
A Note on Linear Approximations of BLUE
MIDNIGHT WISH Cryptographic Hash

Function

Vlastimil Klima1 and Petr Susil2

1 Independent cryptologist - consultant, Czech Republic
v.klima@volny.cz

2 EPFL PhD student
susil.petr@gmail.com

Abstract. BLUE MIDNIGHT WISH hash function is the fastest among
14 algorithms in the second round of SHA-3 competition [1]. At the
beginning of this round authors were invited to add some tweaks be-
fore September 15th 2009. In this paper we discuss the tweaked version
(BMW). The BMW algorithm [3] is of the type AXR, since it uses only
operations ADD (sub), XOR and ROT (shift). If we substitute the op-
eration ADD with operation XOR, we get a BMWlin, which is an affine
transformation. In this paper we consider only a BMWlin function and
its building blocks.
These affine transformations can be represented as a linear matrix and a
constant vector. We found that all matrices of main blocks of BMWlin

have a full rank, or they have a rank very close to full rank. The struc-
ture of matrices was examined. Matrices of elementary blocks have an
expected non-random structure, while main blocks have a random struc-
ture. We will also show matrices for different values of security parameter
ExpandRounds1 (values between 0 and 16). We observed that increasing
the number of rounds ExpandRounds1 tends to increase randomness as
was intended by designers. These observations hold for both BMW256lin

and BMW512lin. In this analysis we did not find any useful property,
which would help in cryptanalysis, nor did we find any weaknesses of
BMW. The study of all building blocks will follow.

1 Introduction

The BMW algorithm [3] is of the type AXR, since it uses only operations
XOR, ADD (sub) and ROT (shift). If we substitute the operation ADD
with operation XOR, we get a BMWlin, which is an affine transforma-
tion. In this paper we consider only a BMWlin and its building blocks.
These are affine transformations, which can be represented by matrices.
We present the rank and the structure of these binary matrices. Main



Fig. 1. The scheme of (tweaked) BMW [2]

blocks of BMW are f0, f1, f2, they produce three intermediate values
Qa,Qb, G, and a chaining value H. All these variables consist of 16 w-
bit words. The variables depend only on the input block M and an old
hash value H. These dependencies will be shown in matrices. Note the
rank and the structure for each matrix. We will also present matrices for
different values of security parameter ExpandRounds1 (values between



0 and 16). Let us remind the reader that after ExpandRounds1 rounds
of the function expand1 there follow (16 − ExpandRounds1) rounds of
the function expand2 [3]. For the simplicity of this paper we suppose that
the reader is familiar with the basic description of BMW [3]. We use a
simple notation H, but whenever a misunderstanding is possible we dis-
tinguish between oldH and newH. Our observations and conclusions hold
for both BMW256lin and BMW512lin, but we present results only for
BMW256lin.

In the following picture we can see linear dependencies between M and
Qa. There are two matrices of the type 512 × 512 (separated by a black
stripe) which we denote (M , Qa). The columns represent 512 variables
(bits) of M on the left side and 512 variables (bits) of Qa on the right side.
Lines represents linear equations between bits on the left side (M) and on
the right side (Qa). Since the matrix on the right is an identity matrix, it
gives us direct expressions for bits of Qa with variables from M . Every line
can be expressed as a linear equation:

⊕
i∈Left xi =

⊕
j∈Right yj . Indexes

of bits which are included in the equation are denoted as black dots. In
the picture we can see (among other things) dependencies of the first
word of Qa on five words of M , which follows from the transformation
A1 in [3].

Fig. 2. Example of dependencies between variables (bits) of M and Qa, denoted as
(M , Qa)

In the Fig. 2 we can see the dependency of Qa on M . To get the
dependency of M on Qa, we need to find an inverse matrix. As we know
from linear algebra, xoring one line with another or changing the order of



lines does not change the rank of the matrix. Using these two operation
in our elimination algorithm we transform the pair of matrices (A, I) to
(I ′, A′), where I is an identity matrix and I ′ is identity matrix if A has
a full rank. If I ′ is an identity matrix then matrix A′ gives dependencies
of M on Qa, as is shown in the following picture. If the matrix A is
singular, the matrix I ′ will have nonempty columns above the diagonal.
The variable (bit), which corresponds to this nonempty column, creates
linear dependencies only with other variables (bits) in the matrix, see for
instance Fig. 4 (Zoom on matrix with rank = MAX-1).

The most important dependencies are shown in the following section.

