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Abstract

In this paper, we re-visit the problem of perfectly secure message transmission (PSMT) in a di-
rected network under the presence of a threshold adaptive Byzantine adversary, having unbounded
computing power. Desmedt et.al [5] have given the characterization for three or more phase PSMT
protocols over directed networks. Recently, Patra et. al. [15] have given the characterization of two
phase PSMT over directed networks. Even though the issue of tradeoff between phase complexity
and communication complexity of PSMT protocols has been resolved in undirected networks, noth-
ing is known in the literature regarding directed networks. In this paper, we completely settle down
this issue. Specifically, we derive the lower bounds on communication complexity of (a) two phase
PSMT protocols and (b) three or more phase PSMT protocols in directed networks. Moreover, we
show that our lower bounds are asymptotically tight, by designing communication optimal PSMT
protocols in directed networks, which are first of their kind.

We re-visit the problem of perfectly reliable message transmission (PRMT) as well. Any PRMT
protocol that sends a message containing ¢ field elements, has a trivial lower bound of Q(¢) (field
elements) on its communication complexity. Thus any PRMT protocol that sends a message of £
field elements by communicating O(¢) field elements, is referred as communication optimal PRMT
or PRMT with constant factor overhead. Here, we characterize the class of directed networks
over which communication optimal PRMT or PRMT with constant factor overhead is possible.
Moreover, we design a communication optimal PRMT over a directed network that satisfies the
conditions stated in our characterization.

Our communication optimal PRMT/PSMT protocols employ several new techniques based on
coding theory, which are of independent interest.

Keywords: Information Theoretic Security, Unbounded Computing Power, Directed Networks,
Byzantine Adversary.



1 Introduction

Consider the following problem: a sender S and a receiver R are part of a directed synchronous network
and are connected by uni-directional node disjoint paths/channels, which are directed either from S to
R or vice-versa. Each channel is abstracted as a directed edge, also called as wire. Moreover, S and R
do not share any information in advance. An adversary A; having unbounded computing power controls
at most ¢t wires between S and R in Byzantine fashion; i.e., the adversary can read and corrupt the
communication through the wires under its control in any arbitrary fashion. S intends to communicate
a message m containing /¢ field elements from a finite field F to R. The challenge is to design a protocol
such that after interacting in phases !, as per the protocol, R should correctly output m, without any
error, irrespective of the behaviour of A;. This problem is called perfectly reliable message transmission
(PRMT)[6, 5]. The problem of perfectly secure message transmission (PSMT)[6, 5] has an additional
restriction that at the end of the protocol, A; should have no information about m what so ever, in
information theoretic sense.

PRMT and PSMT problem are among the most basic and foundation problems in fault tolerant
distributed computing. Many fault tolerant distributed computing tasks like Byzantine Agreement
(BA) [18, 9] and Multiparty Computation (MPC) [3, 26, 4, 19] are mostly designed over complete
networks, where every two processors/nodes are connected by direct channel. The assumption on the
availability of a complete graph is impractical in most scenarios. Thus given an incomplete graph,
PRMT (PSMT) can be used to simulate reliable (secure) channel between every pair of nodes.

Existing Literature: PRMT/PSMT was first introduced and studied in undirected networks by
Dolev et.al in [6]. Dolev et.al abstracted the underlying undirected graph and assumed that S and
R are connected by n bi-directional vertex disjoint paths, also called as wires and A; may corrupt
any t out of the n wires in Byzantine fashion. Such an abstraction is justified because by Menger’s
theorem [12], a graph which is (n)-(S, R)-connected has n vertex disjoint paths connecting S and R
and each such path may be abstracted as a wire connecting S and R. Using wire abstraction, Dolev
et.al [6] have shown that PRMT/PSMT between S and R tolerating A; is possible iff there exists
2t 4+ 1 bidirectional wires between S and R.

PRMT and PSMT in directed networks was first studied by Desmedt et.al [5]. Modelling the
underlying network as a directed graph is well motivated because in practice not every communication
channel admits bi-directional communication. For instance, a base-station may communicate to even a
far-off hand-held device but the communication may not be possible in reverse direction. Extending the
wire abstraction approach of Dolev et.al [6] over undirected network, the authors in [5] have abstracted
the underlying directed network in the form of vertex disjoint paths/wires, which are directed either
from S to R or vice-versa. Specifically, the authors in [5] have assumed that there exists u wires from
R to S, also referred as bottom band and n wires from S to R, also referred as top band.

Desmedt et.al [5] have shown that (a) PRMT tolerating A; is possible iff there are at least 2t 4 1
wires in the top band, (b) PSMT tolerating A, is possible iff there are at least n = max(3t—2u+1,2t+1)
wires in the top band. Desmedt et.al [5] have shown the sufficiency of their characterization for
PSMT by designing a PSMT protocol that requires exponential number of phases and has exponential
communication complexity. Recently, PSMT protocols with polynomial phase (three phase in [13,
16, 17]; polynomial phase in [25]) and communication complexity have been proposed, satisfying the
characterization of Desmedt et.al. Recently, Patra et.al [15] have shown that two phase PSMT over
a directed network, tolerating A; is possible iff there exists n = max (3t — u + 1,2t + 1) wires in the
top band. This clearly shows that the characterization of PSMT given by Desmedt et.al [5] holds for
only three or more phase PSMT protocols (and is not sufficient for two phase).

A variant of PRMT (PSMT) problem is called URMT (USMT) problem. The problem of URMT
(USMT) is same as PRMT (PSMT) except that at the end of the protocol, R should output m with
very high probability of (1 — 2") where « is an error parameter. In [14], Patra et.al have derived tight
bounds on the communication complexity of URMT and USMT protocols. Furthermore, in [24, 21|
the authors have studied the URMT problem considering a generalized directed graph. Since the main
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theme of this paper is PRMT and PSMT, we avoid comparing our results with URMT and USMT.

