting with no one- on just input x. Since efficiency is formalized
as polynomial-time, a worst-case notion, zero-knowledge too automatically becomes a worst-case
notion. The refinement of [11] calls for a tighter coupling between the expected running-time of
V and that of S: a proof is zero-knowledge with tightness t(·) if there exists a fixed polynomial
p(·) such that the expected running-time of S(x) is upper-bounded by t(|x|) times the expected
running-time of V (x) plus p(|x|).

Micali and Pass [19] argued, however, that such coupling may still be insufficient, even when
the tightness function is a constant and the polynomial p(·) is identically 0. Consider a malicious
verifier V that, on input an instance x ∈ {0, 1}n, takes n10 computational steps with probability 1

n ,
and n steps the rest of the time. The expected running-time of V is Ω(n9), and thus zero-knowledge
with optimal tightness only requires that V be simulated in expected time Ω(n9). They thought
that it is doubtful to take indifference for V to get out and interact with the prover or to stay
home and run S for granted. Since by interacting with P , V will almost always execute n steps
of computation, while (in absence of extra guarantees) running the simulator might always cause
him to invest n9 steps of computation. This discussion shows that we need a stronger notion of
zero-knowledge.

1.1 Precise Zero-Knowledge

Hence [19] put forward a stronger notion of precise zero-knowledge. This notion captures the idea
that prover provides a zero-knowledge proof of x ∈ L if the view v of any verifier in an interaction
with the prover about x can be reconstructed in the almost same time. Thus, precise zero-knowledge
bounds the knowledge of the verifier in terms of its actual computation. Precisely, by [19] a proof
system is zero-knowledge with precision p(n, y) if for every V ∗ the simulator’s running-time in
outputting a simulated view is bounded by p(n, T) whenever V ∗’s running-time on this view is T.
Following this notion [19] constructed some (private-coin) zero-knowledge proofs or arguments with
polynomial (resp. linear) precisions, i.e. p(n, y) = poly(n, y) (resp. p(n, y) = O(y)).

For convenience of statement, we say a zero-knowledge protocol is precise (resp. imprecise) if
the (known) simulator for it can (resp. cannot) provide polynomial precision. [19] showed there
don’t exist black-box precise zero-knowledge protocols for any non-trivial language. Further, [26]
showed Barak’s non-black-box zero-knowledge arguments [1] are also imprecise due to the imprecise
simulation strategy.

As all protocols in [19] uses at least ω(1) rounds, a natural question arises if there exist constant-
round precise zero-knowledge proofs or arguments. However, if such precise proof systems exist,
a longstanding question has been solved automatically, i.e. the existence of constant-round zero-
knowledge proofs for NP with strict polynomial-time simulators, as the latter is weaker than the
former. On the other hand, Barak’s protocols [1] is the known unique construction able of realizing
constant rounds property and strict polynomial-time simulation simultaneously for arguments.
Thus it seems very hard to construct constant-round precise zero-knowledge proofs or arguments.
Another non-trivial question is whether there exist ω(1)-round public-coin precise zero-knowledge
proofs or arguments as all protocols in [19] are private-coin. We will try to find out the answer to
this question in this paper.
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1.2 Precise Concurrent Zero-Knowledge

Although the notion in [19] is quite strong, it deals with precise zero-knowledge only in stand-
alone setting. The more realistic setting for zero-knowledge is concurrent setting, introduced by
[9]. A zero-knowledge protocol is concurrent zero-knowledge if for every polynomial-time verifier
there exists a polynomial-time simulator that can output an indistinguishable view in concurrent
execution of the protocol. So concurrent zero-knowledge is also formalized as a worst-case notion,
which also suffers the same problems [19] proposed. [28][16][27] presented the constructions of
black-box concurrent zero-knowledge protocols. However, by the conclusion that black-box zero-
knowledge protocols are all imprecise, these protocols in [28][16][27] are all imprecise.

A recent work [23] formalizes the notion of precise concurrent zero-knowledge and constructed
some precise concurrent zero-knowledge argument systems which obtain sub-quadratic precision
in different levels. The best round complexity of these protocols is ω(log n). To obtain these
results [23] introduced a new simulation technique for protocols in [27], based on known recursive
simulation strategy in [27]. That is, the simulator in [23] is not only oblivious of the contents of
verifier’s messages as the simulator in [27], but also oblivious to when verifier sends these messages.

As shown in [8], logarithmic rounds are necessary to construct (black-box) concurrent zero-
knowledge. Since the simulator in [23] is based on the construction paradigm of the black-box
simulator in [27], it inherits some characters from this black-box one, e.g., it inherits the prob-
ability analysis of simulator’s not getting “stuck”. (According to the probability analysis in [23]
to avoid simulator’s getting “stuck” ω(log n) rounds are required.) Hence it seems ω(log n) is the
lower bound of round complexity for the protocols in [23], even in bounded-concurrent setting in-
troduced below. On the other hand, as we know for concurrent zero-knowledge, constant-round
property can be achieved in a specific setting. That is the bounded-concurrent setting which means
that an a-priori bound on the polynomial number of concurrent sessions is specified before the
protocol is constructed. The bounded-concurrent setting was first put forward explicitly in [1],
which presented a breakthrough of (bounded-concurrent) non-black-box zero-knowledge arguments
which have many properties such as constant-round, public coins and polynomial-time simulation
which cannot be achieved by any black-box (bounded-concurrent) zero-knowledge simultaneously.
Following [1] many works such as [24][25][17] studied the concurrent composition of protocols in
bounded-concurrent setting. In this paper we will try to find out whether better round complexity
(i.e. lower than ω(log n)) and precision can be achieved simultaneously in bounded-concurrent
setting.

1.3 Our Result

In this paper we first construct a public-coin ω(1)-round precise zero-knowledge argument for NP
with polynomial precision. Second, based on the first result, we construct a public-coin ω(1)-round
precise bounded-concurrent zero-knowledge argument for NP, which is our main result. We stress
that this result cannot be obtained by [23] even in bounded-concurrent setting. Formally, our
results can be shown as follows.

Theorem 1.1. Assuming the existence of collision-resistent hash functions against polynomial-
sized circuits, there exist ω(1)-round public-coin precise zero-knowledge arguments for NP with
polynomial precision.

Theorem 1.2. Assuming the existence of collision-resistent hash functions against polynomial-sized
circuits, there exist ω(1)-round public-coin precise bounded-concurrent zero-knowledge arguments
for NP with polynomial precision.
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Our Technique. The starting point of our work is Barak’s constant-round (non-black-box) zero-
knowledge arguments for NP, which consist of two phases: a general protocol GenProt and a
WI universal argument. As shown in [26], Barak’s protocols are imprecise (due to the imprecise
simulation strategy, in particular, in the simulation of GenProt). We obtain our results by
modifying GenProt of his protocols from 3 rounds to ω(1) rounds and construct precise simulators
for the modified protocols.

Actually we first obtain the results as Theorem 1.1 and 1.2 show except assuming the existence
of collision-resistent hash functions against circuits of some super-polynomial bounds (e.g. nloglogn).
Then using the tree-hashing and error-correcting codes [2][3] this complexity assumption can be
reduced to the more standard assumption that the existence of collision-resistent hash functions
against polynomial-sized circuits. Hence in this paper our emphases is to prove the same results
under the stronger assumption. Since it is straightforward to apply the technique [2][3] in our cases,
we will just sketch the technique of reducing the assumption.

1.4 Outline of This Paper

The rest of the paper is arranged as follows. Section 2 presents preliminaries this paper needs. In
Section 3 we prove the result as Theorem 1.1 shows but under the stronger assumption. In Section 4
we prove the result as Theorem 1.2 shows still under the stronger assumption. In Section 5,
we sketch the technique in [3] to reduce the complexity assumption and thus Theorem 1.1 and
Theorem 1.2 follow.

2 Preliminaries

This section contains the notations and definitions used throughout this paper.

2.1 Basic Notions

A function µ(·), where µ : N → [0, 1] is called negligible if µ(n) = n−ω(1) (i.e., µ(n) < 1
p(n)

for all polynomial p(·) and large enough n’s). We will sometimes use neg to denote an unspeci-
fied negligible function. We say that two probability ensembles {Xn}n∈N and {Yn}n∈N are com-
putationally indistinguishable if for every polynomial-sized circuit family {Cn}n∈N it holds that
|Pr[Cn(Xn) = 1]− Pr[Cn(Yn) = 1]| = neg(n). We will sometimes abuse notation and say that the
two random variables Xn and Yn are computationally indistinguishable when each of them is a part
of a probability ensemble such that these ensembles {Xn}n∈N and {Yn}n∈N are computationally
indistinguishable. We will also sometimes drop the index n from a random variable if it can be
inferred from the context. In most of these cases, the index n will be the security parameter.

