
Certificateless KEM and Hybrid Signcryption Schemes Revisited

S. Sharmila Deva Selvi, S. Sree Vivek ? and C. Pandu Rangan?

Theoretical Computer Science Lab,
Department of Computer Science and Engineering,

Indian Institute of Technology Madras, India.
{sharmila,svivek,prangan}@cse.iitm.ac.in

Abstract. Often authentication and confidentiality are required as simultaneous key requirements in
many cryptographic applications. The cryptographic primitive called signcryption effectively imple-
ments the same and while most of the public key based systems are appropriate for small messages,
hybrid encryption (KEM-DEM) provides an efficient and practical way to securely communicate very
large messages. Recently, Lippold et al. [13] proposed a certificateless KEM in the standard model and
the first certificateless hybrid signcryption scheme was proposed by Fagen Li et al. [15]. The concept
of certificateless hybrid signcryption has evolved by combining the ideas of signcryption based on tag-
KEM and certificateless cryptography. In this paper, we show that [13] is not Type-I CCA secure and
[15] is existentially forgeable. We also propose an improved certificateless hybrid signcryption scheme
and formally prove the security of the improved scheme against both adaptive chosen ciphertext attack
and existential forgery in the appropriate security models for certificateless hybrid signcryption.

Keywords. Certificateless Cryptography, Signcryption, Cryptanalysis, Hybrid Signcryption, Tag-KEM,
Bilinear Pairing, Provable Security, Random Oracle Model.

1 Introduction

In 1984, Shamir [21] introduced the concept of identity based cryptography (IBC) and proposed the first
identity based signature scheme. The idea of identity based cryptography is to enable a user to use any
arbitrary string, that uniquely identifies him as his public key. Identity based cryptography serves as an
efficient alternative to Public Key Infrastructure (PKI) because no certificate is needed to validate the
public key of a user. Identity based cryptosystem makes use of a trusted third party, the private key generator
(PKG), who is in possession of a master secret key which is used to derive the private key of any user in the
system. Thus the private key of all the user in the system is known to the PKG, since it was generated by
him. This is an inherent issue in IBC and is called as the key escrow problem. Certificateless Cryptography
(CLC) was introduced by Al-Riyami at al. [1] to reduce the trust level of KGC (The trusted third party
in CLC is the Key Generation Center) and thus to find an effective remedy to the key escrow problem in
IBC. This can be achieved by splitting the private key into two parts; one is generated by the KGC and is
known as the partial private key, other one is a user selected secret value. Any cryptographic operations can
only be done with both these private key components or a combination of both. The public key is no longer
the identity of the user in CLC but it is derived from the partial private key and the secret value of the
corresponding user. The main challenge in building a CLC is to build a system that can resist two types of
attacks namely Type-I and Type-II attacks (described later in the paper).

All the Certificateless Key Encapsulation Mechanism (CL-KEM) schemes [6], [14] till date are generic
constructions, i.e. they combine a public key based encryption scheme and an identity based KEM and thus
very in-efficient. Lippold et al. [13] proposed the first direct construction for a CCA secure CL-KEM in the
standard model.

Simultaneous confidentiality and authentication of messages are often required for secure and authen-
tic message transmission over an insecure channel like internet. Signcryption is the cryptographic primitive
that offers both these properties with a very low cost when compared to encrypting and signing a message

? Work supported by Project No. CSE/05-06/076/DITX/CPAN on Protocols for Secure Communication and Com-
putation sponsored by Department of Information Technology, Government of India

independently. Zheng [25] introduced the concept of signcryption in 1997 and many signcryption schemes
were proposed till date [18, 17, 9, 7, 16, 5, 8, 4, 20], to name a few. Baek et al. in [3] gave the formal security
model for signcryption and proved the security of [25] in the model. There are two different ways to con-
struct signcryption schemes, one is public key signcryption and other is hybrid signcryption. In a public key
signcryption scheme both encryption and signature are in public key setting. A few examples for this type
of construct are schemes by An et al. [2], Malone-Mao [19] and Dodis et al.[12]. In a Hybrid signcryption
scheme, the signature is in public key setting and encryption is in symmetric key setting, here an one-time
secret key which is used in the symmetric key encryption of the message is encrypted by a public key en-
cryption algorithm. The formal security model for a hybrid signcryption scheme was given by Dent [11] and
Bj∅rstad [23]. Generation of secret key and encrypting it using a public key encryption scheme is called
key encapsulation mechanism (KEM) and encrypting the message with the secret key and a symmetric key
encryption scheme is called as data encryption mechanism (DEM). The definitions and formal treatment of
KEM/DEM can be found in [10] and [22].
Our Contribution: Our contribution in this paper is three fold. First, we show that the CL-KEM in [13]
is not CCA secure. To the best of our knowledge, there exists only one certificateless hybrid signcryption
scheme (CLSC-TKEM) by Fagen Li et al. [15]. Fagen Li et al. have proposed the first CLSC-TKEM and
proposed the security model for it. Next, we show that the scheme proposed in [15] is existentially forgeable.
Finally, we propose an improved certificateless hybrid signcryption scheme and prove its security in the
random oracle model.

2 Preliminaries

2.1 Bilinear Pairing

Let G1 be an additive cyclic group generated by P , with prime order q, and G2 be a multiplicative cyclic
group of the same order. A bilinear pairing is a map ê : G1 ×G1 → G2 with the following properties.

– Bilinearity. For all P,Q,R ∈ G1,
• ê(P +Q,R) = ê(P,R)ê(Q,R)
• ê(P,Q+R) = ê(P,Q)ê(P,R)
• ê(aP, bQ) = ê(P,Q)ab [Where a, b ∈R Z∗q]

– Non-Degeneracy. There exist P,Q ∈ G1 such that ê(P,Q) 6= IG2 , where IG2 is the identity element of
G2.

– Computability. There exists an efficient algorithm to compute ê(P,Q) for all P,Q ∈ G1.

2.2 Computational Assumptions

In this section, we review the computational assumptions relevant to the protocol we propose.

Computation Diffie-Hellman Problem (CDH) Given (P, aP, bP) ∈ G3
1 for unknown a, b ∈ Z∗q , the

CDH problem in G1 is to compute abP .

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem
in G1 is defined as:

AdvCDH
A = Pr

[
A(P, aP, bP) = abP | a, b ∈ Z∗q

]
The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCDH

A
is negligibly small.

Computational Bilinear Diffie-Hellman Problem (CBDH) Given (P, aP, bP, cP) ∈ G4
1 for unknown

a, b, c ∈ Z∗q , the CBDH problem in G1 is to compute ê(P, P)abc.

Definition. The advantage of any probabilistic polynomial time algorithm A in solving the CBDH problem
in G1 is defined as:

AdvCBDH
A = Pr

[
A(P, aP, bP, cP) = ê(P, P)abc) = 1| a, b, c ∈ Z∗q

]
The CBDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage AdvCBDH

A
is negligibly small.

2.3 Certificateless Signcryption Tag-KEM (CLSC-TKEM)

A generic Certificateless Signcryption Tag-KEM scheme consists of the following seven probabilistic polyno-
mial time algorithms:

– Setup (κ). Given a security parameter κ, the Key Generation Center (KGC) generates the public
parameters params and master secret key msk of the system.

– Extract Partial Private Key (IDA). Given an identity IDA ∈R {0, 1}∗ of a user A as input, the
KGC computes the corresponding partial private key DA and gives it to A in a secure way.

– Generate User Key (IDA). Given an identity (IDA) as input, this algorithm outputs a secret value
xA and a public key PKA. This algorithm is executed by the user A to obtain his secret value which
is used to generate his full private key and the corresponding public key which is published without
certification.

– Set Private Key (DA, xA). The input to this algorithm are the partial private key DA and the secret
value xA of a user A. This algorithm is executed by the user A to generate his full private key SA.

– Sym (IDA, PKA, SA, IDB , PKB). This is a symmetric key generation algorithm which takes the sender’s
identity IDA, public key PKA, private key SA, the receiver’s identity IDB and public key PKB as input.
It is executed by the sender A in order to obtain the symmetric key K and an internal state information
ω, which is not known to B.

– Encap (ω, τ). This is the key encapsulation algorithm which takes a state information ω, an arbitrary
tag τ , the sender’s identity IDA, public key PKA and private key SA as input. This algorithm is executed
by the sender A in order to obtain the encapsulation ψ. The values τ and ψ are sent to B.

– Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). In order to obtain the encapsulated key K, the receiver B
runs this algorithm. The input to this algorithm are the encapsulation ψ, a tag τ , the sender’s identity
IDA, public key PKA, the receiver’s identity IDB , public key PKB and private key SB . The output of
this algorithm is a key K or invalid with respect to the validity of ψ.

The consistency constraint we require is, if (K,ω) = Sym(IDA, PKA, SA, IDB , PKB) and ψ = Encap(ω, τ),
then K = Decap(ψ, τ, IDA, PKA, IDB , PKB , SB).

2.4 Security Model for CLSC-TKEM

The security notions for certificateless signcryption scheme was first formalized by Barbosa et al. in [4].
A CLSC scheme should satisfy indistinguishability against adaptive chosen ciphertext and identity attacks
and existential unforgeability against adaptive chosen message and identity attacks. We describe below the
security models to prove the confidentiality and unforgeability of a CLSC-TKEM scheme. These are the
strongest security notions for this problem.

Confidentiality To prove the confidentiality of CLSC-TKEM scheme, we consider two games ”IND-CLSC-
TKEM-CCA2-I” and ”IND-CLSC-TKEM-CCA2-II”. A Type-I adversary AI interacts with the challenger
C in the IND-CLSC-TKEM-CCA2-I game and a Type-II adversary AII interacts with the challenger C in
the IND-CLSC-TKEM-CCA2-II game. A CLSC-TKEM scheme is indistinguishable against adaptive chosen
ciphertext attacks (IND-CLSC-TKEM-CCA2), if no polynomially bounded adversariesAI andAII have non-
negligible advantage in both IND-CLSC-TKEM-CCA2-I and IND-CLSC-TKEM-CCA2-II games between C
and AI , AII respectively:
IND-CLSC-TKEM-CCA2-I: The following is the interactive game between C and AI .

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives params to AI and keeps the master private key msk secret from AI .

Phase 1: AI performs a series of queries in an adaptive fashion in this phase. The queries allowed are given
below:
– Extract Partial Private Key queries: A chooses an identity IDi and gives it to C. C computes the

corresponding partial private key Di and sends it to AI .
– Extract Private Key queries: AI produces an identity IDi and requests the corresponding full private

key. If IDi’s public key has not been replaced then C responds with the full private key Si. If AI has
already replaced IDi’s public key, then C does not provide the corresponding private key to AI .

– Request Public Key queries: AI produces an identity IDi to C and requests IDi’s public key. C
responds by returning the public key PKi for the user IDi. (First by choosing a secret value if
necessary).

– Replace Public Key queries: AI can repeatedly replace the public key PKi corresponding to the user
identity IDi with any value PK ′

i of AI ’s choice. The current value of the user’s public key is used
by C in any computations or responses to AI ’s queries.

– Symmetric Key Generation queries: AI produces a sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The private key of the sender SA is obtained
from the corresponding list maintained by C. C computes the symmetric key K and an internal state
information ω, stores and keeps ω secret from the view of AI and sends the symmetric key K to AI .
It is to be noted that C may not be aware of the corresponding private key if the public key of IDA

is replaced. In this case AI provides the private key of IDA to C.
– Key Encapsulation queries: AI produces an arbitrary tag τ , the sender’s identity IDA and public

key PKA, The private key of the sender SA is known to C. C checks whether a corresponding ω value
is stored previously. If ω exists then C computes the encapsulation ψ with ω and τ and deletes ω,
else returns invalid.

– Key Decapsulation queries: AI produces an encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB and public key PKB . The private key of the receiver
SB is obtained from the corresponding list maintained by C. C returns the key K or invalid with
respect to the validity of ψ. It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case AI provides the private key of IDB to C.

Challenge: At the end of Phase 1 (which is decided by AI), AI sends to C, a sender identity IDA∗ and
a receiver identity IDB∗ on which AI wishes to be challenged. Here, the private key of the receiver
IDB∗ was not queried in Phase 1. Now, C computes 〈K1, ω

∗〉 using Sym(IDA, PKA, SA, IDB , PKB)
and chooses K0 ∈R K, where K is the key space of the CLSC-TKEM scheme. Now C chooses a bit
δ ∈R {0, 1} and sends Kδ to AI . When AI receives Kδ, it generates an arbitrary tag τ∗ and sends it to
C. C computes the challenge encapsulation ψ∗ with ω∗ and τ∗ and sends ψ∗ to AI .

Phase 2: AI can perform polynomially bounded number of queries adaptively again as in Phase 1 but it
cannot make a partial private key extraction query on IDB∗ or cannot query for the decapsulation of
ψ∗. If the public key of IDB∗ is replaced after the Challenge, AI can ask for the decapsulation of ψ∗.

Guess: AI outputs a bit δ′ and wins the game if δ′ = δ.

The advantage of AI is defined as AdvIND−CLSC−TKEM−CCA2−I(AI) = |2Pr[δ′ = δ]−1|, where Pr[δ′ = δ]
denotes the probability that δ′ = δ.

IND-CLSC-TKEM-CCA2-II: The following is the interactive game between C and AII .

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives both params and msk to AII .

Phase 1: AII performs a series of queries in an adaptive fashion in this phase. The queries allowed are
similar to that of the IND-CLSC-TKEM-CCA2-I game except that Extract Partial Private Key queries:
is excluded because AII can generate it on need basis as it knows msk.

Challenge: At the end of Phase 1 (which is decided by AII), AII sends to C, a sender identity IDA∗ and
a receiver identity IDB∗ on which AII wishes to be challenged. Here, the full private key of the receiver
IDB∗ was not queried in Phase 1. Now, C computes 〈K1, ω

∗〉 using Sym(IDA, PKA, SA, IDB , PKB)
and chooses K0 ∈R K, where K is the key space of the CLSC-TKEM scheme. Now C chooses a bit
δ ∈R {0, 1} and sends Kδ to AII . When AII receives Kδ, it generates an arbitrary tag τ∗ and sends it
to C. C computes the challenge encapsulation ψ∗ with ω∗ and τ∗ and sends ψ∗ to AII .

Phase 2: AII can perform ploynomially bounded number of queries adaptively again as in Phase 1 but it
cannot make a partial private key extraction query on IDB∗ or cannot query for the decapsulation of
ψ∗. If the public key of IDB∗ is replaced after the Challenge, AI can ask for the decapsulation of ψ∗.

Guess: AII outputs a bit b′ and wins the game if b′ = b.

The advantage of AII is defined as AdvIND−CLSC−TKEM−CCA2−II(AII) = |2Pr[δ′ = δ]−1|, where Pr[δ′ =
δ] denotes the probability that δ′ = δ.

Existential Unforgeability To prove the existential unforgeability of CLSC-TKEM scheme, we consider
two games ”EUF-CLSC-TKEM-CMA-I” and ”EUF-CLSC-TKEM-CMA-II”. A Type-I forger FI interacts
with the challenger C in the EUF-CLSC-TKEM-CMA-I game and a Type-II forger FII interacts with C in
the EUF-CLSC-TKEM-CMA-II game. A CLSC-TKEM scheme is existentially unforgeable against adaptive
chosen message attack (EUF-CLSC-TKEM-CMA), if no polynomially bounded forgers FI and FII have non-
negligible advantage in both EUF-CLSC-TKEM-CMA-I and EUF-CLSC-TKEM-CMA-II games between C
and FI , FII respectively:
EUF-CLSC-TKEM-CMA-I: The following is the interactive game between C and FI :

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives params to FI and keeps the master private key msk secret from FI .

Training Phase: FI performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The queries allowed are identical to the queries allowed in Phase 1 of IND-CLSC-TKEM-
CCA2-I game.

Forgery: At the end of the Training Phase (which is decided by FI), FI sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that the partial private key of the sender IDA∗ should not be queried and the public key of IDA∗

should not be replaced during the Training Phase simultaneously. In addition ψ∗ should not be the
response for any key encapsulation queries by FI during the Training Phase.

FI wins the game if the output of Decap(ψ∗, τ∗, IDA∗ , PKA∗ , IDB∗ , PKB∗ , SB∗) is not invalid. The ad-
vantage of FI is defined as the probability with which it wins the EUF-CLSC-TKEM-CMA-I game.

EUF-CLSC-TKEM-CMA-II: The following is the interactive game between C and FII :

Setup: The challenger C runs this algorithm to generate the master public and private keys, params and
msk respectively. C gives both params and msk to FII .

Training Phase: FII performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The queries allowed are identical to the queries allowed in Phase 1 of IND-CLSC-TKEM-
CCA2-II game.