Our Network Model: In this work, we study PRMT and PSMT in directed network G = (V, E),
where S and R are two special honest nodes in V. We follow the network model of [5] and assume that
there are n directed wires f1, fo, ..., fn from S to R, called as top band and u directed wires by, bo, ..., by
from R to S, called as bottom band. A centralized Byzantine adversary A; with unbounded computing
power, can actively control at most ¢t wires out of the n+wu wires, in a colluded fashion. The adversary
is adaptive; i.e., he can incrementally corrupt additional wires during the protocol execution depending
on the data obtained so far from the currently corrupted wires. A wire once under the control of Ay,
will remain so for the rest of the protocol. Once a wire is corrupted, the communication over the
wire is fully eavesdropped and dictated by A;. A wire which is not under the control of Ay, is called
honest. The network is synchronous and a protocol is executed in terms of phases, where a phase
denotes a communication either from S to R or vice-versa. For ease of exposition, we assume that
if S (R) is expecting some value(s) in some specific format from R (S) along a wire and if nothing
(or some syntactically incorrect value(s)) comes, then S (R) substitutes predefined value(s) from F
in the desired specific format and continues the protocol. Any information which is sent over entire
top (bottom) band is said to be broadcast. If some information is broadcast over at least 2t 4+ 1 wires
(out of which at most ¢ are corrupted), then the information will be always recovered correctly at the
receiving end by taking majority of the received information. Our protocols work on a finite field F
where |F| > (n 4+ u). We use m to denote the message that S intends to send to R, where m is a
sequence of element(s) from F.

Motivation of Our Work and Our Contributions: A key parameter of any PSMT protocol is
its communication complexity, which is the number of field elements communicated by S and R in
the protocol. Though the PSMT protocols over directed networks, reported in [13, 16, 25, 17] are
communication efficient (i.e. require communication complexity which is polynomial in n), they are
not communication optimal. Over the past one decade, lot of research has been carried out to derive
tight bounds on the communication complexity of PRMT/PSMT protocols in undirected networks
[23, 1, 7, 8, 2]. Unfortunately, there is no complexity bounds for PRMT/PSMT protocols in directed
networks. The existing bounds on the communication complexity of PRMT/PSMT in undirected
networks cannot be extended to directed networks. So in this paper, we derive the lower bound on the
communication complexity of both two phase and three or more phase PSMT protocols?. Moreover,
we show that our bounds are asymptotically tight by presenting polynomial time and communication
optimal PSMT protocols which are first of their kind.

Any PRMT protocol that sends £ field elements, has a trivial lower bound of ©2(¢) on its communica-
tion complexity. Thus any PRMT protocol that sends a message of ¢ field elements by communicating
O(¢) field elements, is referred as communication optimal PRMT or PRMT with constant factor over-
head. Here, we characterize the class of directed networks over which communication optimal PRMT
is possible. Moreover, we design a communication optimal PRMT over a graph that satisfies the
conditions stated in our characterization. Our communication optimal PRMT is used as a building
block to design communication optimal PSMT protocol. To design our protocols, we use several new
techniques based on coding theory, which are of independent interest.

2 Preliminaries

As all the protocols that we present in this paper are heavily based on the properties of Reed-Solomon
(RS) encoding and decoding from coding theory [10] and the concept of pseudo-basis, an idea intro-
duced by Kurosawa et.al [8], we briefly recall the ideas related to them in the sequel.

Definition 1 (RS Codes [10]:) For a message block M = (my mg ... my) over F, define Reed —
Solomon polynomial as Pyy(x) = my + mox + max® + ... + mpzF~1. Let aq, o, ...,ap, L > k, denote

2 Any single phase PSMT in directed network is no different from a single phase PSMT in undirected networks. Hence,
from [6], any single phase PSMT in directed networks requires n > 3t 4+ 1 wires in the top band. Also, from [22, 7], any
single phase PSMT over n > 3t 4+ 1 wires communicates Q( n’ig -) field elements to securely send a message containing ¢
field elements. Moreover, these bounds are asymptotically tight.




a sequence of L distinct and fized elements from F. Then vector C = (¢1 c2 ... c1) where ¢; =
Prr(ai),1 <i < L is called the Reed-Solomon (RS) codeword of size L for the message block M.

Given a message block M = (m; mg ... my) of size k over F, the method of computing the RS
codeword C for M is called RS encoding. So we write C = RS — ENC(M,k,L). Now let A and B
are two specific nodes and are connected by L wires of which at most ¢ can be under the influence of
A;. Let A send the i*" component of C over the i*" wire. Let B receive C’ where C and C’ differs in
at most ¢ locations. Under this scenario, the error correction and detection capability of B in C’ is
given by the error correction and detection capability of RS decoding which is stated as follows:

Theorem 1 ([10, 5]) RS decoding can correct up to ¢ Byzantine errors and simultaneously detect
additional d Byzantine errors (c+d <t)in C' iff L —k > 2c+d.

2.1 Pseudo-basis and Pseudo-dimension

Kurosawa et.al [8] have first introduced the concept of pseudo-basis for designing a two phase commu-
nication optimal PSMT protocol over undirected network where S and R are connected by at least
2t + 1 bidirectional paths/wires. So, we take the current description of pseudo-basis and pseudo-
dimension from [8]. Let C be the set of all possible L length RS codewords over F, which are RS
encoded using polynomials of degree k — 1 over F. Also we assume that the hamming distance [10, 8]
of code Cist+1ie. L—(k—1)>t+1[8]. We may call the individual codewords in C as L-dimensional
vectors. Though any L length codeword is an L length vector, the reverse is not true.

Now let us return back to the settings where A and B are connected by L wires, among which ¢
are controlled by A;. Let A sends several codewords, say v codewords C1, ..., C, € C over these wires,
by transmitting i*” component of all the codewords over i*" wire. Then the locations at which error
occurs in these codewords are not random. This is because for all the codewords the errors always
occur at the same ¢ (or less) locations. Based on this simple and interesting observation, Kurosawa
et. al. [8] introduced the concept of pseudo-basis. Let B receive the L length vectors Yi ...,Y,, such
that fori =1,...,v, Y; = C; + E;, where E; = (e;1,...,¢e;r) is an error vector caused by 4;. Notice
that each F; has at most £ non-zero components. Let

support(E;) = {j | ei; # 0}.