Fig. 3. (M , Qa) - dependency between M and Qa

Elimination algorithm - transformation of (A, I) to (I ′, A′):

Input: boolean matrix A[LEN][LEN]
Output: pair of boolean matrices (I’,A’)
var boolean matrix I[LEN][LEN], where I[i][j]=1 if i==j and I[i][j]=0 otherwise

for i=1 to LEN
begin

if A[i][i] then
for all j != i and A[j][i] //add line i to line j in (A, I)

for all k
A[j][k] = A[j][k] + A[i][k] and I[j][k] = I[j][k] + I[i][k];

else



for all j > i
if A[j][i] //switch line j and i in (A, I)

for all k
switch values A[j][k] and A[i][k] and I[j][k] and I[i][k]

go to begin (without increasing i) or go to end (if i = LEN)
end
output (A,I)

Fig. 4. Zoom on matrix with rank = MAX-1

2 Dependency of Qa on M

We can see the dependency in the Fig. 2 and 3. Note that matrices do
not depend on the value ExpandRounds1, since Qa is created before the
function f1. Rank of matrix (M , Qa) is 512 i.e. the matrix has a full rank.



3 Dependency of Qa on H

Also rank of matrix (H, Qa) is 512. Note that the matrix expresses
the dependence in the block f0, so it does not depend on the value
ExpandRounds1.

Fig. 5. (H, Qa)

Fig. 6. (H, Qa)



4 Dependency of Qb on M

We can see here for the first time that matrices do not have full rank and
that increasing the number of rounds ExpandRounds1 tends to increase
the randomness in dependencies. Since all other dependencies (among
other variables) are similar, in next sections we will show only ranks of
matrices.

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(M, Qb) 511 512 512 510 511 512 512 511 510

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(M, Qb) 511 511 512 512 510 512 511 510

Fig. 7. (M , Qb), ExpandRounds1=0



Fig. 8. (M , Qb), ExpandRounds1=2

Fig. 9. (M , Qb), ExpandRounds1=16



Fig. 10. (M , Qb), ExpandRounds1=0

Fig. 11. (M , Qb), ExpandRounds1=2

Fig. 12. (M , Qb), ExpandRounds1=16



5 Dependency of Qb on oldH

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(oldH, Qb) 512 510 509 511 511 511 511 510 512

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(oldH, Qb) 511 511 512 510 511 512 511 511

Fig. 13. (oldH, Qb), ExpandRounds1=0



Fig. 14. (oldH, Qb), ExpandRounds1=2

Fig. 15. (oldH, Qb), ExpandRounds1=16



6 Dependency of G on M

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(M, G) 512 510 511 512 510 511 510 512 511

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(M, G) 510 510 510 511 512 512 510 511

Fig. 16. (M , G), ExpandRounds1=2

Fig. 17. (M , G), ExpandRounds1=2



7 Dependency of G on oldH

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(oldH, G) 511 511 510 511 511 511 512 511 511

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(oldH, G) 512 510 510 511 512 512 511 511

Fig. 18. (oldH, G), ExpandRounds1=2

Fig. 19. (oldH, G), ExpandRounds1=2



8 Dependency of newH on M

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(oldH, G) 512 510 511 512 510 511 510 512 511

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(oldH, G) 510 510 510 511 512 512 510 511

Fig. 20. (M , newH), ExpandRounds1=2

Fig. 21. (M , newH), ExpandRounds1=2



9 Dependency of newH on oldH

ExpandRounds1 0 1 2 3 4 5 6 7 8

Rank(oldH, newH) 511 511 510 511 511 511 512 511 511

ExpandRounds1 9 10 11 12 13 14 15 16

Rank(oldH, newH) 512 510 510 511 512 512 511 511

Fig. 22. (oldH, newH), ExpandRounds1=2

Fig. 23. (oldH, newH), ExpandRounds1=2



10 Conclusion

Results presented in this paper are only a small part of analysis which
has been performed. As the reader has noticed, only variables M and H
have been used as inputs for BMWlin. However, some elementary/main
blocks can be analyzed separately, which would give a better insight into
the structure of BMW hash function. Results of the complete analysis
will follow. In this paper all dependencies form matrices with a full or an
almost full rank. The structure of these matrices was expected as well.
Matrices of elementary blocks have a non random structure, but they
fulfill requirements to mix variables (bits) fast. Matrices of main blocks
have a full or an almost full rank and a random structure. We observed
that if it is required (and possible) to increase randomness, it can be done
by increasing the number of rounds ExpandRounds1. These observations
hold for both versions BMW256 and BMW512.

References

1. Announcing Request for Candidate Algorithm Nominations for a
New Cryptographic Hash Algorithm (SHA-3) Family, 2007, NIST,
http://csrc.nist.gov/groups/ST/hash/index.html.

2. Vlastimil Klima and Danilo Gligoroski, On BLUE MIDNIGHT WISH decomposi-
tion, to be published

3. Danilo Gligoroski and Vlastimil Klima and Svein Johan Knapskog and Mohamed
El-Hadedy and Joørn Amundsen and Stig Frode Mjølsnes, Cryptographic Hash
Function BLUE MIDNIGHT WISH. Submission to NIST, September 15, 2009.
http://people.item.ntnu.no/˜danilog/Hash/BMW-SecondRound/
Supporting Documentation/BlueMidnightWishDocumentation.pdf