Forgery: At the end of the Training Phase (which is decided by FII), FII sends to C an encapsulation
〈τ∗, ψ∗, IDA∗ , IDB∗〉, where IDA∗ is the sender identity and IDB∗ is the receiver identity. It is to be
noted that FII should not query the secret value xA∗ of the sender IDA∗ and should not replace the
public key of IDA∗ during the Training Phase. In addition ψ∗ should not be the response for any key
encapsulation queries by FII during the Training Phase.

FII wins the game if the output of Decap(ψ∗, τ∗, IDA∗ , PKA∗ , IDB∗ , PKB∗ , SB∗) is not invalid. The ad-
vantage of FII is defined as the probability with which it wins the EUF-CLSC-TKEM-CMA-II game.

3 Review and Attack of Lippold et al.’s CLSC-TKEM

In this section, we review the CL-KEM scheme of Lippold et al., presented in [13]. We show that the scheme
in [13] is not CCA secure.

3.1 Review of the scheme

This scheme has the following five algorithms.

1. Setup: Given a security parameter κ, the KGC performs the following to setup the system:
– Chooses two groups G1 and G2 of prime order p.
– It also chooses a bilinear map ê : G1 ×G1 → G2.
– Chooses a generator g ∈R G1.
– Chooses a suitable Water’s hash function H, as described in [24].
– Chooses u1, u2, α ∈ G1, and computes z = ê(g, α).
– The public parameters of the system are params = 〈κ,G1,G2, p, g,H, u1, u2, z〉 and α is the master

secret key.

2. Identity-Based Key Derivation: Given the master secret key α and the identity ID ∈ 0, 1n, the
KGC generates an ID-Based private key corresponding to the given identity as follows:
– Chooses s ∈R Z∗p.
– Returns skID = (αH(ID)s, gs).

3. User Key Generation: This algorithm is executed by the user with identity ID, in order to generate
his user secret value and the certificateless public key.
– The user chooses a secret value xID ∈R Z∗p.
– Computes the certificateless public key βID = zxID .
– Return 〈xID, βID〉.

4. Encapsulation: Given the public key βID of a user with identity ID and a message M , the sender
generates an encryption key K and the corresponding encapsulation C as follows:
– Chooses r ∈R Z∗p.
– Computes c1 = gr and c2 = H(ID)r.
– Computes t = TCR(c1), where TCR is a Target Collision Resistant hash function.
– Computes c3 = (ut

1u2)r.
– Computes K = βr

ID = (zx)r ∈ G2.
– Computes C = 〈c1, c2, c3〉 ∈ G3

1.
– Returns (K,C). (Note that K is the key that is used in a symmetric data encapsulation mechanism

(DEM) for the encryption of the message and is not a part of the ciphertext.)
5. Decapsulation: Given the secret keys d1 = αH(ID)s, d2 = gs and xID, and an encapsulation C =
〈c1, c2, c3〉, the receiver of the ciphertext executes this algorithm to recover the key K from C as follows:
– Chooses r1, r2 ∈R Z∗p.
– Computes t = TCR(c1).

– Computes K =
(
ê(c1, d1(ut

1u2)r1H(ID)r2)
ê(c2, d2gr2)ê(gr1 , c3)

)xID

– Return the key K for data decapsulation.

3.2 Attack of Lippold et al.’s CL-KEM

In this section, we show that the CL-KEM by Lippold et al. [13] does not provide confidentiality.

Attack on Confidentiality: During the confidentiality game for Type-I adversary, the adversary is allowed
to replace the public key of the receiver. The following attack is possible due to this liberalized constraint
on the adversary.

Attack by Type-I adversary :

– Let ID∗ be the target identity on which the adversary wishes to be challenged.
– The adversary chooses x′ ∈R Z∗p.
– Replaces the public key of ID∗ as β′ID∗ = ê(g, g)x′ .
– The adversary submits ID∗ to the challenger as the challenge identity.

Upon receiving the challenge identity ID∗, the challenger generates the challenge encapsulation C∗, the
encapsulation keyK∗ and sends it to the adversary. On receiving C∗ = 〈c∗1, c∗2, c∗3〉 andK∗ from the challenger,
the Type-I adversary computes the key K ′ from C∗ as follows and distinguishes C∗:

K ′ = ê(gx′ , c1)
= ê(gx′ , gr)
= ê(g, g)x′r

= (β′ID∗)r

Now, K ′ is the key corresponding to the encapsulation C∗ generated by the challenger. The adversary
compares K ′ with K∗, and returns b′ = 1 if they are identical, b′ = 0 otherwise.

4 Review and Attack of Fagen Li et al.’s CL-KEM

In this section we review the CLSC-TKEM scheme of Fagen Li et al, presented in [15]. We also show that
the scheme in [15] is existentially forgeable.

4.1 Review of the scheme

This scheme has the following seven algorithms.

1. Setup: Given κ the security parameter, the KGC chooses two groups G1 and G2 of prime order q, a
bilinear map ê : G1 ×G1 → G2 and a generator P ∈R G1. It then chooses a master private key s ∈R Z∗q ,
sets a system-wide public key Ppub = sP and chooses four cryptographic hash functions defined by
H1 : {0, 1}∗ → G1, H2 : {0, 1}∗ → {0, 1}n, H3 : {0, 1}∗ → G1 and H4 : {0, 1}∗ → G1. Here n is the key
length of a DEM. The public parameters Params= 〈G1,G2, P, ê,H1,H2,H3,H4, Ppub〉.

2. Partial Private Key Extract: Given an identity IDA ∈ {0, 1}∗, the KGC does the following to extract
the partial private key corresponding to IDA:
– Computes QA = H1(IDA) ∈ G1.
– Sets the partial private key DA = sQA.

3. Generate User Key: A user with identity IDA chooses xA ∈R Z∗
q and sets the public key PKA = xAP .

4. Set Private Key: The full private key of the user A is set to be SA = (xA, DA).
5. Sym (IDA, PKA, SA, IDB , PKB). Given the sender’s identity IDA, public key PKA, private key SA,

the receiver’s identity IDB and public key PKB as input, the algorithm produces the symmetric key K
as follows:
– The sender A chooses r ∈R Z∗

q ,
– Computes U = rP and T = ê(Ppub, QB)r,
– Computes K = H2(U, T, r(PKB), IDB , PKB),
– Outputs K and a set ω = 〈r, U, IDA, PKA, SA, IDB , PKB〉

6. Encap (ω, τ). Given a state information ω and an arbitrary tag τ , the sender A obtains the encapsulation
ψ by performing the following:
– Computes H = H3(U, τ, IDA, PKA).
– Computes H ′ = H4(U, τ, IDA, PKA).
– Computes W = DA + rH + xAH

′.
– Output ψ = 〈U,W 〉

7. Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). Given the encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB , public key PKB and private key SB the key K is computed
by the receiver B as follows:
– Computes H = H3(U, τ, IDA, PKA).
– Computes H ′ = H4(U, τ, IDA, PKA).
– If ê(Ppub, QA)ê(U,H)ê(PKA,H

′) ?= ê(P,W), computes the value T = ê(DB , U) and outputs K =
H2(U, T, xBU, IDB , PKB), otherwise outputs invalid.

4.2 Attack of Fagen Li et al.’s CLSC-TKEM

We show that the CLSC-TKEM by Fagen Li et al. [15] is existentially forgeable in this section.

Attack on Unforgeability: Fagen Li et al. [15] have claimed that their scheme is existentially unforgeable
against both Type-I and Type-II attacks. We show that the scheme does not resist both Type-I and Type-II
attacks. It is to be noted that, in the unforgeability games, EUF-CLSC-TKEM-CMA-I and EUF-CLSC-
TKEM-CMA-II the corresponding forgers FI and FII have access to the full private key of the receiver B,
also, FI is not allowed to extract the partial private keys of the sender A and FII is not allowed to extract
the user secret key or replace the sender A’s public key. These constraints are maintained in order to ensure
insider security.
Attack by Type-I forger FI : During the EUF-CLSC-TKEM-CMA-I game, the forger FI interacts with
the challenger C during the Training Phase. FI has access to the various oracles offered by C in addition
to it, FI has access to the full private key of the receiver too.

– During the Training Phase FI queries C for an encapsulation with IDA as sender and IDB as receiver
with an arbitrary tag τ .

– Here, the private key of IDA is not queried by FI and the corresponding public key is not replaced.
– C responds with ψ = 〈U,W 〉.

Now, FI obtains a forged encapsulation from the encapsulation ψ received during the Training Phase for
the same tag τ , by performing the following steps:

– Let IDB∗ be a user whose full private key SB∗ is known to FI .
– FI computes a new key K ′ = H2(U, T ′, xB∗U, IDB∗ , PKB∗), where T ′ = ê(DB∗ , U).
– Now, ψ∗ = 〈U,W 〉 is a valid encapsulation of the key K ′ from the sender IDA to a new receiver IDB∗ .