Then there exist some t-subset {ji,...,j:} of L wires that are corrupted by .4; such that each error
vector F; satisfies support(E;) C {j1,...,j:}. This means that the space £ spanned by Ei,..., E, has
dimension at most t. The notion of pseudo-basis exploits this idea. Let V denote the L-dimensional
vector space over F. For two vectors Y, E € V, we write Y = E mod C if Y — E € C. Notice that for
1 < i <+, for every triplet (Y;,C;, E;), Yi = E; mod C holds since Y; — E; = C; € C. We now recall
the definition of pseudo-span on Y = {Y7...,Y,}, pseudo-dimension and pseudo-basis of ).

Definition 2 (Pseudo-span [8]) : We say that {Yq, ...,Y,,} C Y pseudo-spans Y if each Y; € Y
can be written as Y; = (b1Yy, + ... +byYa,) mod C, for some non-zero vector (b, ...,b,) € FP.

Definition 3 (Pseudo-dimension and pseudo-basis [8]) : Let p be the dimension of the space
E = {E,....,E} and let {Eqy,...,Eq,} C & be a basis of £. We then say that )Y has pseudo-
dimension p and {Yq,,...,Ya,} C Y is a pseudo-basis of ).

We now recall the following theorems from [8] (the proofs are available in [8]):

Theorem 2 ([8]) B = {Ya,,...,Ya,} is a pseudo-basis of Y iff B is a minimal subset of Y which
pseudo-spans ).

Theorem 3 ([8]) The pseudo-dimension of ) is at most t.

Let B = {Y,,,...,Ya,} be a pseudo-basis of Y and let CORRUPTED = U._, support(E,,;). Then
CORRUPTED is the set of wires that the adversary A; has corrupted. So,



Theorem 4 ([8]) For each i, support(E;) C CORRUPTED.

Finally, Kurosawa et. al [8] also have provided a polynomial time algorithm which finds the pseudo-
dimension p (which is at most ¢) and a pseudo-basis B of ¥ = {Y1,...,Y,}. We denote the algorithm
as: (p, B,Z) = FindPseudo-basis()). So FindPseudo-basis takes the set of received (by B) vectors
Y as input and finds the pseudo-basis B = {Yy,,...,Ys,} C Y, pseudo-dimension p = |B| < ¢ and an
index set 7 = {a1,...,ap} C {1,...,7} containing the indices of the vectors selected in B.

2.2 Extracting Randomness

Suppose by some means, S and R agree on L random numbers z = [z1 x5 ... 1] € FL such that A;
knows L — f components of z, but has no information about the other f components of x. However
S and R do not know which values are known to A;. The goal of S and R is to agree on a sequence
of f elements [y1 y2 ... yy], such that A; has no information about [y y2 ... y¢]. This is done as
follows [23]:

Algorithm EXTRAND, ¢(x) [23]: Let V be an L x f Vandermonde matrix with members in F and which is
known publicly. Then S and R both locally compute the product [y1 y2 ... yf] =[z1 22 ... 2]V.

3 PRMT with Constant Factor Overhead

In this section, we characterize the class of digraphs over which communication optimal PRMT protocol
is possible tolerating A;. To be more clear, we answer the following question: what is the necessary
and sufficient condition for the possibility of communication optimal PRMT protocol over a directed
network / digraph? The following theorem completely resolves the above question.

Theorem 5 Communication optimal PRMT protocol, tolerating Ay is possible over a digraph iff there
are n > 2t + 1 wires in the top band and u wires in the bottom band where (n — 2t) 4+ 2u = Q(n).

ProOF: Sufficiency: To prove the sufficiency, in the sequel we design a communication optimal
PRMT protocol OPRMT, which reliably sends a message m containing ¢ = (nt) field elements
by communicating O(nt) field elements and terminates in three phases, provided n = 2t + 1 and
(n—2t) 4+ 2u = Q(n).

Before describing OPRMT, we present a special type of single phase PRMT called SP-REL where S
is connected to R by n > 2t 41 wires fi,..., fn. SP-REL either sends m to R or it may fail because
A; have done corruptions exceeding some limit (but not more than ¢). In the later case, R will only be
able to detect but cannot correct the errors to recover m. Thus SP-REL creates a win-win situation:
if A; does at most (¢ — b) corruptions then m is recovered; else R detects that more than (¢t — b) wires
are corrupted. Protocol SP-REL is based on RS codes. Let X =n — 2t.

Protocol SP-REL(m,{,n,t,b): n>2t+1,0<b<t
1. S breaks up m into blocks B1, B2, ..., B,, each consisting of k field elements, where £k = X + b. If £ is not an
exact multiple of k, a default padding is used to make ¢ mod k = 0.
2. For each block Bj, S computes (ci1¢iz . . . cin) = RS—ENC(B;, k,n) and sends c;;, along the wire f;,1 < j < n.
3. R receives cj; (possibly corrupted) over f; for 1 < j < n and 1 <4 < z and applies RS decoding to each of

the received n length vectors and tries to correct ¢t — b errors and simultaneously detect additional b errors.

4. If after correcting t — b errors, the RS decoding algorithm does not detect additional errors in any of the z
received vectors, then R correctly recovers B;, 1 < i < z and concatenates these blocks to recover m.

5. If 3e € {1,2,..., 2} such that after correcting ¢t — b errors, the decoding algorithm detects additional errors in
the e received vector, then R generates “ERROR” which means he has detected that more than t — b faults
has occurred.

We request the reader to refer APPENDIX A for the proof of the properties of SP-REL. We
now design a communication optimal PRMT protocol OPRMT using SP-REL as a black-box. The
proofs of the properties of OPRMT are provided in APPENDIX A due to space constraint.