2.2 Cryptographic Primitives

2.2.1 Commitment Schemes

Definition 2.1. (Perfectly Binding Commitment) A (non-interactive perfectly binding com-
putationally hiding) commitment scheme is a polynomial-time computable sequence of functions
{Cn}n∈N where Cn : {0, 1}n × {0, 1}p(n) → {0, 1}q(n), and p(·), q(·) are some polynomials, that
satisfies:
Perfect Binding For every x 6= x′ ∈ {0, 1}n, C(x, {0, 1}p(n))∩ → C(x, {0, 1}p(n)) = φ.
Computational Hiding For every x, x′ ∈ {0, 1}n, the random variables C(x,Un) and C(x′, Un)
are computationally indistinguishable.
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A perfectly binding commitment scheme can be constructed under the assumption that one-
way permutations exist [5] (using the generic hard-core bit of [13]). Another construction, under
incomparable assumptions, was given by [4]. We can also use instead the two-round scheme of Naor
[20], which can be based on any one-way function.

2.2.2 Hashing and Tree Hashing

Definition 2.2. An efficiently computable function ensemble {hα}α∈{0,1}∗ , where hα : {0, 1}∗ →
{0, 1}|α| is called collision resistent if for every polynomial-sized circuit family {Cn}n∈N,

Prα←R{0,1}n [Cn(α) = 〈x, y〉 s.t. x 6= y and hα(x) = hα(y)] < neg(n)

One can construct such functions based on several natural hardness assumptions, such as the
hardness of factoring. It can be seen that hash functions were defined as mapping strings of
arbitrary length to n-bit long strings. One can also define hash functions as mapping n-bit strings
to n/2-bit strings, or n-bit strings to nε-bit strings, where 0 < ε < 1 is some constant. It is not hard
to see that a function ensemble satisfying one of these variants can be used to construct function
ensembles satisfying the other variants. If hα is a collision-resistent hash function ensemble, we
will sometimes denote the set {hα|α ∈ {0, 1}n} by Hn, and identify the hash function with its seed.
For example, if we say that a party chooses a random h ∈ Hn and sends h, then we mean that this
party chooses a random α ←R {0, 1}n and sends α.

Definition 2.3. (Random-access hashing) A random-access hashing collection is an ensemble
{〈hα, certα〉}α∈{0,1}∗ of a pairs of efficiently computable functions, where hα : {0, 1}∗ → {0, 1}|α|
and certα takes two inputs x, i, where x ∈ {0, 1}∗ and |i| = log|x|, and a polynomial-time algorithm
V that satisfy the following properties:
Efficiency: |certα(x, i)| = poly(|α|, log|x|)
Completeness: For every α, x, Vα,hα(x)(i, xi, certα(x, i)) = 1.
Binding (Soundness): For every polynomial-sized circuit family {Cn}n∈N,

Prα←R{0,1}n [Cn(α) = 〈y, i, σ0, σ1〉 s.t. Vα,y(i, 0, σ0) = 1 and Vα,y(i, 1, σ1) = 1] < neg(n)

Constructing a random-access hashing scheme using hash trees. There is a well known
construction due to Merkle of a random-access hash scheme based on any collision-resistent hash
function ensemble [18].

2.2.3 Interactive Proofs and Arguments

An interactive proof [15] is a two-party protocol, where one party is called the prover and the other
party is called the verifier. We use the following definition:

Definition 2.4. An interactive protocol (P, V ) is called an interactive proof system for a language
L if the following conditions hold:
Efficiency: The number and total length of messages exchanged between P and V are polynomially
bounded and V is a probabilistic polynomial-time machine.
Perfect completeness: If x ∈ L, then V will always accept x.
Soundness: If x /∈ L, then the probability that V accepts x is neg(n).

Let L ∈ NP, an interactive argument for L [7] is the following variation on the definition of an
interactive proof:
1. The soundness requirement is relaxed to quantify only over prover strategies P ∗ that can be
implemented by a polynomial-sized circuit.
2. The system is required to have an efficient prover strategy.
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2.2.4 Zero-Knowledge

Informally, a proof or argument system for L is zero-knowledge [15] if after seeing a proof that
x ∈ L, the verifier does not learn anything about x that it didnt know before. Moreover this holds
even if the verifier does not follow its prescribed strategy for the proof system, as long as its strategy
can be implemented by an efficient algorithm. The formal definition is below:

Definition 2.5. Let L = L(R) be some language and let (P, V ) be an interactive proof or argument
for L. We say (P, V ) is zero-knowledge if there exists a probabilistic polynomial-time algorithm,
called simulator, such that for every polynomial-sized circuit V ∗ and every (x,w) ∈ R, the following
two probability variables are computationally indistinguishable:
1. The view of V ∗ in the real execution of (P (w), V ∗)(x).
2. The output of the simulator on input (x, V ∗).

There are two classical constructions of 3-round zero-knowledge proofs for NP (without requir-
ing negligible soundness error probability) which are Blum’s proof for Directed Hamilton Circuits
(DHC) [6] and Goldreich, Micali and Wigderson’s proof for Graph 3-Coloring [11] (Sec. 4.4.2).

2.2.5 Witness Indistinguishability

Witness indistinguishability is a weaker property than zero-knowledge, introduced by [10]. In a
witness indistinguishable proof system if both w1 and w2 are witnesses that x ∈ L, then it is
infeasible for the verifier to distinguish whether the prover used w1 or w2 as auxiliary input. The
formal definition is below:

Definition 2.6. Let L = L(R) be some language and (P, V ) be a proof or argument for L. We say
that (P, V ) is witness indistinguishable (WI) if for any polynomial-sized circuit family {V ∗

n }n∈N,
any x,w1, w2 where (x,w1) ∈ R and (x,w2) ∈ R such that the view of V ∗ in the interacting with
P (x,w1) is computationally indistinguishable from the view of V ∗ in the interacting with P (x,w2).

[10] showed that WI property can be preserved in concurrent setting. Hence n parallel com-
position of Blum’s proof for NP is a construction of WI proofs for NP with negligible soundness
error probability.

2.2.6 Universal Arguments

Universal arguments, introduced by [3], are interactive arguments of knowledge for proving mem-
bership in NEXP. For sake of simplicity, we introduce the definition of universal arguments only
for an universal language LU : the tuple 〈M, x, t〉 is in LU if M is a non-deterministic machine that
accepts x within t steps. Clearly, every language in NE is linear-time reducible to LU and every
language in NEXP is polynomial-time reducible to LU .

Definition 2.7. An universal argument system is a pair of strategies, denoted (P, V ), that satisfies
the following properties:
Efficient verification: There exists a polynomial p such that for any y = (M, x, t), the total time
spent by the (probabilistic) verifier strategy V , on common input y, is at most p(|y|). In particular,
all messages exchanged in the protocol have length smaller than p(|y|).
Completeness by a relatively-efficient prover: For every (y = (M, x, t), w) in RU

Pr[〈P (w), V 〉(M, x, t)] = 1] = 1
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Furthermore, there exists a polynomial p such that the total time spent by P (w), on common
input (M, x, t), is at most p(TM (x,w)) ≤ p(t).
Computational soundness: For every polynomial-sized circuit family {P̃n}n∈N, and every (M, x, t) ∈
{0, 1}n\LU ,

Pr[〈P̃n, V 〉(M, x, t)] = 1] < neg(n)

A weak proof of knowledge property: For every positive polynomial p there exists a positive
polynomial p′ and a probabilistic polynomial-time oracle machine E such that the following holds:

For every polynomial-sized circuit family {P̃n}n∈N and every sufficiently long y = (M, x, t) ∈
{0, 1}∗ if Pr[〈P̃ , V (M, x, t)] = 1] > 1

p(|y|) then

Pr[EP̃∗(y) = C s.t. [C] ∈ RU (y)] >
1

p′(|y|)
(where [C] denotes the function computed by the Boolean circuit C).
The oracle machine E is called a (knowledge) extractor.

[3] gave a construction of constant-round Arthur-Merlin (a.k.a, public-coin) universal arguments.
Furthermore, [3] presented approaches that can make the universal arguments zero-knowledge or
Arthur-Merlin witness-indistinguishable (still in constant rounds).

2.3 Precise Concurrent Zero-Knowledge

Counting steps. If M is a probabilistic machine, denote by Mr the deterministic one obtained
by fixing the content of M ’s random tape to r, by STEPSMr(x) the number of computational steps
taken by Mr on input x.

Assume (P, V ) uses u-round prover’s messages. In q-times concurrent execution of (P, V ), for
any machine V ∗ with an auxiliary input a, denote by v = (x1, · · · , xt, a, (m1,m2, ..., muq)) the view
of V ∗ coordinating t sessions (w.l.o.g, assume V ∗ is deterministic). Then denote by STEPSV ∗(v)
the number of computational steps taken by V ∗ running on input x1, · · · , xq and letting the jth

message received be mj . (In counting steps, we assume that an algorithm A, given the code of a
second algorithm B and an input x, can simulate the computation of B on input x with linear-time
overhead [19].)