The correctness of the attack can be easily verified because Decap (ψ∗, τ, IDA, PKA, IDB∗ , PKB∗ , SB∗)
passes the verification and yields a different key K ′ as follows.

– Compute H = H3(U, τ, IDA, PKA) and H ′ = H4(U, τ, IDA, PKA). It is to be noted that the computa-
tion of H and H ′ will yield the same value for both ciphertexts ψ and ψ∗ because both the computations
do not use the receiver identity and public key. Also, the value of U is same in both the ciphertexts.

– The validity check ê(Ppub, QA)ê(U,H)ê(PKA,H
′) ?= ê(P,W) also holds because this verification is also

dependent on the sender’s identity and public key alone and no receiver component is used explicitly or
implicitly.

The value T ∗ = ê(DB∗ , U) is computed and K ′ = H2(U, T ′, xB∗U, IDB∗ , PKB∗) is output as the key. Thus
ψ∗ is a valid forgery with respect to the new key K ′.
Attack by Type-II forger FII : The attack by Type-II forger is identical to that of the attack by the
Type-I forger FI because as mentioned above a Type-II forger FII also has access to the full private key
of the receiver B. The forgery can be done in a similar way as described in Attack by Type-I forger
FI because the attack does not involve the user secret value of the sender A, which is not available to the
forger FII . Remark: We also point out that the same weakness holds for the generic Certificateless Hybrid
Signcryption scheme proposed in [15]. The weakness is due to the lack of binding of the receiver identity to
the signature component of the encapsulation ψ.

5 Improved CLSC-TKEM Scheme (ICLSC-TKEM)

In the preceding section we saw that the CLSC-TKEM scheme proposed by Fagen Li et al. does not withstand
chosen message attack. The weakness of the scheme was due to the lack of binding between the receiver
identity and the signature generated by the sender. This is the reason, for an encapsulation ψ to act as a
valid encapsulation for different keys Ki (for i = 1 to n, where n is the number of forged keys) from a single
sender to n different receivers. This weakness can be eliminated by making the following changes in the Sym,
Encap and Decap algorithms in Fagen Li et al’s [15] scheme.
Sym (IDA, PKA, SA, IDB , PKB). Given the sender’s identity IDA, public key PKA, private key SA, the
receiver’s identity IDB and public key PKB as input, the algorithm produces the symmetric key K as
follows:

– The sender A chooses r ∈R Z∗
q ,

– Computes U = rP and T = ê(Ppub, QB)r,
– Computes K = H2(U, T, r(PKB), IDB , PKB),
– Outputs K and a set ω = (r, U, T, IDA, PKA, SA, IDB , PKB)

Encap (ω, τ). Given a state information ω and an arbitrary tag τ , the sender A obtains the encapsulation
ψ by performing the following:

– Computes H = H3(U, τ, T, IDA, PKA, IDB , PKB).
– Computes H ′ = H4(U, τ, T, IDA, PKA, IDB , PKB).
– Computes W = DA + rH + xAH

′.
– Output ψ = 〈U,W 〉

Now, it is not possible for FI and FII to generate different forged keys from a sender IDA, whose secret key
is not known to any receivers as the identity IDB and the public key PKB of the receiver is bound to the
signature part of the encapsulation ψ which cannot be altered.

Decap (ψ, τ, IDA, PKA, IDB , PKB , SB). Given the encapsulation ψ, a tag τ , the sender’s identity IDA,
public key PKA, the receiver’s identity IDB , public key PKB and private key SB the key K is computed
as follows:

– Computes the value T = ê(DB , U).
– Computes H = H3(U, τ, T, IDA, PKA, IDB , PKB).
– Computes H ′ = H4(U, τ, T, IDA, PKA, IDB , PKB).
– If ê(Ppub, QA)ê(U,H)ê(PKA,H

′) ?= ê(P,W) and outputs K = H2(U, T, xBU, IDB , PKB), otherwise
outputs invalid.

6 Security of the Improved CLSC-TKEM Scheme

In this section we provide the formal proof for the confidentiality and unforgeability of the improved CLSC-
TKEM.

6.1 Type-I Confidentiality

Theorem 1. If an IND-ICLSC-TKEM-CCA2-I adversary AI has an advantage ε against the IND-ICLSC-
TKEM-CCA2-I security of the ICLSC-TKEM scheme, asking qHi (i = 1, 2, 3, 4) hash queries to random
oracles OHi (i = 1, 2, 3, 4), qppk partial private key extract queries and qfpk private key extract queries,
then there exist an algorithm C that solves the CBDH problem with the following advantage

ε′ ≥ ε

(
1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

) (
1
qH2

)
Proof: A challenger C is challenged with an instance of the CBDH problem. Given 〈P, aP, bP, cP 〉 ∈ G1,
C has to find out ê(P, P)abc. Let AI be the adversary who is capable of breaking the IND-ICLSC-TKEM-
CCA2-I security of the ICLSC-TKEM scheme. C can make use of AI to find the solution of the CBDH
problem instance by playing the following interactive game with AI .

Setup: C sets the master public key Ppub = aP , designs the hash functions Hi (i =1 to 4) as random
oracles OHi (i =1 to 4) respectively. In order to maintain the consistency between the responses to the
hash queries, C maintains lists Li (i =1 to 4) and to maintain the list of issued private keys and public
keys, C maintains a list LK . C gives the public parameters params to AI .

Phase 1: AI performs a series of polynomially bounded number of queries in an adaptive fashion in this
phase. The oracles and queries allowed are described below.
– OH1(IDi): We will make a simplifying assumption that AI queries the OH1 oracle with distinct

identities in each query. Without loss of generality, if the oracle query is repeated with an already
queried identity, by definition the oracle consults the list L1 and gives the same response. Thus, we
assume that AI asks qH1 distinct queries for qH1 distinct identities. Among this qH1 identities, a
random identity has to be selected by C as target identity and it is done as follows (Note that AI

should also choose this identity in the challenge phase).
C selects a random index γ, where 1 ≤ γ ≤ qH1 . C does not reveal γ to AI . When AI puts forth
the γth query on IDγ , C decides to fix IDγ as target identity for the challenge phase. Moreover, C
responds to AI as follows:
• If it is the γth query, then C sets Qγ = bP and stores the tuple 〈IDγ , Qγ = bP,−〉 in the list
L1. Here, C does not know b. C is simply using the bP value given in the instance of the CBDH
problem.

• For all other queries, C chooses bi ∈R Z∗q and sets Qi = biP and stores 〈IDi, Qi, bi〉 in the list
L1.

C returns Qi to A. (Note that as the identities are assumed to be distinct, for each query, we create
distinct entry and add in the list L1).

– OH2(U, T, r(PKB), IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, T, r(PKB), IDB , PKB ,K〉 exists in list L2. If so, returns K to AI else chooses K ∈R {0, 1}n,
adds the tuple 〈U, T, r(PKB), IDB , PKB ,K〉 to the list L2 and returns K to AI .

– OH3(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉 exists in the list L3. If so, returns H to AI else performs the
following:
• If IDB 6= IDγ , C chooses hi ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H = hiP 〉

to the list L3 and returns H to AI .
• If IDB = IDγ , C chooses hi ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H =
hiPpub〉 to the list L3 and returns H to AI .

– OH4(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , h

′
i,H

′〉 exists in the list L4. If so, returns H ′ to AI else chooses
h′i ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , h

′
i,H

′ = h′iP 〉 to the list L4 and returns
H ′ to AI .

– OExtractPartialPrivateKey(IDi): On a request for the partial private key of a user with identity IDi,
C aborts if IDi = IDγ . Else, C retrieves the tuple 〈IDi, Qi, bi〉 from list L1, returns Di = biaP = aQi

and adds the tuple 〈IDi,−, Di,−〉 to the list LK .
(Note: It is assumed throughout the confidentiality game, AI queries OH1 oracle with IDi before
querying any other oracles with IDi as input.)

– ORequestPublicKey(IDi): AI produces an identity IDi to C and requests IDi’s public key. C checks in
the list LK for an tuple of the form 〈IDi, xi, Di, PKi〉. If an entry exists, then responds by return-
ing the corresponding public key PKi to AI . If it does not exist, C chooses xi ∈R Z∗q , sets PKi = xiP ,
adds the tuple 〈IDi, xi,−, PKi〉 (note thatDi is computed only after theOExtractPartialPrivateKey(IDi)
query) to the list LK and sends the corresponding PKi to AI .