It should be noted that OPRMT sends / field elements by communicating O(¢) field elements for
all £ = Q(nt). It will be interesting to find a communication optimal PRMT for any message size.




Protocol OPRMT (m,{,n,u,t); |m| =£€= (nt)

Phase I: S to R: S executes SP-REL(m, £, n,t,b) with b = min(%, %), n = 2¢t+ 1. In SP-REL, let BY,..., BS be
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the message blocks and C be the n length RS codeword corresponding to By, sent by S.
Phase II: R to S: Let R receive CF,...,CE. If R recovers m after the execution of SP-REL, then he sends
SUCCESS to S through the entire bottom band. Else R sends ERROR and the tuple (c, C’f) to S through entire bottom
band, where R has detected more than ¢ — b faults in CZ.

Phase III: S to R: Let S receive SUCCESS along us > 0 wires and ERROR along with an tuple of the form (index,
n length vector) through u. > 0 wires. S now considers the following two cases:

o (Case 1. us >

o Case 2. uc > %: S checks whether it has received the same (index, n length vector) over at least 4 wires
out of the u. wires. If not, then S does nothing and terminates the protocol (see Theorem 11). Otherwise, let
S receive the same tuple (3,I') through at least § wires out of u. wires and do the following:

5: S does nothing and terminates the protocol (see Theorem 11).
u

1. Compute & = support(C5 —I') and the number of mismatches between C5 and I' as E = |€|.
2. If E <t —b, then do nothing and terminate the protocol (see Theorem 11).

3. If £ >t —0b, then consider the wires in £ as faulty and add them to a list Lf,ui¢. Ignore all the wires in
Lqui from the top band for further communication. For simplicity, let these be the last |Lfquit| wires
in the top band. Re-send m by executing SP-REL(m, ¢,n — |Lyquit|,t — |Lfauit|, | L fauit|) over the first
n — |Lyquit| wires. In addition, broadcast Lyquir to R over entire top band.

Message Recovery by R: If R had sent ERROR and a tuple (index, n length vector) to S during Phase II, then
R will always correctly receive Ljfqui¢. Now ignoring all information received over the wires in Lfquit, R correctly
recovers m by executing the steps of SP-REL(m, {,n — |Lyquit|,t — |Lrauit], | L fauit])-

Necessity: First of all, irrespective of the value of u, by the results of [6], any PRMT from S to R
is possible iff there exist n > 2t + 1 wires from S to R. Hence the digraph must have n > 2t + 1 wires
in the top band for the existence of any PRMT that is communication optimal. Next we show that u
must satisfy (n — 2t) 4+ 2u = Q(n) for the existence of communication optimal PRMT protocol. We
have to prove this when u < ¢ because if u > t then (n — 2t) 4+ 2u = Q(n) is satisfied.

So let u < t. Suppose both S and R in advance know that the entire bottom band is corrupted.
Under this assumption, any multiphase PRMT protocol virtually reduces to a single phase PRMT
protocol, where S is connected to R by n > 2t + 1 wires, of which at most ¢ — u are corrupted. Now
by the results of [23], any single phase protocol must communicate Q(=25) field elements for reliably
sending /¢ field elements, where S is connected to R by n > 2t + 1 wires, of which at most ¢ are
corrupted. This implies that any single phase protocol must communicate Q(#ﬁ_u)) field elements
for reliably sending ¢ field elements, where S is connected to R by n > 2t + 1 wires, of which at

most t — u are corrupted. Thus any multiphase PRMT protocol must communicate Q(#ﬁ_u)) fields
nt

elements for reliably sending ¢ field elements over a digraph. Therefore Q(m) defines a lower
bound on the communication complexity of any multiphase PRMT protocol sending ¢ field elements.
Note that this lower bound is derived by assuming that S and R in advance know that the entire
bottom band is corrupted. Any lower bound derived under this assumption is trivially a lower bound
for the more general case, where S and R do not have this information in advance. By definition, any
communication optimal PRMT protocol transmits O(¢) field elements for sending ¢ field elements. It

is easy to see that Q(#f,u)) will turn out to be O(¢) only if (n — 2t) + 2u = Q(n). O

4 Lower Bound on Communication Complexity of Two Phase PSMT

For the rest of the paper, we will concentrate on PSMT problem, where we require the message to be
delivered reliably as well as securely to R. This is in contrast to PRMT, where we require the message
to be delivered only reliably to R. In this section, we derive the lower bound on the communication
complexity of any two phase PSMT protocol in directed networks. We then show that the bound
is asymptotically tight. We first recall the characterization of two phase PSMT in directed networks
tolerating A; from [15].

Theorem 6 ([15]) Suppose there are disjoint set of n wires in the top band and u wires in the bottom
band such that Ay controls at most t of these n4+u wires. Then there exists a two phase PSMT tolerating
A iff n > max(3t —u+ 1,2t + 1).



The necessity proof of the above theorem is divided in two cases: if u > ¢, then the necessity condition
says that there should exist n > 2t+ 1 wires in the top band. From [6, 5], n > 2t+ 1 wires from S to R
are necessary for any reliable communication from S to R. Hence, it is obviously necessary for PSMT.
On the other hand, if u < ¢, then the necessity condition says that there should exist n > 3t —u + 1
wires in the top band. This is proved by contradiction. Specifically, the authors of [15] showed that
if there exists a two phase PSMT tolerating A; with u < ¢ wires in bottom band and n = 3t — u
wires in the top band, then one can design a single phase PSMT with N = n + u = 3t wires directed
from S to R, tolerating .4;, which is impossible according to [6]. We recall the necessity proof of the
above theorem from [15] and present it in APPENDIX B. Our derivation of the lower bound on
the communication complexity of two phase PSMT (which is presented below), heavily bases on the
necessity proof of above theorem.

Theorem 7 Suppose there exists u wires in the bottom band and n = max(3t —u+ 1,2t + 1) wires in
the top band. Then any two phase PSMT protocol which securely sends a message m € F¢ containing
{ field elements must communicate

(a)Q(NI\ng field elements where 0 <u<t,n>3t—u+1and N=n+u>3t+1.