Definition 2.8. (Concurrent execution) Let (P, V ) be a two-party protocol, V ∗ be any interac-
tive machine, {(ai, bi)}q

i=1 be a set of q inputs to the protocol (P, V ). A t-time concurrent execution
of (P, V ) coordinated by V ∗ on inputs {(ai, bi)}q

i=1 is the following experiment:
1. Run q independent copies of P with the ith copy getting ai as input;
2. Provide V ∗ with the b1, · · · , bq;
3. On each step V ∗ outputs a message (k, m). The kth copy of P is given with the message m.

V ∗ is given the prover’s response.

Definition 2.9. (Precise Concurrent Zero-Knowledge [23]) Let (P, V ) be an interactive
proof or argument system for a language L = L(R), p : N ×N → N be a monotonically increasing
2-variate function. We say that (P, V ) is a concurrent zero-knowledge proof or argument with
precision p if there exists a probabilistic algorithm S such that for every polynomial-time V ∗ and
every auxiliary input a ∈ {0, 1}poly(n) for V ∗ and every polynomial g(n) and every list {(xi, wi)}g(n)

i=1 ,
(xi, wi) ∈ R:
1. The following two ensembles are computationally indistinguishable:
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a) The view of V ∗ in a g(n)-time concurrent execution of (P, V ) with inputs {(xi, wi), xi}g(n)
i=1 .

b) S(x1, · · · , xg(n), V
∗, a).

2. For every sufficiently long r ∈ {0, 1}∗, let v be the view generated by Sr(x1, · · · , xg(n), V
∗, a).

Then STEPSSr(x1,··· ,xg(n),V
∗,a) ≤ p(n, STEPSV ∗(v)).

We refer to S as above as a precise simulator.

We give some comments on Definition 2.9 as follows.

Comment 2.10. In case of g(n) = 1, i.e., there is only one session, this is the definition of precise
zero-knowledge (in stand-alone setting) given in [19].

Comment 2.11. In case that g(n) is restricted to be n, i.e., there are n sessions executed con-
currently and other conditions remain unchange, we say (P, V ) is bounded-current zero-knowledge
with precision p. Since the security parameter can be “scaled”, this means that for every fixed poly-
nomial q(n), we can construct a protocol from (P, V ) that remains zero-knowledge when executed
q(n) times concurrently. Further, if p is a polynomial in the second argument, the precisions of
(P, V ) and the “scaled” protocol have the same degree in the second argument.

Comment 2.12. Since V ∗ and S are usually required to run in polynomial-time, it is less mean-
ingful if p is a super polynomial in n or the second argument, or else we say it is meaningful. In this
paper we will focus on the question how to construct bounded-concurrent zero-knowledge protocols
with meaningful (i.e. polynomial) precision.

3 Public-Coin Precise Zero-Knowledge in ω(1) Rounds

The goal of this section is devoted to the proof of the following theorem.

Theorem 3.1. Assuming the existence of collision-resistent hash functions against nlog log n-sized
circuits, there exist ω(1)-round public-coin precise zero-knowledge arguments for NP with polyno-
mial precision.

Notice that the difference between Theorem 3.1 and Theorem 1.1 is the complexity assumption.
In this and next sections if it is not mentioned explicitly the complexity assumption is the existence
of collision-resistent hash functions against nlog log n-sized circuits.

In Section 3.1 we present the zero-knowledge protocol and show that it is an interactive argu-
ment for NP. In Section 3.2 we construct a precise simulator for this protocol. In Section 3.3 and
Section 3.4 we show zero-knowledge property and polynomial precision can be achieved simultane-
ously via this simulator and thus complete the proof of Theorem 3.1.

3.1 The Zero-Knowledge Protocol

Our zero-knowledge protocol is a variation of Barak’s non-black-box zero-knowledge argument
[1]. We assume familiar with Barak’s protocol. Recall that Barak’s protocol consists of two
phases: a generation protocol GenProt and a witness-indistinguishable universal argument, de-
noted WIUA. To prove the membership in a NP language L, the prover first interacts with the
verifier in GenProt, which satisfies the computational soundness property. That is, the prover
cannot output a witness that the transcript is in a pre-deterministic language Λ ∈ Ntime(nlog log n),
shown below, at the end of GenProt. Then the prover proves to the verifier that either x ∈ L or
the transcript in GenProt is in Λ via WIUA.
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)
Additional parameter: A super-constant function β(n) = ω(1)

Step V0 (Choose hash-function): Verifier chooses a random
hash function h ←R Hn and sends h to prover.

h ←R Hn←−−−−−−−−−−

For k = 1, · · · , β(n), do the following:

Step P1.k.1 (Commitment to hash of “junk”): Prover com-
putes zk ←R Com(h(0n)) and sends zk to verifier.

zk = Com(h(0n))−−−−−−−−−−−−−−−−→
Step V1.k.2 (Send random string): Verifier selects a string

rk ←R {0, 1}n and sends it.
rk ←R {0, 1}n

←−−−−−−−−−−−−−
End For

Steps P,V2.X (WI Proof): Prover proves to verifier using its in-
put w via the WIUA system that either x ∈ L or there exists a
k s.t. (h, zk, rk) ∈ Λ.

Protocol 3.3. The precise zero-knowledge argument for NP.

Definition 3.2. (Language Λ [1]) Λ is defined as follows: τ = (h, z, r, ) is in Λ iff there exists a
program Π such that z = Com(h((Π))) and Π(z, y) outputs r within |r|log log |r|/5 steps. This can be
verified in Ntime(nlog log n/5). A witness that (h, z, r) ∈ Λ is a tripe (Π, s) such that z = Com(Π; s)
and Π(z) outputs r within |r|log log |r|/5 steps.

The actual description of our protocol is described as Protocol 3.3 shows. In Protocol 3.3, Hn

denotes a hash function family and (for convenience of statement) Com denotes a non-interactive
perfectly-binding commitment scheme (2-round constructions are also suitable).

It is easy to see that Protocol 3.3 differs from Barak’s protocol in the construction of GenProt.
In Protocol 3.3, GenProt consists of a verifier message of Step V0 and β(n) slots, each of which
consists of a prover message zk of Step P1.k.1 and a verifier message rk of Step V1.k.2. Here
we require β(n) = ω(1) and thus our protocol uses ω(1) rounds. Clearly, our protocol is public-
coin. In the case that β(n) decreases to 1, it is actually Barak’s protocol, which cannot achieve
precision as shown in [26]. Although our modification slightly increases the round complexity, we
will show at this expense Protocol 3.3 can achieve precision. But firstly we should guarantee that
for Protocol 3.3 the completeness and soundness still hold, as the following theorem states.

Theorem 3.4. Protocol 3.3 is an interactive argument for NP.

Proof. As our protocol is a variation of Barak’s protocol, we employ and extend the original proof
in [1] to prove this theorem.
Completeness: Straightforward. If (x,w) ∈ RL, the truthful prover can use w for x ∈ L as the
witness for the modified statement in the WI proof to make the verifier convinced.
Computational Soundness: We give the formal description of the computational soundness
property of GenProt of our protocol as follows: when a nlog log n-sized cheating prover plays
GenProt with the verifier, the probability that the prover outputs a witness for (h, zk, rk) ∈ Λ for
some k is negligible.
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Now we show Protocol 3.3 is computationally sound. Suppose otherwise there exists a polynomial-
sized cheating prover able of cheating the honest verifier to accept some x /∈ L with probability ε.
Then from this cheating prover [1] presented a construction of a nlog log n-sized P ∗ which can violate
the computational soundness of GenProt, i.e., P ∗ is able of outputting a witness that (h, zk, rk)
is in Λ for some k at the end of GenProt with probability polynomially related to ε. Thus, to
prove computational soundness of Protocol 3.3 we only need to show GenProt is computationally
sound for any nlog log n-sized cheating prover.

Let P ∗ be a nlog log n-sized cheating prover for GenProt. We claim that the probability that
P ∗ outputs a witness that (h, zk, rk) is in Λ for some k is negligible. Indeed, suppose otherwise
that P ∗ outputs a witness with non-negligible probability ε. Then, for at least an ε/2 fraction of
h ∈ Hn, it holds that P ∗ outputs a witness with probability at least ε/2. This means there exists
a k = k(n) (k can be given as the non-uniform input to the finding-collision algorithm below)
such that it is the witness for (h, zk, rk) ∈ Λ with probability at least ε/2β. Fix such a h ∈ Hn.
Since P ∗ is non-uniform, w.l.o.g., assume P ∗ is deterministic. Further, for at least ε/4β fraction
of r1, · · · , rk−1 ∈ {0, 1}n, it holds that P ∗ outputs a witness for (h, zk, rk) with probability ε/4β.
Also fix a choice of such r1, · · · , rk−1. Thus, the message zk is also fixed.