– OExtractPrivateKey(IDi): AI produces an identity IDi and requests the corresponding full private
key. If IDi’s public key has not been replaced and if IDi 6= IDγ , then C responds with the full
private key Si = 〈xi, Di〉 retrieving it from the list LK . If AI has already replaced IDi’s public key,
then C does not provide the corresponding private key to AI (Note that AI is allowed to replace the
public key of any identity including IDγ , thus AI knows the user secret value corresponding to any
identity, including IDγ). If IDi = IDγ then C aborts.

– OReplacePublicKey(PK ′
i): In order to replace the public key PKi of a user IDi with any value PK ′

i

of AI ’s choice, C updates the corresponding tuple in the list LK as 〈IDi,−, Di, PK
′
i〉. The current

value of the user’s public key is used by C in for computations or responses to any queries made by
AI .

– OSymmetricKeyGeneration: AI produces a sender’s identity IDA, public key PKA, the receiver’s iden-
tity IDB and public key PKB to C. Now, C computes the symmetric key K and an internal state
information ω, stores and keeps ω secret from the view of AI and sends the symmetric key K to AI .
It is to be noted that C can perform this even if C does not know the private key corresponding to
the sender IDA or the receiver IDB because computing K does not involve the private key of either
the sender or receiver.

– OKeyEncapsulation: AI produces an arbitrary tag τ , the sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The full private key of the sender SA = (xA, DA)
is obtained from the list LK . C checks whether a corresponding ω value is stored previously.
• If ω does not exist, C returns invalid.
• If a corresponding ω exists and IDA 6= IDγ , then C computes the encapsulation ψ with ω and τ

as per the actual encapsulation algorithm, and deletes ω.
• If a corresponding ω exists and IDA = IDγ , then C performs the following to compute ψ (It

is to be noted that C does not know the private key corresponding to IDγ , so it cooks up the
encapsulation in a different way):

∗ Chooses r, hi, h
′
i ∈R Z∗

q and computes U = rP − h−1
i QA, where QA = bP is obtained from

the list L1.
∗ Computes H = hiPpub and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉 to the list
L3.

∗ Computes H ′ = h′iP and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , h
′
i,H

′〉 to the list
L4.

∗ Computes W = rH + h′iPKA (This is possible because C knows the public key PKA of the
sender A which is xAP).

∗ Outputs, ψ = 〈U,W 〉 as the encapsulation.
We show that, ψ = 〈U,W 〉 passes the verification done by AI to validate the encapsulation,
because the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?= ê(P,W) holds.
Correctness:
ê(Ppub, QA)ê(U,H)ê(PKA,H

′)= ê(aP, bP)ê(rP − h−1
i QA,H)ê(xAP,H

′)
= ê(aP, bP)ê(rP,H)ê(−h−1

i QA,H)ê(xAP,H
′)

= ê(aP, bP)ê(rP, hiaP)ê(h−1
i bP, hiaP)−1ê(xAP, h

′
iP)

= ê(aP, bP)ê(rP, hiaP)ê(aP, bP)−1ê(xAP, h
′
iP)

= ê(rP, hiaP)ê(xAP, h
′
iP)

= ê(P, hiarP + xAh
′
iP)

= ê(P, rH + h′iPKA)
= ê(P,W)

– OKeyDecapsulation: AI produces an encapsulation ψ, a tag τ , the sender’s identity IDA, public key
PKA, the receiver’s identity IDB and public key PKB to C. The private key of the receiver SB is
obtained from the list LK . It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case C obtains the private key of IDB from AI .
• If IDB 6= IDγ , then C computes the decapsulation of ψ as per the actual decapsulation algorithm.
• If IDB = IDγ , then C computes K from ψ as follows:

∗ Searches in the list L3 and L4 for entries of the type 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉
and 〈U, T, τ, IDA, PKA, IDB , PKB , h

′
i,H

′〉 respectively.
∗ If entriesH andH ′ exist then C checks whether the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?=
ê(P,W) holds.

∗ If the above equality holds, then retrieves the corresponding value of T from the lists L3 and
L4 (note that both the T values should be equal).

∗ Now, C checks whether a tuple of the form 〈U, T, xBU, IDB , PKB ,K〉 exists in the list L2.
If it exists output the corresponding K value as the decapsulation of ψ.

Challenge: At the end of Phase 1, AI sends to C, a sender identity IDA∗ and a receiver identity IDB∗

on which AI wishes to be challenged. Here, the full private key of the receiver IDB∗ was not queried
in Phase 1. C aborts the game if IDB∗ 6= IDγ , C performs the following to compute the challenge
encapsulation ψ∗.
– Sets U = cP and chooses T ∈R G2.
– Chooses K0 ∈R K, where K is the key space of the ICLSC-TKEM scheme
– Computes K1 = H2(U, T, xBU, IDB , PKB).
– Sets ω∗ = 〈−, U, U ′, T, IDA, PKA, SA, IDB , PKB〉.
– Now, C chooses a bit δ ∈R {0, 1} and sends Kδ to AI .
– AI generates an arbitrary tag τ∗ and sends it to C.
– Chooses hi, h

′
i ∈R Z∗q , stores the tuple 〈U, τ∗, T, IDA, PKA, IDB , PKB , hi,H = hiP 〉 to the list L3

and 〈U, τ∗, T, IDA, PKA, IDB , PKB , h
′
i,H

′ = h′iP 〉 to the list L4.
– Since C knows the private key of the sender, C computes W = DA + hicP + h′ixAP .
– C now sends ψ∗ = 〈U,W 〉 to AI .

Phase II: AI adaptively queries the oracles as in Phase I, consistent with the constraints for Type-I
adversary. Besides this it cannot query decapsulation on ψ∗.

Guess: Since AI is capable of breaking the IND-ICLSC-TKEM-CCA2-I security of ICLSC-TKEM (which
is assumed at the beginning of the proof), AI should have queried OH2 with (U, T, xBU, IDB , PKB) as
inputs. it is to be noted that T = ê(Ppub, QB)r = ê(aP, bP)c. Therefore, if the list L2 has qH2 queries

corresponding to the sender IDA and receiver IDB , one of the T ’s among qH2 values stored in the list
L2, is the solution for the CBDH problem instance. Now, C chooses one T value uniformly at random
from the qH2 values from the list L2 and outputs it as the solution for the CBDH instance.

Analysis: We now assess the probability of success of the challenger C. The events in which C aborts the
IND-ICLSC-TKEM-CCA2-I game are,

1. E1 - when AI queries the partial private key of the target identity IDγ and Pr[E1] =
qppk

qH1

.

2. E2 - when AI queries the full private key of the target identity IDγ and Pr[E2] =
qfpk

qH1

.

3. E3 - when AI does not choose the target identity IDγ as the receiver during the challenge and Pr[E3] =(
1− 1

qH1 − (qppk + qfpk)

)
.

The probability that, C does not abort the IND-ICLSC-TKEM-CCA2-I game is given by

(Pr[¬E1 ∧ ¬E2 ∧ ¬E3]) =
(

1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

)
The probability that, the T chosen randomly from L2 by C, being the solution to CBDHP is

(
1

qH2

)
. Therefore,

the probability of C solving CBDHP is given by,

Pr[C(P, aP, bP, cP) = ê(P, P)abc] = ε

(
1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

) (
1

qH2

)
Since ε is non-negligible, the probability of C solving CBDHP is also non-negligible. �

6.2 Type-II Confidentiality

Theorem 2. If an IND-ICLSC-TKEM-CCA2-II adversary AII has an advantage ε against the IND-ICLSC-
TKEM-CCA2-II security of the ICLSC-TKEM scheme, asking qHi

(i = 1, 2, 3, 4) hash queries to random
oracles OHi

(i = 1, 2, 3, 4), qfpk full private key extract queries and qrpk replace public key queries, then
there exist an algorithm C that solves the CDH problem with the following advantage

ε′ ≥ ε

(
1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

) (
1
qH2

)
Proof: A challenger C is challenged with an instance of the CDH problem say, given 〈P, aP, bP 〉 ∈ G1, C
has to find out P ab. Let AII be the adversary who is capable of breaking the IND-ICLSC-TKEM-CCA2-II
security of the ICLSC-TKEM scheme. C can make use of AII to solve the CDH problem instance by playing
the following interactive game, with AII .