(b) Q (n’i‘;t) field elements where w >t and n > 2t + 1.
The proof of Theorem 7 is presented in APPENDIX C due to space constraint. O

In [15], a two phase polynomial time PSMT protocol is reported for showing sufficiency of Theorem
6. The protocol sends a message of size £ = 1 field element by communicating O(N) = O(n + u) field
elements, where n = max (3t —u + 1,2t + 1). Though the protocol of [15] satisfies the lower bound
given in Theorem 7(a) for the case u < t, it fails to satisfy the lower bound given in Theorem 7(b) for
the case u > t. So, in the next section, we modify the PSMT protocol of [15], to obtain a generic two
phase PSMT protocol, that satisfies the lower bound given in Theorem 7(a), as well as Theorem 7(b).

4.1 Two Phase Communication Optimal PSMT Protocol

Let n = max (3t —u+ 1,2t + 1) and w > 0. Also let 6 = max (u,t) and N = n + u. We now
design a two phase PSMT protocol called O2PSMT, which securely sends a message m, containing
¢ = (d+1—t) field elements by communicating (N +n(d+1—t)) field elements. In O2PSMT, C is the
set of all possible RS codewords of length N, encoded using all possible polynomials of degree & over I,
for fized o, ..., niy. Here a; is associated with wire f; for 1 <1 <n and ou,; is associated with b;
for1 < j <wu. The hamming distance [10] between any two codeword in Cis N -0 = n+u—0 > 2t+1.
Briefly, O2PSMT works as follows: S and R communicate with each other to agree on a random
polynomial of degree d, ensuring that A; knows ¢ points on it. Once this is done, both S and R generate
a common information theoretic secure pad of length (6 + 1 — t), which is completely unknown to A;.
Then, S blinds the message with the pad and reliably sends the blinded message to R. O2PSMT is
presented below and its proofs are differed in APPENDIX D.

Protocol O2PSMT

Phase I: R to S: R selects a random vector R = (r1,...,7,) over F and sends r; to S along wire b;.

Phase II: S to R:

1. Let S receive R. S then select a codeword C from C such that last v components of C' is same as R. This is
always possible because § > u and every RS codeword in C corresponds to a unique § degree polynomial. Let
C correspond to polynomial F(z). S sends 5" component of C' over wire f; in top band.

2. S computes I' = m@® Z where Z = EXTRAND  541-:(C(541)) and C(s41) denotes the first §+1 components
of C'. S then broadcasts the blinded message I" over the entire top band.

Local Computation by R At The End of Phase II:

1. After receiving information over the top band, R possesses N = n+u length vector Y (by combining the values
received over the top band and values sent over the bottom band) corresponding to codeword C, such that Y
is different from C at most at t locations. R applies RS decoding algorithm on Y to recover C by correcting
t errors. Once C' is obtained, R computes Z in the same way as done by S.

2. R also receives I' correctly. Now R recovers m by computing m =1"& Z.




5 Lower Bounds for Three or More Phase PSMT

Recall that from [5], any three or more phase PSMT requires n = max(3t —2u+ 1,2t + 1) wires in the
top band to tolerate A;. To build our lower bound argument for three or more phase PSMT protocol,
we need a few concepts from secret sharing and Maximum Distance Separable (MDS) codes. Hence
we briefly recall them before presenting our lower bound result.

5.1 Secret Sharing Schemes and Maximum Distance Separable (MDS) Codes

Definition 4 (z-out-of-n Secret Sharing Scheme (SSS) [20]) : An z-out-of-n Secret Sharing
Scheme (SSS) is a probabilistic function S : F — F"™ with the property that for any M € F and

S(M) = (s1,...,8n), no information on M can be inferred from any x elements of (s1,...,sn) and
M can be recovered from any x + 1 elements in (s1,...,8p).
The set of all possible (si,...,s,) can be viewed as a code and its elements as codewords [5]. If the

code is a Maximum Distance Separable (MDS) code [10, 5] (e.g RS code), then it can correct ¢ errors
and simultaneously detect d additional errors iff n — x > 2¢ + d [10, 5]. An z-out-of-n SSS is called
MDS z-out-of-n SSS if it is constructed from a MDS code. MDS SSSs can be constructed from any
MDS codes, for example RS codes [10, 11, 5]. So we have the following theorem on the error correction
and detection capability of MDS z-out-of-n SSS:

Theorem 8 ([10, 5]) Any MDS x-out-of-n SSS can correct ¢ errors and detect d additional errors
i a codeword iff n —x > 2¢c + d.

5.2 The Lower Bound on Communication Complexity

We now derive the lower bound on the communication complexity of any three or more phase PSMT
protocol tolerating A;. We first give the following definition:

Definition 5 ((«, 3,7, m,()-SSS:) Given a secret m containing ¢ field elements fromF, an (o, 8,7, m, {)-

SSS generates o shares of m, such that any set of 8 shares have full information about the secret m,
while any set of v shares have no information about the secret m with o > 3 > .

Theorem 9 Suppose there exists u wires in the bottom band and n = max(3t — 2u + 1,2t + 1) wires
in the top band. Then any three or more phase PSMT protocol that securely sends a message m
containing ¢ field elements from F tolerating A; must communicate

(a) QU357 3t 5 ) field elements when 0 < u < t.
(b) QL) field elements when u > t.

Important Note: Note that when u = 0, then any multiphase PSMT turns out to be a single phase
PSMT. From results of [6], any single phase PSMT requires n > 3t + 1 wires from S to R. In [7, 22]
it is shown that any single phase PSMT must communicate Q(nr_bgt) field elements for sending ¢ field
elements. This resolves the issue of lower bound for u = 0.