By our assumption, if we choose rk, · · · , rβ ←R {0, 1}n, then with probability ε/4β P ∗ will
be able to output a Πk such (1) that zk = Com(h(Πk)) and (2) that Πk(zk) = rk. This means
if we choose two different independent sequences {rk, · · · , rβ}, {r′k, · · · , r′β} ←R {0, 1}n, then with
probability ε2/16β2 we obtain two strings Πk and Π′k satisfying zk is a commitment to both h(Πk)
and h(Π′k) and Πk(zk) = rk and Π′k(zk) = r′k. Since Com is a perfectly binding commitment scheme,
it follows that h(Πk) = h(Π′k). Since we can assume rk 6= r′k (as this holds with 1− 2n probability),
it follows that Πk(zk) 6= Π′k(zk) and so Πk and Π′k are two different programs. This means that
Πk and Π′k are a collision for h. This means that we have a nlog log n-sized algorithm that for an
ε/2 fraction of h ∈ Hn and an ε/4β fraction of r1, · · · , rk−1 ∈ {0, 1}n, obtains a collision for h with
probability O(ε2/β2), which contradicts the collision-resistent against nlog log n-sized circuits of the
family Hn. Thus we complete the proof.

Thus, to prove Theorem 3.1, we only need to prove the following theorem.

Theorem 3.5. Protocol 3.3 is zero-knowledge with polynomial precision.

To prove Theorem 3.5, we need to construct a simulator and analyze its running-time and
output. In Section 3.2 we present the construction of the precise simulator. In Section 3.3 we show
its output is computationally indistinguishable from the view of the verifier in a real interaction.
In Section 3.4 we show its running-time is polynomial-time overhead of the verifier’s running-time
and thus complete the proof of Theorem 3.5.

3.2 The Precise Simulator

In this subsection we construct a precise simulator for Protocol 3.3 which can provide zero-
knowledge property and precision simultaneously. This subsection gives the description of the
simulator and the analysis of its output and running-time will be presented in the next two subsec-
tions. As mentioned earlier, [26] showed that the simulator of Barak’s protocol in [1] is imprecise.
Hence we first present the reason that results in the imprecision in the following. Then we propose
an idea to overcome the imprecision. After that we show the overview and actual description of
our simulator.
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3.2.1 Imprecision of The Known Simulation Strategy

Recall that in the case of β = 1, Protocol 3.3 is actual Barak’s protocol. Given access the verifier’s
code, Barak’s protocol can be simulated without making use of rewinding: To perform simulation,
the simulator commits to the hash of verifier’s message function (instead of committing to zeros)
in Step P1.1. The verifier’next message function is then a program whose output, on input z, is r.
This provides the simulator with a valid witness to use in WIUA.

However, consider a verifier V ∗ that has a very long auxiliary input, but most of the time only
accesses a small portion of it. The simulator will always commit to the hash of whole description
of V ∗ (including the whole auxiliary input) and will thus always take long time, while V ∗ might
run fast a large portion of the time. Hence the known simulation strategy is imprecise.

It can be seen that the known simulation strategy can be modified easily to output indistinguish-
able views for our protocol: The simulator computes the current verifier’s next message function
in every Step P1.k.1 and commits to the hash of it. This means that the simulator has β witnesses
for the transcript in GenProt. So it can use anyone of these β witnesses as the witness for the
combined statement in WIUA. But by the above analysis this simulation strategy is also imprecise,
while our goal is to construct a precise simulator.

3.2.2 The Idea for Obtaining Precision

Notice that the reason that the known simulation strategy is imprecise is that the simulator should
commit to V ∗ and its whole auxiliary input, while V ∗ might only access few portions of the auxiliary
input in a specific computation. So an idea to overcome the imprecision is that the simulator doesn’t
compute V ∗’s next message function using the whole auxiliary input in Step P1.k.1. Rather, it
computes this function in such way: it chooses a part of the auxiliary input which contain all
portions V ∗ accessed so far. Hence we have if given this part as the real auxiliary input, then V ∗’s
messages prior to Step P1.k.1 would be identical to those in this simulation (if simulator uses the
same coins). Further, the simulator supposes that V ∗ will not access any portion of the auxiliary
input outside this chosen part in Step V1.k.2. Then it computes V ∗’s next message function using
this part (rather than whole auxiliary input) and commits to this program.

(We remark that this idea doesn’t mean reverse-engineering or understanding programs. Ac-
tually, the verifier is a polynomial time machine with an auxiliary input. W.l.o.g, assume V ∗ is
deterministic. As we know, V ∗ and the auxiliary input are inputs to the simulator. In simulation all
V ∗’s computing is emulated by the simulator. The simulator puts each tape head of V ∗ at the first
(i.e. leftmost) portion of the corresponding tape at the beginning of simulation and then emulates
V ∗’s computing. Hence specifically, in simulation the simulator of course knows which bits of the
auxiliary input are accessed by V ∗ since it can record the rightmost portion in this tape V ∗’s head
has scanned so far. Also the simulator can compute V ∗’s next message function using this part as
the auxiliary input as if it is the real auxiliary input. So this idea doesn’t mean reverse-engineering
or understanding programs since we don’t assume the simulator understands V ∗’s computing, while
instead, what the simulator does is nothing but to monitor V ∗’s computing. The similar technique
of monitoring verifier was used by Goldreich and Oren in proving Sequential Composition Lemma
of zero-knowledge protocols [14].)

If V ∗ doesn’t access any portion outside (i.e. at the right hand of) this part of the auxiliary input
in Step V1.k.2, then the committed program in Step P1.k.1 is indeed a witness for the transcript
(By saying “it is a witness for the transcript” we mean it is a witness for (h, zk, rk) ∈ Λ for some k).
In this case we call the simulator succeeds in obtaining a witness in this slot. But if V ∗ accesses the
bits of the auxiliary input outside this part in Step V1.k.2, this means the program the simulator
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committed to is not the witness for the transcript since it cannot output rk on input zk. In this
case we call the simulator fails in obtaining a witness in this slot. (It can be seen the simulator can
check whether the head of V ∗’s auxiliary input tape moves to the right hand of ak in computing
rk. This is because the movement of V ∗’s tape heads is emulated by the simulator.)

It is because of the possibility that the simulator fails that we cannot modify the simulator of
Barak’s protocol to make it precise since it only has one slot. But for our protocol the situation is
different. Our protocol differs from Barak’s in that there are many slots our simulator can make
use of. When it fails in a slot, the simulator will still use this strategy but to choose a longer part of
the auxiliary input in the next slot. As our protocol has β(n) slots, we will show the simulator will
succeed in a slot rather than fail in all slots. This means it can obtain a witness for the transcript
and output indistinguishable view in WIUA. In the following subsections we will make this idea
more precisely and present the detailed description of the simulator.

3.2.3 Overview

W.l.o.g. assume V ∗ is a deterministic polynomial-time verifier and a is the auxiliary input for V ∗.
We will always use a variable b to denote the rightmost portion in a V ∗ accesses so far. Assume
the simulator failed in the first k− 1 slots. Then in the kth slot, the simulator chooses nk-bit prefix
of a as the “auxiliary input”, denoted by ak (if nk > |a|, let ak be a). It is easy to see that along
with k’s increasing, ak becomes longer. If b is larger than nk, this means ak is not sufficiently long
even for V ∗’s computing prior to this step, in this case the simulator adopts the honest prover
strategy to compute zk. Otherwise, it computes V ∗’s next message function as program Πk. The
key importance in computing Πk is the simulator supposes ak is the real auxiliary input for V ∗.
Then it commits to the hash of Πk as zk and sends zk to V ∗.

In emulating V ∗’s computing of rk, the simulator checks whether or not V ∗ accesses any portion
of a outside ak. If it doesn’t, this means (Πk, sk) is the witness for (h, zk, rk) ∈ Λ where sk is the
randomness for zk and the simulator succeeds. Once it succeeds, the simulator will adopt the honest
prover strategy in the residual interaction. But if V ∗ does access some bits of a outside ak, this
means (Πk, sk) isn’t a witness for (h, zk, rk) ∈ Λ and thus the simulator fails. Then the simulator
proceeds to the next slot.