Setup: C chooses s ∈R Z∗q , sets the master public key Ppub = sP and gives s to AII . The hash functions
Hi (i =1 to 4) are viewed as random oracles OHi

(i =1 to 4) respectively. In order to maintain the
consistency between the responses to the hash queries, C maintains lists Li (i =1 to 4) and to maintain
the list of issued private keys and public keys, C maintains a list LK . C gives the public parameters
params to AII .

Phase 1: AII performs a series of polynomially bounded number of queries in an adaptive fashion in this
phase. The oracles and queries allowed are described below.
– OH1(IDi): When AII queries the OH1 oracle, C chooses bi ∈R Z∗q and sets Qi = biP and stores
〈IDi, Qi, bi〉 in the list L1. C returns Qi to A.

– OH2(U, T, r(PKB), IDB , PKB): To respond to this query, C checks whether a tuple of the form 〈U,
T, r(PKB), IDB , PKB ,K〉 exists in list L2. If so, returns K to AI else chooses K ∈R {0, 1}n, adds
the tuple 〈U, T, r(PKB), IDB , PKB ,K〉 to the list L2 and returns K to AII .

– OH3(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉 exists in the list L3. If so, returns H to AI else chooses
hi ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H = hiP 〉 to the list L3 and returns H
to AII .

– OH4(U, τ, T, IDA, PKA, IDB , PKB): To respond to this query, C checks whether a tuple of the form
〈U, τ, T, IDA, PKA, IDB , PKB , h

′
i,H

′〉 exists in the list L4. If so, returns H ′ to AI else performs the
following:
• If IDA 6= IDγ , C chooses h′i ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , h

′
i,H

′ = h′iP 〉
to the list L4 and returns H ′ to AII .

• If IDA = IDγ , C chooses h′i ∈R Z∗q , adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , h
′
i,H

′ =
h′ibP 〉 to the list L4 and returns H ′ to AII .

– OExtractPartialPrivateKey(IDi): On a request for the partial private key of a user with identity IDi,
C retrieves bi corresponding to IDi from list L1 and returns Di = bisP .
(Note: It is assumed throughout the confidentiality game, AII queries OH1 oracle with IDi before
querying any other oracles with IDi as input.)

– ORequestPublicKey(IDi): During Phase I, the model requires the adversary AII and the challenger C
to work with a signcryption from user UA to UB , where UA and UB satisfy the following conditions:
• The hash of the identity IDA of the sender UA should have been queried by AII to OH1 .
• At the same time, AII should not know which of the identity that AII has queried is selected

by C for the challenge phase.
In order to achieve the selection of identities satisfying the above conditions, we specify the Request
Public Key oracle as follows:
AII will generate a series of user identities and send each of them to C and ask their corresponding
public key. One of them will be chosen by C, say the γth distinct user identity, as target identity for
the challenge phase. However, C will not reveal the value of γ or IDγ to AII . Moreover, C will choose
γ randomly for each game. Thus, while the target identity is one of the identities chosen by AII , AII

will not know which one is that. From now on, IDγ denotes the specific target identity selected by
C.
The oracle description and the responses by C are described now. AII produces an identity IDi to
C and requests IDi’s public key. C performs the following :
• The response of C depends upon whether the query is γth query or not.

Case 1: If the query is not the γth query then C proceeds as follows:
∗ C checks in list LK whether an entry of the type 〈IDi, xi, Di, PKi〉 already exists in the list.

If a tuple appears in LK , C retrieves PKi from the tuple and returns it as the public key of
IDi to AII .

∗ If no matching tuple exists for IDi, C chooses xi ∈R Z∗q , generates the public key PKi = xiP
corresponding to IDi, stores 〈IDi, xi,−, PKi〉 in LK and sends PKi to AII .

Case 2: If the query is the γth query then C proceeds as follows:
∗ Checks whether a tuple of the form 〈IDi, xi, Di, PKi〉, corresponding to IDi exists in list
LK , if it is available then C retrieves PKi from the tuple and returns it as the public key of
IDi to AII .

∗ If the query is the γth query and no tuple corresponding to IDi exists in list LK , C secretly
sets IDγ = IDi (The target identity) and proceeds as follows:
1. Sets PKγ = aP .
2. Adds 〈IDi,−,−, PKi〉 to the list LK .
3. Sends PKi to AII .

– OExtractPrivateKey(IDi): AI produces an identity IDi and requests the corresponding full private
key. If IDi’s public key has not been replaced and if IDi 6= IDγ , then C responds with the full private
key Si = 〈xi, Di〉 retrieving it from the list LK . If AII has already replaced IDi’s public key, then C
does not provide the corresponding private key to AII (Note that AII is allowed to replace the public
key of any identity excluding IDγ , thus AII is allowed to know the user secret value corresponding
to all the identity excluding IDγ). AII aborts if IDi = IDγ .

– OReplacePublicKey(PK ′
i): The public key PKi corresponding to the identity IDi can be replaced

by another value PK ′
i which is chosen by AII . Before replacing, C checks whether IDi = IDγ if

so, C aborts the game; else, C updates the corresponding tuple in the list LK as 〈IDi,−, Di, PK
′
i〉.

Henceforth the current public key (i.e. replaced public key) is used by C for computations or responses
to any queries made by AII .

– OSymmetricKeyGeneration: AII produces a sender’s identity IDA, public key PKA, the receiver’s
identity IDB and public key PKB to C. Now, C computes the symmetric key K and an internal
state information ω, stores and keeps ω secret from the view of AII and sends the symmetric key K to
AII . It is to be noted that C can perform this even if C does not know the private key corresponding
to the sender IDA or the receiver IDB because computing K does not involve the private key of
either the sender or receiver.

– OKeyEncapsulation: AII produces an arbitrary tag τ , the sender’s identity IDA, public key PKA, the
receiver’s identity IDB and public key PKB to C. The full private key of the sender SA = (xA, DA)
is obtained from the list LK . C checks whether a corresponding ω value is stored previously.
• If ω does not exist, C returns invalid.
• If a corresponding ω exists and IDA 6= IDγ , then C computes the encapsulation ψ with ω and τ

as per the actual encapsulation algorithm, and deletes ω.
• If a corresponding ω exists and IDA = IDγ , then C performs the following to compute ψ (It

is to be noted that C does not know the private key corresponding to IDγ , so it cooks up the
encapsulation in a different way):
∗ Chooses r, hi, h

′
i ∈R Z∗

q and computes U = rP − h−1
i h′iPKA, where PKA is obtained from

the list LK .
∗ Computes H = hiP and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉 to the list L3.
∗ Computes H ′ = h′iP and adds the tuple 〈U, τ, T, IDA, PKA, IDB , PKB , h

′
i,H

′〉 to the list
L4.

∗ Computes W = rH + bisP (This is possible because C knows the the master private key s).
∗ Outputs, ψ = 〈U,W 〉 as the encapsulation.

We show that, ψ = 〈U,W 〉 passes the verification done by AI to validate the encapsulation,
because the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?= ê(P,W) holds.
Correctness:
ê(Ppub, QA)ê(U,H)ê(PKA,H

′)= ê(sP, biP)ê(rP − h−1
i h′iPKA,H)ê(PKA,H

′)
= ê(sP, biP)ê(rP,H)ê(−h−1

i h′iPKA,H)ê(PKA,H
′)

= ê(sP, biP)ê(rP, hiP)ê(−h−1
i h′iPKA, hiP)ê(PKA, h

′
iP)

= ê(sP, biP)ê(rP, hiP)ê(−h′iPKA, P)ê(PKA, h
′
iP)

= ê(sP, biP)ê(rP, hiP)
= ê(P, rhiP + bisP)
= ê(P,W)

– OKeyDecapsulation: AII produces an encapsulation ψ, a tag τ , the sender’s identity IDA, public key
PKA, the receiver’s identity IDB and public key PKB to C. The private key of the receiver SB is
obtained from the list LK . It is to be noted that C may not be aware of the corresponding private
key if the public key of IDB is replaced. In this case C obtains the private key of IDB from AI .
• If IDB 6= IDγ , then C computes the decapsulation of ψ as per the actual decapsulation algorithm.
• If IDB = IDγ , then C computes K from ψ as follows:

∗ Searches in the list L3 and L4 for entries of the type 〈U, τ, T, IDA, PKA, IDB , PKB , hi,H〉
and 〈U, T, τ, IDA, PKA, IDB , PKB , h

′
i,H

′〉 respectively.
∗ If entriesH andH ′ exist then C checks whether the equality ê(Ppub, QA) ê(U,H) ê(PKA,H

′) ?=
ê(P,W) holds.

∗ If the above equality holds, then retrieves the corresponding value of T from the lists L3 and
L4 (note that both the T values should be equal).