PrROOF: We first prove part (a) of the theorem. The outline of the proof strategy is as follows: we
first show that the communication complexity of any three or more phase PSMT protocol tolerating
A; to send a message m € F¢ is not less than the share complexity (sum of all the shares) of an
(n, (n—2(t —u)),t, m,£)-SSS (see Lemma 1). We then show that the share complexity of any (n, (n —
2(t —u)),t,m, £)-SSS is Q(m) field elements (see Lemma 2). Part (a) of Theorem 9 will follow
from Lemma 1 and Lemma 2. So we now proceed to prove Lemma 1.

Lemma 1 Let 0 < u <t and n = max(3t — 2u + 1,2t + 1). Then the communication complexity of
any 3 or more phase PSMT protocol tolerating A; to send a message m € F¢ is not less than the share
complexity (sum of all the shares) of an (n,(n — 2(t —w)),t, m,£)-SSS.



PRrROOF: Let IT be a PSMT protocol which runs for p > 3 phases. W.l.o.g the view of S in II, denoted
by m’ewlsI is drawn from a probability distribution that depends on the message m, the coin flips RS
of S, the coin flips R® of R, the coin flips R4 of A, (w.l.o.g, we assume that the value of RA will
determine the choice of faulty wires controlled by A;). W.l.o.g, we assume that S is silent in even
phases and R is silent in odd phases [6, 5]. Now consider the following possible strategy for A; in II:

1. First A; uses RA to choose a value .

2. If r = 0, then A; uses R™ to choose t wires firs fias-- -, fj, from the top band and behaves passively over these
paths. This means the adversary proceeds according to protocol II.

3. If r = 1, then A; uses R to choose t — u wires fj,, fis,- - -, fi,_, from the top band and all the u wires from the
bottom band. In this case A; corrupts all the u wires in the bottom band and the ¢ — u wires fj,, fjo,. .., fj,_.
from the top band. A; also uses R* to choose a message m € F according to the same probability distribution
from which the actual message m was drawn. Now over the corrupted wires, A: behaves in the following way: (i)
Over the wires f;,, fjs,. .., fj,_., it ignores what S sends in odd phases of II and simulates what S would send
to R if 7@ would have been the message. (ii) Over the paths in the bottom band, it ignores what R sends to S in

even phases of II and simulates what R would send to S when r = 0.

A; can behave in the above manner with non-zero probability. Now let asj be the values that S sends

7:7
on wire f; in phase j of protocol II. Let ais = (aiSJ, a8 ) ie. ais is the concatenation of the values

,p
sent by S over wire f; during the execution of II. We can view ozis’s as the shares of message m. Now
if r = 0, due to the fact that II is a PSMT protocol, A; should not get any information on m from

any t shares from the set {a,...,a5}. This implies that (af,...,aS) is an x-out-of-n SSS for = > t.
Note that when = > ¢, it is still ensured that ¢ shares from the set {af,... a5} do not reveal any

information on m. Now if r = 1, due to the fact that II is also a PRMT protocol, R must be able
to correct any t — u errors in the shares (a?, e ,a,sl) and thus recover the message m. Summing up,
) is an MDS z-out-of-n SSS with the capability of correcting t — u error where > ¢t. Now

(a,...,a3
by Theorem 8, an MDS z-out-of-n SSS can correct (¢t — u) errors if

n—x>2t—u) = rz<n-2t—-—u)= r+1<n-2(t—u). (1)

This shows that the communication done by S (alone) is equivalent to the share complexity (sum of
all the shares) of an (n, (n — 2(t — u)),t,m, £)-SSS. Thus ignoring the communication done by R, we
can say that the communication done in protocol II is not less than the share complexity (sum of all
the shares) of an (n, (n — 2(t — u)),t, m, £)-SSS. O

Lemma 2 The share complexity of any (n,(n — 2(t — u)), t,m,£)-SSS is Q(#{zu)) field elements.

ProOF: We define the following notations:

1. M denotes the message space from where the message m is selected. In our context, M = F*.

2. For i = 1,...,n, X™ denotes the set of all possible i** share corresponding to message m € M, that could be
generated by any (n, (n — 2(t — u)), t, m, £)-SSS.

3. For j > i, MJ"; C X" x X741, x...x X" denotes the set of all possible {i*", (i+1)"",..., j'"} shares, corresponding

to message m € M, that could be generated by any (n, (n — 2(t — u)), t,m, £)-SSS.
4. My = Unerm M7 and X = U, e X7 We call X; as the capacity of i*" share and M ; as the capacity of the
set of {i*", (i +1)*",..., "} shares.

To generate n shares for message m, any (n, (n — 2(t —u)), t, m, £)-SSS would select one element from
the set X;, as the i*" share of m, for i = 1,...,n. Each element of the set X; can be represented by

log |X;| bits. Thus, the share complexity corresponding to message m will be X7, log|X;| bits. In
the sequel, we show that X7, log |X;| > % .

From the property of a (n,(n — 2(t — u)),t,m,¢)-SSS, any set of ¢t shares is independent of the
message. Thus, for any two messages m1, ms € M, the following should hold:

mi _ m2
M2t—2u+1,3t—2u - M2t—2u+1,3t—2u‘ (2)
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Though we focussed on specific set of t shares, namely {(2t — 2u + 1) ... (3t — 2u)"}, the above
relation should hold for any selection of t shares. Also, from the property of a (n, (n—2(t—uw)),t,m, {)-
SSS, any set of n — 2(t — u) shares have full information about m and uniquely determine m. Thus,

Mgzl—Zu-‘rl,n N Mgzz—Qu—i—l,n - @ (3)

As above, though we focussed on specific set of n — (2t —2u) shares, namely {(2t —2u+1)" ... nth},
the above relation should hold for any selection of n — (2t — 2u) shares. From (2), Mb;_ o, 11 5;_9, Will
be same for all m. Thus, (3) will hold only if M%;_,, +1, 18 unique for every m. Hence,

|M3t72u+1,n| = |M| (4)

From the definition of X; and M, ;, we get I3, o, 1|X;| > |M3t_2441,n|- Combining this with (4),
we get
gyt X = [M]. ()