However, the simulator will not fail in all slots. We claim there must exist a constant c < β(n)
satisfying the simulator succeeds in the cth slot. Actually, there exists a constant c satisfying either
V ∗’s running-time is less than nc or |a| is less than nc. Hence it is easy to see the simulator will
succeed in (or prior to) the cth slot. This is because in the former case V ∗ has no time to use any
bit outside nc-bit prefix and in the latter case the simulator commits to the whole auxiliary input,
as the known simulator [1] does. (Since V ∗’s running-time is not a-priori bounded by any fixed
polynomial, we cannot fix the number of slots as any constant. This is also why we let Protocol 3.3
have β(n) slots.)

3.2.4 Actual Description

Our simulator’s operation follows the above description. We now turn to formally describing the
simulator as Algorithm 3.6 shows.

In Section 3.3 we will show that the simulator S can output an indistinguishable view. In
Section 3.4 we will prove the polynomial precision can be achieved.
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Input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”);
V ∗ ∈ {0, 1}n: the description of the verifier and its auxiliary input a ∈ {0, 1}poly(n).

Parameters and Variables: A super-constant function β(n) = ω(1) ; A variable b: the
rightmost portion in a V ∗ accessed so far; A variable f : the flag denoting whether S has
succeed. Initally, set f false.

Step V0: Run V ∗(x; a) to output a hash function h from Hn. Set b as the rightmost
portion in a V ∗ accesses in this step.

For k = 1, · · · , β(n), do the following:
Step P1.k.1: S computes zk in two strategies according to the values of f and nk:

1. If f = true or nk < b, S adopts the honest prover strategy, i.e., computes zk ←R

Com(h(0n)).

2. If f = false and nk ≥ b, S computes V ∗’s next message function using “auxiliary
input” ak, denoted Πk, where ak is the nk-bit prefix of a (if nk > |a|, then let ak = a).
Compute zk ←R Com(h(Πk)).

Step V1.k.2: If Case 1 in Step P1.k.1 happens, simply run V ∗(x, z1, · · · , zk; a) to output
a string rk. Otherwise, during running V ∗, S checks whether V ∗ accesses any bit of a
at the ak’s right hand. If V ∗ doesn’t, set f = true and store (Πk, sk), where sk is the
randomness for the commitment zk. In both cases set b as the rightmost portion in a V ∗

accesses so far.
End For

Steps P,V2.X: S proves to verifier using (Πk, sk) (gathered in simulated Step V1.k.2 for
some k) as the witness via the WIUA system that either x ∈ L or (h, zk, rk) ∈ Λ.

Algorithm 3.6. The precise simulator S.
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3.3 The Simulator’s Output Distribution

As mentioned earlier, there must exist a constant c such that the simulator succeeds in obtaining
a witness for the transcript in the cth slot. This means (Πc, sc) is the witness for (h, zc, rc) ∈
Λ. Accordingly, the simulator can certainly use this witness to convince the verifier in WIUA.
Furthermore, the hiding property of Com and witness-indistinguishability property of WIUA ensure
that the messages generated by S are computationally indistinguishable from the view of the verifier
in a real interaction. [1] presented an formal argument for this indistinguishability in the case of
β = 1. Since β is a super constant in our protocol, we still give a full argument for our protocol
as follows, which augments the argument in [1] in proving the indistinguishability of messages in
GenProt.

Claim 3.7. S’ output is computationally indistinguishable from the view of the verifier in an
interaction of Protocol 3.3 with input {(x,w), x}, where w is a witness for x ∈ L.

Proof. The proof follows from the hybrid argument. We construct a hybrid simulator Ŝ which has
w as the auxiliary input. Ŝ adopts the same strategy as S does in GenProt, but uses w as the
witness in WIUA. To prove this claim we only need to show both S’ output and the real V ∗’s view
is computationally indistinguishable from Ŝ’ output.

1. We first show S’ output is indistinguishable from Ŝ’ output. Basically, this fact follows
from the WI property of WIUA. Indeed, if there exists a polynomial-time algorithm D that
distinguishes two distributions with probability ε, then there must exist a particular view v
for GenProt such that D distinguishes the following two distributions: v combined with S’
output in WIUA and v combined with Ŝ’ output in WIUA. Let Dv be the distinguisher D
with v hardwired as its first input and let V ∗

v be the residual verifier V ∗ with v hardwired.
Then Dv can distinguish with probability ε between prover messages output by a honest
prover using w as the witness and prover messages output by a honest prover using (Πc, sc)
as the witness in WIUA when interacts with V ∗

v . By the WI property of WIUA, we have ε is
negligible.

2. We then show Ŝ’ output is indistinguishable from the real view. Basically, this fact follows
from the hiding property of Com. Notice that there are β Coms in GenProt. So we use the
hybrid argument here again. We construct β + 1 hybrid simulators Hi, 0 ≤ i ≤ β. Hi adopts
Ŝ’ strategy in the first i slots and adopts the honest prover strategy in the last β − i slots
(Of course, every Hi also has the same w as the auxiliary input and uses w as the witness
in WIUA). Clearly, Ŝ’ output is identical to Hβ’s output and the real view is identical to
H0’s output. Thus to prove this claim we need to show Hi’s output is indistinguishable from
Hi+1’s output for 0 ≤ i ≤ β − 1.

Suppose there exists a polynomial-time algorithm D that distinguishes two outputs of Hi and
Hi+1 with probability ε. Suppose we fix a choice of coins used for the first i commitments such
that D distinguishes between Hi’s output and Hi+1’s output on this choice with probability ε.
Then D can be converted to a distinguisher between the i+1st Com output by Hi and by Hi+1

respectively by hardwiring all messages before Step P1.i + 1.1, and since the later messages
are a function of the input and the previous messages and coins. By the hiding property of
Com, we have ε is negligible. (Actually, Hi+1 may adopt the honest prover strategy in slot
i + 1 too. In this case Hi’s output and Hi+1’s output are identical.)
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3.4 The Simulator’s Running Time

The goal of this subsection is devoted to the proof of the following claim, which ensures that the
simulator S is precise.

Claim 3.8. There exists a polynomial p(n, t) such that for every x ∈ {0, 1}n ∩ L and every
sufficiently long r ∈ {0, 1}∗ and every polynomial time machine V ∗ and its auxiliary input a ∈
{0, 1}poly(n) letting v ← Sr(x, V ∗, a), STEPSSr(x,V ∗,a) ≤ p(n, STEPSV ∗(v)).

Proof. Fix a random tape r ∈ {0, 1}∗ for S. Let v denote the view S generates. Denote V ∗’s
running-time on v by STEPSV ∗(v). For abbreviation let t denote STEPSV ∗(v).

Since V ∗’s running-time and length of a are polynomial, there exists the first constant c such
that in Step V1.c.2 (and all previous steps) V ∗ doesn’t access any bit of a outside ac. This means
(Πc, sc) is the witness S can use to convince verifier in WIUA and S will thus adopt the honest
prover strategy in the residual β − c slots and WIUA.

Consider S’ computation and running-time in the 1st, · · · , cth slots. In any of these slots S may
adopt either the honest or non-honest prover strategy according to Algorithm 3.6. So we divide
these slots into two sets: S1 and S2, where for every k ∈ S1 S adopts the honest prover strategy
and for every k ∈ S2 S adopts the non-honest prover strategy in Step P1.k.1.

We first omit to evaluate S’ running-time in computing nk in all slots explicitly as it is obvious a
tiny polynomial quantity ( We will take this quantity into account later). Assume h(x) and Com(x)
are computable in time ph(n) and pcom(n) respectively, where n = |x|. Then S’ running-time in all
slots in S1 is

∑
k∈S1

[ph(n) + pcom(n)]. For every k ∈ S2 S’ running-time in the kth slot is the sum

of time for generating Πk, hashing and commitment. Let us focus on the time of generating Πk.
Actually, Πk can be generated in linear-time in lengths of the code of V ∗, x and ak and z1, · · · , zk−1.
(Indeed, Πk can be generated by integrating x, ak and z1, · · · , zk−1 with the code of V ∗, which only
needs linear time in lengths of these strings. Then on input zk, Πk might work simply as follows: It
first emulates V ∗’s computing on x and historical prover messages z1, · · · , zk−1 from the beginning
to the step of receiving zk. This is an internal computing regardless of zk. Then Πk outputs rk

corresponding to this zk. It is easy to see Πk runs in polynomial-time.) Since every |zk| is less than
n2 [1], we have the length of these strings is 2n + nk + kn2. So there is a linear function l′(·) such
that generating Πk needs l′(nk + kn2) time. Then S’ running-time in all slots in S2 is less than∑
k∈S2

[l′(nk + kn2) + ph(l′(nk + kn2)) + pcom(n)].

Next, we have S’ running-time in the following β − c slots is (β − c)(ph(n) + pcom(n)). Denote
by TUA S’ running-time in WIUA. By the relative efficient prover property of WIUA, we have
TUA ≤ pUA(t) for a polynomial pUA(·). (Notice that given a witness for the combined statement of
WIUA, verifying if it is a witness can be performed within a fixed polynomial-time in t.)