∗ Now, C checks whether a tuple of the form 〈U, T, U ′ = xBU, IDB , PKB ,K〉 exists in the list
L2. If it exists then check whether ê(U ′, P) ?= ê(U, bP). If the check holds then output the
corresponding K value as the decapsulation of ψ.

Challenge: At the end of Phase 1, AII sends to C, a sender identity IDA∗ and a receiver identity IDB∗

on which AII wishes to be challenged. Here, the full private key of the receiver IDB∗ was not queried
in Phase 1. C aborts the game if IDB∗ 6= IDγ , C performs the following to compute the challenge
encapsulation ψ∗.
– Sets U = bP and computes T = ê(DB , U).
– Chooses K0 ∈R K, where K is the key space of the ICLSC-TKEM scheme
– Chooses U ′ ∈R G1 and computes K1 = H2(U, T, U ′, IDB , PKB).
– Sets ω∗ = 〈−, U, U ′, T, IDA, PKA, SA, IDB , PKB〉.
– Now, C chooses a bit δ ∈R {0, 1} and sends Kδ to AII .
– AII generates an arbitrary tag τ∗ and sends it to C.
– Chooses hi, h

′
i ∈R Z∗q , stores the tuple 〈U, τ∗, T, IDA, PKA, IDB , PKB , hi,H = hiP 〉 to the list L3

and 〈U, τ∗, T, IDA, PKA, IDB , PKB , h
′
i,H

′ = h′iP 〉 to the list L4.
– Since C knows the private key of the sender, C computes W = DA + hibP + h′ixAP .
– C now sends ψ∗ = 〈U,W 〉 to AII .

Phase II: AII adaptively queries the oracles as in Phase I, consistent with the constraints for Type-II
adversary. Besides this it cannot query decapsulation on ψ∗.

Guess: Since AII is capable of breaking the IND-ICLSC-TKEM-CCA2-II security of ICLSC-TKEM (which
is assumed at the beginning of the proof), AII should have queried OH2 with (U, T, U ′, IDB , PKB) as
inputs. it is to be noted that U ′ = xBU = abP . Therefore, if the list L2 has qH2 queries corresponding to
the sender IDA and receiver IDB , one of the U ′’s among qH2 values stored in the list L2, is the solution
for the CDH problem instance. Now, C chooses one T value uniformly at random from the qH2 values
from the list L2 and outputs it as the solution for the CDH instance.

Analysis: We now assess the probability of success of the challenger C. The events in which C aborts the
IND-ICLSC-TKEM-CCA2-II game are,

1. E1 - when AII queries the full private key of the target identity IDγ and Pr[E1] =
qfpk

qH1

.

2. E2 - when AII requests to replace the public key of the target identity IDγ and Pr[E2] =
qrpk

qH1

.

3. E3 - when AII does not choose the target identity IDγ as the receiver during the challenge and Pr[E3] =(
1− 1

qH1 − (qfpk + qrpk)

)
.

The probability that, C does not abort the IND-ICLSC-TKEM-CCA2-II game is given by

(Pr[¬E1 ∧ ¬E2 ∧ ¬E3]) =
(

1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

)
The probability that, the U ′ chosen randomly from L2 by C, being the solution to CDH problem is

(
1

qH2

)
.

Therefore, the probability of C solving the CDH instance is given by,

Pr[C(P, aP, bP, cP) = ê(P, P)abc] = ε

(
1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

) (
1

qH2

)
Since ε is non-negligible, the probability of C solving CDH problem is also non-negligible. �

6.3 Type-I Unforgeability

Theorem 3. If there exists a forger FI with an advantage ε against the EUF-ICLSC-TKEM-CMA-I security
of the ICLSC-TKEM scheme, asking qHi (i = 1, 2, 3, 4) hash queries to random oracles OHi (i = 1, 2,
3, 4), qppk partial private key extract queries and qfpk full private key extract queries, then there exist an
algorithm C that solves the CDH problem with an advantage

ε′ ≥
(
ε− 1

2κ−1

) (
1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

)

Proof: A challenger C is challenged with an instance of the CDH problem say 〈P, aP, bP 〉 ∈ G1. Let FI be
a forger who is capable of breaking the EUF-ICLSC-TKEM-CMA-I security of the ICLSC-TKEM scheme.
C can make use of FI to compute the solution abP of the CDH instance by playing the following interactive
game with FI .

Setup: C sets the master public key Ppub as aP , designs the hash functions Hi (i =1 to 4) as random
oracles OHi

(i =1 to 4) respectively. In order to maintain the consistency between the responses to the
hash queries, C maintains lists Li (i =1 to 4) and to maintain the list of issued private keys and public
keys, C maintains a list LK . C gives the public parameters params to FI .

Training Phase: FI performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The oracles and queries allowed are described below.
– All the oracles are identical to that of the OH1 , OH2 , OH3 , OH4 , OExtractPartialPrivateKey, ORequest

PublicKey, OExtractPrivateKey, OReplacePublicKey, OSymmetricKeyGeneration, OKeyEncapsulation and
OKeyDecapsulation oracles in the IND-ICLSC-TKEM-CCA2-I game.

Forgery: At the end of the Training Phase (which is decided by FI), FI sends to C an encapsulation
〈τ∗, ψ∗ = 〈U,W 〉, IDγ , IDB〉, where IDγ is the sender identity and IDB is the receiver identity. It is
to be noted that the partial private key of the sender IDγ was not queried and the public key of IDγ

could be replaced during the Training Phase. In addition, ψ∗ should not be the response for any key
encapsulation queries by FI during the Training Phase. If ψ∗ is generated with the above restrictions,
then C can obtain the solution for the CDH instance by performing the following steps.
– Retrieves the tuple 〈U, τ∗, T, IDγ , PKγ , IDB , PKB , hi,H = hiP 〉 from the list L3 and 〈U, τ∗, T, IDγ ,
PKγ , IDB , PKB , hi,H

′ = h′iP 〉 from the list L4.
– Output W − hiU − xγh

′
iP = abP as the solution to the CDH problem instance.

Correctness:

W − hiU − xγh
′
iP= Dγ + rH + xγH

′ − hiU − xγh
′
iP

= Dγ + rH + xγH
′ − rhiP − xγH

′

= Dγ + rH − rH
= Dγ

= abP

Analysis: We now assess the probability of success of the challenger C. The events in which C aborts the
EUF-ICLSC-TKEM-CMA-I game are E1, E2 and E3. (Events E1, E2 and E3 are same as in IND-ICLSC-
TKEM-CCA2-I proof). The probability that, C does not abort the EUF-ICLSC-TKEM-CMA-I game is given
by

(Pr[¬E1 ∧ ¬E2 ∧ ¬E3]) =
(

1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

)
The probability of FI guessing the hash values corresponding to H3 and H4 oracles is 1

2κ + 1
2κ = 1

2κ−1 . The
probability with which C solves the CDH problem is

ε′ ≥
(
ε− 1

2κ−1

) (
1− qppk

qH1

) (
1− qfpk

qH1

) (
1

qH1 − (qppk + qfpk)

)
Since ε is non-negligible, the probability of C solving CDH problem is also non-negligible. �

6.4 Type-II Unforgeability

Theorem 4. If there exists a forger FI with an advantage ε against the EUF-ICLSC-TKEM-CMA-I security
of the ICLSC-TKEM scheme, asking qHi

(i = 1, 2, 3, 4) hash queries to random oracles OHi
(i = 1, 2, 3,

4), qfpk full private key extract queries and qfpk replace public key queries, then there exist an algorithm C
that solves the CDH problem with an advantage

ε′ ≥
(
ε− 1

2κ−1

) (
1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

)

Proof: A challenger C is challenged with an instance of the CDH problem say 〈P, aP, bP 〉 ∈ G1. Let FII be
a forger who is capable of breaking the EUF-ICLSC-TKEM-CMA-II security of the ICLSC-TKEM scheme.
C can make use of FII to compute the solution abP of the CDH instance by playing the following interactive
game with FII .

Setup: C chooses s ∈R Z∗q and sets the master public key Ppub = sP , designs the hash functions Hi (i =1
to 4) as random oracles OHi (i =1 to 4) respectively. In order to maintain the consistency between the
responses to the hash queries, C maintains lists Li (i =1 to 4) and to maintain the list of issued private
keys and public keys, C maintains a list LK . C gives the public parameters params and the master private
key s to FII .