Let ¢ = n — (3t — 2u). The inequality in (5) holds for any set of of g shares D, where |D| = g; i.e.,
IL;ep|X;| > |M|. In particular, we consider n such sets (consisting of g shares), namely Dy, ..., D,
where Dy, consists of {(kg + 1) mod n, (kg + 2)" mod n,..., (kg + g)"" mod n} shares. Thus for
each Dy, iep,|X;i| > | M| holds. Taking product over all Dy’s, we obtain II}_jIjep, |X;| > [M]|™.
Now notice that the i*" share is accounted exactly ¢ times in total in Dy,...,D,_1. Thus, we get
IM" < T Tjep, | X, = (T2, X;])?. Taking log, we obtain

nflog(|F
nlog(IMI) < g1 Tog((Xl) = Sty og((i) = (")
As log(JM]) = llog(|F|) and g = n — (3t — 2u), from the above inequality, we get X7, log(|X;|) >

(%) . As mentioned earlier, ¥ ; log(|X;|) denotes the share complexity in bits of distributing

n shares of a message m using any (n, (n — 2(t —u)), t, m, £)-SSS. From the above inequality, the share

complexity of (n, (n — 2(t —u)),t, m, £)-SSS is ( nt log(|F|)

m) bits. Now each field element from F can

be represented by log(|F|) bits. Thus the share complexity is (ﬁg—m)) field elements.

Part (a) of Theorem 9 now follows from Lemma 1 and Lemma 2. Now part (b) simply follows from
the fact that any PSMT protocol has to at least send the message and hence Q(¢) field elements. O

In the next section, we show that our lower bounds on the communication complexity of any three or
more phase PSMT are asymptotically tight.

6 Upper Bounds for Three or More Phase PSMT

From Theorem 9, we get the following implications: Any three or more phase PSMT protocol which

wishes to send a message m containing ¢ field elements, has to communicate (i) Q(#{zu)) field

elements when 0 < v < % and n > 3t — 2u + 1, (ii) Q(Qu"ft)) field elements when 5 < u < ¢ and
n > 2t + 1, (iii) Q(¢) field elements when u > ¢t and n > 2t + 1.

To show that the lower bounds in (i), (ii) and (iii) are asymptotically tight, we present three
different protocols in the sequel. All our protocols use the concept of pseudo-basis and properties of

Reed-Solomon encoding-decoding (see Section 2).

6.1 Communication Optimal PSMT with 0 < u < % and n =3t —2u+1

In this section, we present a three phase communication optimal PSMT protocol called O3PSMT,
which securely sends ¢ = n?u field elements by communicating O(n3u) = O(nf) field elements. Infor-
mally the protocol works as follows: S tries to correctly establish an information theoretic secure one
time pad of size n?u with R. Let C denote the set of all RS codewords of length n = 3t — 2u + 1 over
F, encoded using all possible polynomials of degree t over F, for fized oy, ..., an. Here a; is associated



with wire f;. Hence the hamming distance between any two codeword isn —t =2t —2u+1>1¢+ 1.
In protocol O3PSMT, S selects a number of random codewords from C and sends them across the
n wires. R receives the codewords and finds the pseudo-basis of the received codewords. R then
sends the pseudo-basis, pseudo-dimension and index set through the bottom band. We say that a
pseudo-basis, pseudo-dimension and index set triple received over a wire in bottom band is valid iff
all the codewords listed in pseudo-basis differs from the corresponding original codewords (sent by S)
at most at t locations. Note that S has no knowledge on whether the original pseudo-basis generated
by R is received by him. So S broadcasts all the valid triple of (pseudo basis, pseudo-dimension and
index set) as received by him along with the corresponding list of corrupted wires. Now R correctly
receives all the pseudo-basis, pseudo-dimension and index set, along with their corresponding list of
corrupted wires. R checks whether the pseudo-basis generated by him is present in the received list
of pseudo-basis. If yes then he knows the set of corrupted wires and can recover all the original
codewords (sent by S) by neglecting the values received over those corrupted wires during first phase.
Otherwise R learns that entire bottom band is corrupted and hence in the top band there are at most
t — v Byzantine faults. So R can correct these ¢ — u errors in each of the codeword, received during
first phase and thus can recover all the original codewords. Hence in any case S and R will agree on
all the codewords chosen by S.

Protocol O3PSMT(m, ¢, n,u,t)

Phase I: S to R: S selects P = nu + ut = £ + ut random codewords Ci,...,Cp from C. Let C; = (¢i1,...,Cin).
Also let Fi(z),..., Fp(z) be the t degree polynomials corresponding to the codewords. Now S sends 4% component
of all the codewords along wire f; in top band.

Phase II: R to S
1. Let R receive Y; = C; + E; corresponding to codeword C; and let Y = {Y1,...,Yp}.

2. R invokes (p, B,Z) = FindPseudo-basis()) to find pseudo-basis B = {Ya,,...,Y,,} C ), pseudo-dimension
p = |B| and index set Z = {a1,...,ap} C {1,..., P}. R then broadcasts (B,p,Z) through the bottom band.

Phase III: S to R

1. S may receive different triples over different wires. Let S receive (B?,p?,17) over wire b; in bottom band. Let
B’ :{Yaj-“""Y:J Yand 77 = {a},...,d’
1 pi

7p_7"

2. S considers the triple (B%,p?,Z7) as valid iff p? = |B?| and every n length vector listed in B7 is different

from the corresponding original codeword at most at ¢ locations. For every valid triple (Bj T ), S finds
i j

Ei{ = Yajj1 - Ca{- e Eijj = ijj — C“f,f and computes CORRUPTED? = Uzzlsupport(Eii).
P P N

3. S computes A = U; {Z7|(B’,p’,Z7) is a valid triple}. Then S concatenates all the F;(0)’s such ¢ ¢ A and
forms an information theoretic secure pad Z of length at least n?u (since |A| < ut and P = nu + ut).