Thus, S’ running-time as a prover is less than
∑

k∈S1

[ph(n) + pcom(n)]+
∑

k∈S2

[l′(nk + kn2) + ph(l′(nk + kn2)) + pcom(n)]+(β−c)(ph(n)+pcom(n))+pUA(t)

Clearing up this formula and take into account the time of computing nk in all slots, we have
S’ running-time as a prover is less than c[l′(nc + cn2) + ph(l′(nc + cn2))] + A(n) + pUA(t) for some
polynomial A(n).

Further, we have nc < nt. This is because c is the first constant such that S succeeds in the
cth slot and thus nc−1 cannot be larger than t (if nc−1 ≥ t, then S succeeds in the c − 1th slot).
Moreover, consider the steps by S in emulating V ∗. Denote these steps by lt, where l is the linear
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time overhead. Hence we have the total S’ running-time is less than

STEPSSr(x,V ∗,a) < β[l′(tn + βn2) + ph(l′(tn + βn2))] + A(n) + pUA(t) + lt

It can be seen the quantity at the right hand of the above inequality is a polynomial, denoted
p(n, t). Then p(n, t) satisfies STEPSSr(x,V ∗,a) < p(n, t) (for every V ∗, a and r).

Let us finally make certain the degree of p(n, t) in t. Recall that l′(t) is linear in t. Denote by
ch and cUA the degrees of ph(·) and pUA(·) in t respectively. Then it is obvious that the degree of
p(n, t) in t is d, where d = max(ch, cUA).

By Claim 3.7 and Claim 3.8 we finish the proof of Theorem 3.5. Combining it with Theorem 3.4
we also finish the proof of Theorem 3.1. In the next section we will propose a precise bounded-
concurrent zero-knowledge argument in ω(1) rounds based on the result obtained in this section.

4 Achieving Precise Bounded-Concurrent Zero-Knowledge

The goal of this section is devoted to the proof of the following theorem.

Theorem 4.1. Assuming the existence of collision-resistent hash functions against nlog log n-sized
circuits, there exist ω(1)-round public-coin precise bounded-concurrent zero-knowledge arguments
for NP with polynomial precision.

Our approach for achieving Theorem 4.1 is to modify Protocol 3.3 (as [2] did) to achieve
bounded-concurrent zero-knowledge and keep the precision obtained in the previous section. In
Section 4.1 we present the modified protocol. In Section 4.2 we construct a precise simulator for
this protocol. In Section 4.3 and Section 4.4 we show this simulator can provide bounded-concurrent
zero-knowledge and precision simultaneously.

4.1 The Zero-Knowledge Protocol

The modified protocol is presented as Protocol 4.2 shows which differs from Protocol 3.3 in two
aspects. One is the definition of language Λ, shown below, and the other is rk is randomly chosen
from {0, 1}n4

rather than {0, 1}n in Step V1.k.1 for all k.

Definition 4.3. (Language Λ [1]) Λ is defined as follows: τ = (h, z, r) is in Λ iff there exists a
program Π such that z = Com(h((Π))) and there exists a string y such that |y| ≤ |r|/2 and Π(z, y)
outputs r within |r|log log |r|/5 steps. This can be verified in Ntime(nlog log n/5). A witness that
(h, z, r) ∈ Λ is a tripe (Π, s, y) such that z = Com(Π; s) and Π(z, y) outputs r within |r|log log |r|/5

steps.

First we should prove that Protocol 4.2 is still an interactive argument for NP.

Theorem 4.4. Protocol 4.2 is an interactive argument for NP.

Proof Sketch: This proof is almost identical to the previous section. So we only sketch this proof.
Completeness is clearly satisfied. So we only need to show its soundness. By the proof of Theo-
rem 3.4, to do this we only need to show GenProt is computationally sound.

Recall that in the proof of Theorem 3.4 any cheating prover can be converted into an algorithm
to find a collision for the hash functions. In this proof, if there exists a cheating prover can output
a witness for (h, zk, rk) for a k = k(n) at the end of GenProt. This means Πk is the program
such that ∃y∈{0,1}m/2Πk(zk, y) = rk and we choose a random r′k, · · · , r′β ←R {0, 1}m and obtain
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)
Additional parameter: A super-constant function β(n) = ω(1)

Step V0 (Choose hash-function): Verifier chooses a random
hash function h ←R Hn and sends h to prover.

h ←R Hn←−−−−−−−−−−

For k = 1, · · · , β(n), do the following:

Step P1.k.1 (Commitment to hash of “junk”): Prover com-
putes zk ←R Com(h(0n)) and sends zk to verifier.

zk = Com(h(0n))−−−−−−−−−−−−−−−−→
Step V1.k.2 (Send random string): Verifier selects a string

rk ←R {0, 1}n4
and sends it.

rk ←R {0, 1}n4

←−−−−−−−−−−−−−−
End For

Steps P,V2.X (WI Proof): Prover proves to verifier using its in-
put w via the WIUA system that either x ∈ L or there exists a
k s.t. (h, zk, rk) ∈ Λ.

Protocol 4.2. The precise bounded-concurrent zero-knowledge argument for NP.

with probability ε a program Π′k such that ∃y′∈{0,1}m/2Π′k(zk, y
′) = r′k, then Πk will be different

from Π′k with probability at least ε − 2−m/2. This is because if Πk = Π′k then it must hold that
r′k ∈ Πk(zk, {0, 1}m/2) which happens with probability at most 2−m/2. In our case m = n4 and so
2−m/2 is a negligible quantity.

So we only need to prove the following theorem.

Theorem 4.5. Protocol 4.2 is bounded-concurrent zero-knowledge with polynomial precision.

In Section 4.2 we give a construction of a precise simulator for Protocol 4.2. In Section 4.3
we prove that its outputs are computationally indistinguishable from the views of the verifier in
a real interaction. In Section 4.4 we show it can achieve precision and thus complete the proof of
Theorem 4.5.

4.2 The Precise Simulator

We use and extend the idea presented in the previous section to construct a precise simulator
for Protocol 4.2. Basically, the simulator combines this idea with the known simulation strategy
[1] which ensures bounded-concurrent zero-knowledge can be obtained. So our emphases in this
subsection is to describe how to obtain precision in concurrent simulation.

4.2.1 Overview

It is clear that in the case of β = 1 Protocol 4.2 is Barak’s bounded-concurrent zero-knowledge
argument. We first introduce his simulation strategy for the protocol. The simulator is almost
identical to the one for stand-alone setting [1]. Its trick is still to commit to verifier’s next message
function in GenProt. In concurrent setting on receiving the simulator’s commitment, the verifier
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may switch to other sessions. When it returns to this session and sends r. Then the simulator
collects all prover messages sent in this interval as y. Denote the transcript in GenProt by (h, z, r).
Then y and committed program and used randomness are a witness for (h, z, r) ∈ Λ.

Our simulator basically follows the above simulation strategy but to adopt the strategy of
computing messages of Step P1.k.1 in GenProts shown in the previous section. Assume V ∗ is
a polynomial-time verifier and a is the auxiliary input for V ∗ and there are n sessions executed
concurrently. We still use b to denote the rightmost portion of a V ∗ accesses so far. Our emphases
is to describe the simulation strategy in GenProts. For the βn slots in n sessions let us order
them according to the scheduling of the prover messages in them. When it needs to compute the
commitment z in the qth slot, the simulator does the following, almost as the one described in the
previous section: If it has succeed in this session or nq is less than b then it adopts the honest
prover strategy. Otherwise it computes V ∗’s next message function using the nq-bit prefix of a as
the auxiliary input and computes the commitment z. Denote by (Π, s) the committed program
and the randomness for the commitment.

After the simulator sends z to V ∗, V ∗ may switch to other sessions. When it returns to this
session and responses r, if the simulator hasn’t succeed in this session then it checks whether or not
b, the rightmost portion V ∗ accesses so far, is larger than the length of the prefix of the auxiliary
input it used in computing z. If not, the simulator adopts the simulation strategy in [1] to gather
information y and stores (Π, s, y) and thus succeeds in this session.

Similarly, we have V ∗’s running-time and |a| is polynomial. Since there are β slots for each
session, it can be seen that the simulator will succeed in all sessions and output indistinguishable
views. Further, by Claim 3.8 it is reasonable to take in faith that this simulation strategy will lead
to polynomial precision. We will prove these facts after presenting the actual description of the
simulator in the following.

4.2.2 Actual Description

Our simulator algorithm follows the above description. We first introduce notations and present
its actual description in Algorithm 4.6.