Training Phase: FII performs a series of polynomially bounded number of queries in an adaptive fashion
in this phase. The oracles and queries allowed are described below.
– All the oracles are identical to that of the OH1 , OH2 , OH3 , OH4 , OExtractPartialPrivateKey, ORequest

PublicKey, OExtractPrivateKey, OReplacePublicKey, OSymmetricKeyGeneration, OKeyEncapsulation and
OKeyDecapsulation oracles in the IND-ICLSC-TKEM-CCA2-II game.

Forgery: At the end of the Training Phase (which is decided by FII), FII sends to C an encapsulation
〈τ∗, ψ∗ = 〈U,W 〉, IDγ , IDB〉, where IDγ is the sender identity and IDB is the receiver identity. It is
to be noted that the public key of the sender IDγ was not replaced during the Training Phase. In
addition, ψ∗ should not be the response for any key encapsulation queries by FI during the Training
Phase. If ψ∗ is generated with the above restrictions, then C can obtain the solution for the CDH instance
by performing the following steps.
– Retrieves the tuple 〈U, τ∗, T, IDγ , PKγ , IDB , PKB , hi,H = hiP 〉 from the list L3 and 〈U, τ∗, T, IDγ ,
PKγ , IDB , PKB , hi,H

′ = h′iP 〉 from the list L4.
– Output h

′−1
i (W − sbγP − hiU) = abP as the solution to the CDH problem instance.

Correctness:

h
′−1
i (W − sbγP − hiU)= h

′−1
i (Dγ + rH + ah′ibP − sbγP − hiU)

= h
′−1
i (bγsP + rhiP + ah′ibP − sbγP − rhiP)

= h
′−1
i (ah′ibP)

= abP

Analysis: We now assess the probability of success of the challenger C. The events in which C aborts the
EUF-ICLSC-TKEM-CMA-II game are E1, E2 and E3. (Events E1, E2 and E3 are same as in IND-ICLSC-
TKEM-CCA2-II proof). The probability that, C does not abort the EUF-ICLSC-TKEM-CMA-II game is
given by

(Pr[¬E1 ∧ ¬E2 ∧ ¬E3]) =
(

1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

)
The probability of FII guessing the hash values corresponding to H3 and H4 oracles is 1

2κ + 1
2κ = 1

2κ−1 . The
probability with which C solves the CDH problem is

ε′ ≥
(
ε− 1

2κ−1

) (
1− qfpk

qH1

) (
1− qrpk

qH1

) (
1

qH1 − (qfpk + qrpk)

)
Since ε is non-negligible, the probability of C solving CDH problem is also non-negligible. �

7 Conclusion

In this paper, we have showed that the only existing CL-KEM [13] proved in the standard model is not
Type-I CCA secure and the only existing certificateless hybrid signcryption scheme of Fagen Li et al.’s [15] is
existentially forgeable with respect to both Type-I and Type-II forgers. We have also proposed an improved
certificateless hybrid signcryption scheme with the proper binding, that provides adequate security to the
scheme. We have proved the improved certificateless hybrid signcryption scheme in the random oracle model.

References

1. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryptography. In Advances in Cryptology
- ASIACRYPT 2003, volume 2894 of Lecture Notes in Computer Science, pages 452–473. Springer, 2003.

2. Jee Hea An, Yevgeniy Dodis, and Tal Rabin. On the security of joint signature and encryption. In Advances in
Cryptology - EUROCRYPT 2002, volume 2332 of Lecture Notes in Computer Science, pages 83–107. Springer,
2002.

3. Joonsang Baek, Ron Steinfeld, and Yuliang Zheng. Formal proofs for the security of signcryption. In Public Key
Cryptography - PKC 2002, volume 2274 of Lecture Notes in Computer Science, pages 80–98. Springer, 2002.

4. Manuel Barbosa and Pooya Farshim. Certificateless signcryption. In ACM Symposium on Information, Computer
and Communications Security - ASIACCS 2008, pages 369–372. ACM, 2008.

5. Paulo S. L. M. Barreto, Benôıt Libert, Noel McCullagh, and Jean-Jacques Quisquater. Efficient and provably-
secure identity-based signatures and signcryption from bilinear maps. In Advances in Cryptology - ASIACRYPT
2005, volume 3788 of Lecture Notes in Computer Science, pages 515–532. Springer, 2005.

6. Kamel Bentahar, Pooya Farshim, John Malone-Lee, and Nigel P. Smart. Generic constructions of identity-based
and certificateless kems. J. Cryptology, 21(2):178–199, 2008.

7. Xavier Boyen. Multipurpose identity-based signcryption (a swiss army knife for identity-based cryptography).
In Advances in Cryptology - CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 383–399.
Springer, 2003.

8. Liqun Chen and John Malone-Lee. Improved identity-based signcryption. In Public Key Cryptography - PKC
2005, volume 3386 of Lecture Notes in Computer Science, pages 362–379. Springer, 2005.

9. Sherman S. M. Chow, Siu-Ming Yiu, Lucas Chi Kwong Hui, and K. P. Chow. Efficient forward and provably
secure id-based signcryption scheme with public verifiability and public ciphertext authenticity. In ICISC, volume
2971 of Lecture Notes in Computer Science, pages 352–369. Springer, 2003.

10. Ronald Cramer and Victor Shoup. Design and analysis of practical public-key encryption schemes secure against
adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.

11. Alexander W. Dent. Hybrid signcryption schemes with insider security. In Information Security and Privacy -
ACISP 2005, volume 3574 of Lecture Notes in Computer Science, pages 253–266. Springer, 2005.

12. Yevgeniy Dodis, Michael J. Freedman, Stanislaw Jarecki, and Shabsi Walfish. Versatile padding schemes for joint
signature and encryption. In ACM Conference on Computer and Communications Security - CCS 2004, pages
344–353. ACM, 2004.

13. Juan González Nieto Georg Lippold, Colin Boyd. Efficient certificateless kem in the standard model.
Cryptology ePrint Archive, Report 2009/451 (Extended abstract of the paper accepted in ICISC-09), 2009.
http://eprint.iacr.org/.

14. Qiong Huang and Duncan S. Wong. Generic certificateless key encapsulation mechanism. In ACISP 2007, volume
4586 of Lecture Notes in Computer Science, pages 215–229. Springer, 2007.

15. Fagen Li, Masaaki Shirase, and Tsuyoshi Takagi. Certificateless hybrid signcryption. In Information Security
Practice and Experience - ISPEC 2009, volume 5451 of Lecture Notes in Computer Science, pages 112–123.
Springer, 2009.

16. Benôıt Libert and Jean-Jacques Quisquater. Efficient signcryption with key privacy from gap diffie-hellman
groups. In Public Key Cryptography - PKC 2004, volume 2947 of Lecture Notes in Computer Science, pages
187–200. Springer, 2004.

17. Benot Libert and Jean-Jacques Quisquater. A new identity based signcryption scheme from pairings. In In IEEE
Information Theory Workshop, pages 155–158, 2003.

18. John Malone-Lee. Identity-based signcryption. Cryptology ePrint Archive, Report 2002/098, 2002.
19. John Malone-Lee and Wenbo Mao. Two birds one stone: Signcryption using rsa. In Topics in Cryptology -

CT-RSA 2003, volume 2612 of Lecture Notes in Computer Science, pages 211–225. Springer, 2003.
20. S. Sharmila Deva Selvi, S. Sree Vivek, Deepanshu Shukla, and C. Pandu Rangan. Efficient and provably secure

certificateless multi-receiver signcryption. In Provable Security, ProvSec - 2008, volume 5324 of Lecture Notes in
Computer Science, pages 52–67. Springer, 2008.

21. Adi Shamir. Identity-based cryptosystems and signature schemes. In Advances in Cryptology, CRYPTO - 1984,
volume 196 of Lecture Notes in Computer Science, pages 47–53. Springer, 1984.

22. Victor Shoup. Oaep reconsidered. In Advances in Cryptology - CRYPTO 2001, volume 2139 of Lecture Notes in
Computer Science, pages 239–259. Springer, 2001.

23. T.E.Bj∅rstad. Provable security of signcryption. In Masters Thesis, http://www.nwo.no/tor/pdf/mscthesis.pdf.
Norwegian University of Technology and Science, 2005.

24. Brent Waters. Efficient identity-based encryption without random oracles. In Advances in Cryptology - EURO-
CRYPT 2005, volume 3494 of Lecture Notes in Computer Science, pages 114–127. Springer, 2005.

25. Yuliang Zheng. Digital signcryption or how to achieve cost(signature & encryption) < < cost(signature) +
cost(encryption). In Advances in Cryptology, CRYPTO - 1997, volume 1294 of Lecture Notes in Computer
Science, pages 165–179. Springer, 1997.