Notations. Through this subsection we will use i to index a session (i.e., 1 ≤ i ≤ n), superscript
j to index an overall prover/verifier message (i.e., 1 ≤ j ≤ un, u is a super-constant). We will use
subscript p and v to denote that the message is a prover’s or verifier’s message (e.g., mj

v denotes
the jth verifier’s message) and use parenthesized superscript to denote the session that a message
belongs to (e.g., r

(i)
k ). We will sometimes drop the session number when it is clear from the context.

We will sometime identify a prover or verifier message not by its overall index, but rather by its
session number and step number. Thus we will say statements like “let r = r

(i)
k denote the message

of Step V1.k.2 of the ith session”.

Algorithm 4.6. The precise simulator S′

Input: x1, · · · , xn ∈ {0, 1}n: the statement to be proved in the ith session is that xi ∈ L; V ∗ ∈
{0, 1}n: description of a polynomial-time verifier coordinating an n-times concurrent execution.
W.l.o.g. assume V ∗ is deterministic; a ∈ {0, 1}poly(n): the auxiliary input for V ∗.
Initialization: The simulator constructs such tables and variables as follows.
A: a table of length n. Initially A is empty. A[i] is used to contain the witness (Π, s, y) such that

z = Com(h(Π), s) and Π(z, y) = r within nlog log n steps for the ith session.
β: a super-constant function β(n) = ω(1).
b: a variable recording the rightmost portion in a V ∗ accessed so far;
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f : a table of length n. f [i] is the flag denoting whether S′ has succeed in the ith session. Initially,
set f [i] false for all i.

q: a variable denoting the order number of the current slot, where we order the βn slots according
to the scheduling of the prover messages in them. Initially, set q = 0.

α: a table of length n. α[i] is used to store the order number of the most recently visited slot in
the ith session.

Simulating each step: For j = 1, · · · , un the simulator computes the jth prover’s message mj
p

in the following way (where u = β + c′, c′ is a constant denoting the number of prover’s rounds
in WIUA): Feed the previously computed messages (m1

p, · · · ,mj−1
p ) to V ∗ to obtain jth verifier’s

message (k, m). Set b as the rightmost bit of a V ∗∗ accessed so far. Compute the message mj

according to the current step in the simulated proof of the ith session:

Step P1.k.1: If V ∗’s message is for Step V0 of the ith session, let h = h(i) denote the verifier’s
message. S′ does the following:

1. Let q ← q + 1 and store q into α[i].

2. If f [i] = true or nq < b, S′ adopts the honest prover strategy, i.e., computes zk ←R

Com(h(0n)). Otherwise, i.e. if f [i] = false and nq ≥ b, S′ computes V ∗’s next message
function using auxiliary input aq, denoted Πk, where aq is the nq-bit prefix of a (if nq > |a|,
then let aq = a). Compute zk ←R Com(h(Πk); sk), where sk is the randomness.

Receiving message of Step V1.k.2: If V ∗’s message is for Step V1.k.2 of the ith session, do as
follows:

1. If f [i] = false and nα[i] ≥ b, set f [i] = true. Let j′ denote the overall index of prover’s
message in Step P1.k.1 of this session. That is, mj′ was the message zk of the ith session.
Let y = (y1, · · · , yj−j′−1) denote the sequence (mj′+1, · · · ,mj−1). Note that |y| ≤ O(βn3) <
n4/2 = |rk/2| for an appropriate β. Add (Πk, sk, y) to the cell A[i].

2. If k < β, compute the prover’s message for Step P1.k + 1.1 using the strategy described in
“Step P1.k.1”. Otherwise, compute the first prover’s message in the WIUA using the strategy
described in “Steps in WI-UARGs” below.

Steps in WI-UARGs: S′ adopts the honest prover strategy to convince V ∗ that either x ∈ L or
(h, zk, rk) ∈ Λ using the witness (Πk, sk, y) in A[i] for the ith session.

In the next two subsections we will follow the approach for proving Theorem 3.5 to complete
the proof of Theorem 4.5.

4.3 The Simulator’s Output Distribution

In this subsection we show S′ can output indistinguishable view for V ∗. [1] has presented an
argument of this indistinguishability in case of β = 1 in bounded-concurrent setting. By the analysis
presented in the previous section we have S′ will succeed in every session. This means it can store
a tripe (Πk, sk, y) (for some k, k’s are distinct in different sessions) for every session. To apply the
argument in [1] in our case, we should ensure that (Πk, sk, y) is the witness for the transcript in every
session. This can be reduced to ensure that |y| is less than r/2. Actually, assume for a specific session
the simulator succeeds in the kth slot. That is, it stores (Πk, sk, y) as the witness for the transcript.
Assume y is mj′+1, · · · ,mj−1. Hence it still holds |mj′+1|+ · · ·+ |mj−1| ≤ O(βn3) < n4/2 = |rk/2|
for an appropriate β. This means (Πk, sk, y) is indeed a witness for the transcript in every session.
When this fact is ensured, what we need to prove is the following claim.
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Claim 4.7. S′’ output is computationally indistinguishable from the view of V ∗ in an n-times
concurrent interaction of Protocol 4.2 with inputs {(xi, wi), xi}n

i=1, where wi is a witness for xi ∈ L.

Proof. The proof of this claim is similar to the previous section. We prove this claim still using
the hybrid argument. That is, we construct a hybrid simulator Ŝ′ which has w1, · · · , wn as the
auxiliary inputs. Ŝ′ adopts S′’ strategy in GenProts and adopts the honest prover strategy in
WIUA using wi as the witness in the ith session. Then proving this claim is reduced to proving
two subclaims (1) that Ŝ′’ output is indistinguishable from S′’ output and (2) that Ŝ′’ output is
indistinguishable from the real view.

1. The first subclaim basically follows from the fact that WI property is closed under concurrent
composition. We order n sessions according to the scheduling of the first step in WIUAs.
We construct n + 1 hybrid simulators Gi, 0 ≤ i ≤ n. Every Gi also gets w1, · · · , wn as
the auxiliary inputs. In GenProts Gi behaves as S′. In WIUAs Gi adopts honest prover
strategy using wi’s as the witnesses in the first i sessions and adopts S′’ strategy in the last
n − i sessions. Clearly, G0 = S′ and Gn = Ŝ′. So we prove this subclaim by showing Gi’s
output and Gi+1’s output are computationally indistinguishable for 0 ≤ i ≤ n− 1.

Suppose there exists a polynomial-time algorithm D that distinguishes between Gi’s output
and Gi+1’s output with probability ε. We fix a choice of coins used for all sessions except
the i + 1st and GenProt of the i + 1st such that D distinguishes between Gi’s output and
Gi+1’s output on this choice with probability ε. Then D can be converted to a distinguisher
between prover’s messages in the i + 1st WIUA output by Gi and by Gi+1 respectively, by
hardwiring all messages before the i + 1st WIUA, and since the later messages are a function
of the public inputs and these messages and coins. Then by the WI property of WIUA ε is
negligible. This means Ŝ′’ output is indistinguishable from S′’ output.

2. The second subclaim basically follows from the multiple-sampling security of Com. When n
Protocol 4.2s are executed concurrently, there are nβ Coms in the interaction. Let us order
the nβ commitments according to their scheduling. We construct nβ + 1 hybrid simulators
H0, · · · ,Hnβ, where Hi adopts the Ŝ′’ strategy in computing first i Coms and adopts the
honest prover strategy in computing last nβ− i Coms for 0 ≤ i ≤ nβ (each has w1, · · · , wn as
the auxiliary inputs and uses them in WIUAs). Clearly, H0’s output equals the real view and
Hnβ = Ŝ′. Thus we only need to show Hi’s output and Hi+1’s output are computationally
indistinguishable for 0 ≤ i ≤ nβ − 1.

Suppose there exists a polynomial-time algorithm D that distinguishes between Hi’s output
and Hi+1’s output with probability ε. Assume the i + 1st Com belongs to the jth session.
Then we fix a choice of coins used for all sessions except the jth and the first i Coms in the
jth such that D distinguishes between Hi’s output and Hi+1’s output on this choice with
probability ε. Then D can be converted to a distinguisher between the i + 1st Com output
by Hi and by Hi+1 respectively by hardwiring all messages before the i + 1st Com, and since
the later messages are a function of the public inputs and these messages and coins. Then by
the hiding property of Com ε is negligible. (Hi+1 may compute the i + 1st Com using honest
prover strategy too. In this case Hi’s output and Hi+1’s output are actually identical.) This
means Ŝ′’ output is indistinguishable from the real view.
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4.4 The Simulator’s Running Time

The goal of this subsection is devoted to the proof of the following claim, which states precision is
still obtained in a n-times concurrently execution of Protocol 4.2.

Claim 4.8. There exists a polynomial p(n, t) such that for every −→x = (x1, · · · , xn), xi ∈ {0, 1}n∩L
and every sufficiently long r ∈ {0, 1}∗ and every polynomial time machine V ∗ and its auxiliary
input a ∈ {0, 1}poly(n) letting v ← S′r(

−→x , V ∗, a), STEPSS′r(−→x ,V ∗,a) ≤ p(n, STEPSV ∗(v)).

Proof. Fix a random tape r ∈ {0, 1}∗ for S′. Let v denote the view S′ generates. Since V ∗’s
maximum running-time and length of a are polynomial, there exist n constants c1, · · · , cn such
that S′ succeeds in the cth

i slot in the ith session for 1 ≤ i ≤ n.
Denote by Ti the simulator’s running-time in the ith session (including the time of emulating

V ∗). Denote by ti the V ∗’s running-time in the ith session. Then STEPSV ∗(v) =
n∑

i=1
ti and

STEPSS′r(x,V ∗,a) =
n∑

i=1
Ti. For abbreviation let t = STEPSV ∗(v) and T = STEPSS′r(x,V ∗,a).

By the almost same analysis in the proof of Claim 3.8 we have the following inequality holds
for all i.

Ti < β[l′(tin + βn2) + ph(l′(tin + βn2))] + A(n) + pUA(t) + lti

Notice that the third summand at the right hand is pUA(t) rather than pUA(ti). Actually, assume
S′ succeeds in the kth slot in the ith session and S′ generates Πk only using V ∗’s code and the public
inputs −→x , a prefix of a and all prover messages prior to this step. In verifying Πk(zk) = rk, Πk

needs first to do an internal running from the beginning to this step of receiving zk, which may
involve many sessions. Hence the time of this verifying may be larger than ti, but must be less
than t.

Let i run from 1 to n and sum up the above inequalities, we have

T < β[l′(tn + βn3)] +
∑

1≤i≤n

β[ph(l′(tin + βn2))] + nA(n) + npUA(t) + lt

As ti < t, it is obvious there exists a polynomial p(n, t) which has degree d in t, d = max(ch, cUA),
such that T < p(n, t) (for any V ∗, a and r). Thus we complete the proof.

By Claim 4.7 and Claim 4.8 we complete the proof of Theorem 4.5. Combining it with Theo-
rem 4.4, we also complete the proof of Theorem 4.1.

Remark 4.9. So far we have shown there exist ω(1)-round zero-knowledge arguments which are
precisely simulatable in case n sessions are executed concurrently. Since the security parameter
can be “scaled”, this means that for every fixed polynomial q(n), we can construct a protocol
that remains zero-knowledge when executed q(n) times concurrently. Notice that Protocol 4.2 uses
only ω(1) rounds. This means the “scaled” protocol still uses ω(1) rounds. (This is because for
each δ(q(n)) = ω(1), the desired round complexity of the “scaled” protocol, δ(n) is still ω(1) and
Theorem 4.1 ensures the existence of the δ(n)-round protocols.) Further, the “scaled” protocol still
obtains polynomial precision.

Remark 4.10. As we achieve the results Theorem 3.1 and Theorem 4.1, by using the technique
in [2][3] to reduce the complexity assumption, our results Theorem 1.1 and Theorem 1.2 follow. In
the next section we will sketch this technique.
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5 Reducing the Complexity Assumption

In this section we follow the technique in [2][3] to sketch how to obtain Theorem 1.1 and Theo-
rem 1.2 by reducing the stronger assumption in previous sections to the more standard assumption
that there exist hash functions that collision-resistent against polynomial-sized circuits. Since the
applications of this technique in proving these two theorems are almost same, we only sketch it
with respect to stand-alone setting to show how to obtain Theorem 1.1.

The main tools to reduce the complexity assumption are random-access hashing schemes (see
[18] for a detailed construction) and error correcting codes.

Error-correcting codes: We use ECC to denote an error correcting code. That is, ECC is a
polynomial-time computable function that satisfies the following:
1. Polynomial expansion: There exists some function l(·) such that l(n) < nc1 for some constant

c1 > 0, and every string x ∈ {0, 1}∗, |ECC(x)| = l(|x|).
2. Constant distance: There exists some constant δ > 0 such that for every x 6= x′ ∈ {0, 1}n,

|{i|ECC(x)i 6= ECC(x′)i}| ≥ δ · l(n).

[2][3] showed that we can obtain a simple construction for binary codes with polynomial expan-
sion by concatenating the Reed-Solomon code with the Hadamard code (with the Hadamard code
applied individually to each symbol of the Reed-Solomon code).

To apply random-access hash schemes and ECC the definition of Λ should be modified slightly,
as follows.

Definition 5.1. (Language Λ [2]) τ = (α, z, r) is in Λ if there exists a circuit Π of size at most
T = |r|log log |r|/5c1 such that z = Com(h(Π)) and Π(z) = r. A witness that τ = (α, z, r) ∈ Λ is a
triple (F, v, s) with the following properties:

1. z = Com(v; s).

2. F is a certified version of ECC(Π) with respect to the hash value v. This means, if let
m = |ECC(Π)|, then F is a function on [m] such that for every i ∈ [m], F (i) = (ECC(Π)i, σ),
where σ is a certificate for ECC(Π)i w.r.t. the random-access hashing scheme. More formally,
F passes verification if for every i ∈ [m], Vα,v(i, b, σ) = 1 where (b, σ) = F (i) and V is the
verification algorithm of the random-access hashing scheme.

3. Using the decoding algorithm for the error-correcting code it is possible to recover Π =
ECC−1(F ). To be a witness, it must hold that Π(z) = r.

It can be seen that this is indeed a valid witness relation for the language Λ and that Λ ∈
Ntime(nlog log n). With this modified Λ, we present the protocol, as Protocol 5.2 shows.

To prove Theorem 1.1 we need to show that Protocol 5.2 is a precise public-coin zero-knowledge
argument. Indeed, the proofs of (concurrent) zero-knowledge property and precision are virtually
unchanged, as Section 3 (and Section 4) shows, so we omit these details. (Since the time of
computing tree hashing is more than the time of computing h, the degree of the precisions in t
might change.) Thus, all that is left to prove is the following:

Theorem 5.3. Protocol 5.2 with respect to the modified Λ is an interactive argument for NP (under
the assumption that the existence of hash functions that are collision-resistent against polynomial-
sized circuits).
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Public input: x ∈ {0, 1}n (statement to be proved is “x ∈ L”)
w
↓

x
↓

P V
Prover’s auxiliary input: w (a witness that x ∈ L)
Additional parameter: A super-constant function β(n) = ω(1)

Step V0 (Choose random-access hash function): Verifier
chooses a random hash function α ←R Hn and sends α to
prover.

α ←R Hn←−−−−−−−−−−

For k = 1, · · · , β(n), do the following:

Step P1.k.1 (Commitment to hash of “junk”): Prover com-
putes zk ←R Com(hα(0n)) and sends zk to verifier.

zk = Com(hα(0n))−−−−−−−−−−−−−−−−−→
Step V1.k.2 (Send random string): Verifier selects a string

rk ←R {0, 1}n and sends it.
rk ←R {0, 1}n

←−−−−−−−−−−−−−
End For

Steps P,V2.X (WI Proof): Prover proves to verifier using its in-
put w via the WIUA system that either x ∈ L or there exists a
k s.t. (α, zk, rk) ∈ Λ.

Protocol 5.2. The precise zero-knowledge argument for NP w.r.t. the modified Λ

Proof. The proof of completeness is straightforward. We skip this part and only prove the compu-
tational soundness property.

First of all, we follow the relaxed computational soundness requirement of GenProt presented
by [3]: the original requirement required that the probability that a nlog log n-sized cheating prover
outputs a witness is negligible. The relaxation is that we only require the soundness condition
holds against polynomial-sized provers. However, we require that such provers cannot even output
an implicit representation of the witness (i.e., a circuit C such that [C] is a witness). Note that in
nlog log n time it is possible to convert an implicit representation to an explicit representation.

Then suppose there exists a polynomial-sized cheating prover able of cheating the honest verifier
to accept some x /∈ L with probability ε. Hence from this cheating prover [1] constructed a
polynomial-sized P ∗ which can violate the computational soundness of GenProt with probability
polynomially related to ε, i.e., P ∗ is able of computing an implicit representation of the witness at
the end of GenProt. Thus, to prove computational soundness of Protocol 5.2 we only need to
show GenProt is computationally sound for any polynomial-sized cheating prover.

In the same way as the computational soundness proof in Theorem 3.4, we can use P ∗ to obtain
in polynomial-time two certified encoding F and F ′ of two different Πk and Π′k. Now, if we choose i
at random from [m], then with constant-probability ECC(Πk)i 6= ECC(Π′k)i. This means that with
constant-probability F (i) and F ′(i) yield two contradicting certificates for the same hash value,
contradicting the security of the random-access hash value.
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