4. Now S broadcasts the following to R: (i) every valid triple (B?,p?,77) and corresponding list of corrupted wires
CORRUPTED?’ (ii) If there is no valid triple, then the message “Entire Bottom band is corrupted”,
(iii) blinded message I' = Z; & m where Z; contains first £ elements from Z.

Local Computation by R at the End of Phase III:

1. R correctly receives all information sent by S in Phase IIT and computes A in same way as done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original triple (B, p,Z)
is not present in the list of valid triples sent by S, then R does the following:

(a) Conclude that entire bottom band is corrupted and hence in the top band there are at most ¢ — u faults.
(b) Recover all F;(x) such that i ¢ A by applying RS decoding algorithm on Y; and correcting ¢ — u faults.
(c) Recover pad Z (and hence Z;) by concatenating F;(0) for all ¢ ¢ A and hence the message m =T' @ Z,.

3. If R finds that his original triple (B,p,Z) is present in the list of valid triples sent by S and let (B%,p?,7%) is
same as (B,p,Z), then R does following:
(a) Identify all the wires in CORRUPTED? (|(CORRUPTED’| < t) as the corrupted wires in Phase T.

(b) Ignore all information received over the wires in CORRUPTED? (|CORRUPTED?| < t) during Phase
I. Reconstruct all the polynomial F;(x) such that ¢ ¢ A by considering the correct values on F;(x) received
over remaining wires (which are at least ¢ + 1) during Phase I

(c) Recover the message m in the same way as described in step 2.
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But during the transmission of pseudo-basis over u wires, A; can generate u distinct valid pseudo-
basis each containing at most ¢ disjoint codewords (this he can do by guessing with very non-zero
probability). Therefore initially S should send sufficient number of codewords such that after removing
all the ut codewords appearing in the received list of valid pseudo-basis, the remaining codewords can
be used to construct an information theoretic secure pad of size n?u. Once the pad is established,
S uses the pad to blind the message and sends the blinded message reliably to R. The proofs for
O3PSMT are presented in APPENDIX E.

6.2 Six Phase Communication Optimal PSMT when % <u<tandn>2t+1

In this section, we present a six phase communication optimal PSMT protocol called O6PSMT
where n = 2t + 1 and % < u < t. Protocol O6PSMT securely sends ¢ = n’u field elements by

communicating O ( n’y ) =0 (M’ji[) field elements, thus asymptotically satisfying the lower bound

2u—i t+1
given in Theorem 9. Interestingly, when u = £ + ©(t), then Protocol O6PSMT sends ¢ field elements
securely by communicating O(¢) field elements. Protocol O6PSMT achieves it’s goal by allowing S
and R to share 2u"_7£jrl common polynomials each of degree 2u, such that A; knows only ¢ points on
each of them. Once this is done, both S and R can generate an information theoretic pad of length
n?u by using EXTRAND algorithm. S can then blind the message and sends it to R. However,
note that S cannot send the blinded message to R by sending it over the entire top band, as done
in protocol O3PSMT. Because the communication complexity will then become O(n3u) and hence,
it will no longer satisfy the lower bound of Theorem 9. So S reliably sends the blinded message
by using protocol OPRMT given in Section 3, which takes 3 phases. Since here n = 2¢ 4+ 1 and
(n —2t) 4+ 2u = Q(n), we can execute OPRMT. R can recover the message since he knows the pad.
In O6PSMT, C denotes the set of all possible RS codewords of length N = n+u = 2t + 1+ u encoded
using all possible polynomials of degree 2u >t over F. Hence the hamming distance between any two
codeword is N —2u =2t —u+1 >t + 1. Protocol O6PSMT and the proofs of its properties are

provided in APPENDIX E due to space constraints.

6.3 Six Phase Communication Optimal PSMT when v >t and n > 2t + 1

If u=tand n =2t + 1= 0O(t), then from Theorem 22, protocol O6PSMT securely sends ¢ = n?u =
O(n?) field elements by communicating O(n?) field elements. Hence, if u > ¢ and n > 2t + 1, then S
and R can execute O6PSMT by considering the first 2¢ + 1 wires in the top band and first ¢ wires in
the bottom band. Thus, we have the following theorem:

Theorem 10 Suppose n > 2t + 1 and u > t. Then there exists a six phase PSMT protocol tolerating
Ay, which securely sends £ ({ = n?) field elements by communicating O(£) field elements.

7 Conclusion and Open Problems

In this paper, we have derived the necessary and sufficient condition for the existence of communication
optimal PRMT protocols in directed networks.

In the context of PSMT, we have derived tight bounds on the communication complexity of PSMT
protocols in directed networks, which are first of their kind. The summary of our results for PSMT
(marked with *) is given below.

[ 7# Phases “ Characterization [ Lower Bound on Communication Complexity ]
1 n>3t+1 6,5 Q25 [7]
2 If0<u<tthenn>3t—u+1* Q(Nfgt);N:nJru*
If w >t then n > 2t + 1* Q(nﬁ—gt)*
3 If 0 < u < t then n > max(3t — 2u + 1,2t + 1) [3] Q(#Z_Qu))*
If u >t then n > 2t+ 1 [5] Qo)*

It would be interesting to reduce the phase complexity of our six phase PSMT protocol. Our protocols
achieve optimality only if the message is of some minimum specific length. It would be interesting to
design PRMT and PSMT protocols, which are communication optimal for message of any length.
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APPENDIX A: Properties of Protocols SP-REL and OPRMT

Lemma 3 In SP-REL, if at most t — b wires are corrupted by the adversary, then R recovers m.
Otherwise, R detects that more than t — b wires have been corrupted in the top band.

PROOF: In the protocol, R receives L = n > 2t + 1 values for each B;, each of which is RS encoded
using a polynomial of degree kK — 1 = X + b — 1. Now substituting these values in Theorem 1, we
find that RS decoding can correct ¢ = t — b errors and simultaneously detect additional d = b errors
in each of the received n length vectors. If at most t — b errors occur in the top band, then decoding
algorithm will correct them and hence R will be able to recover m. On the other hand if more than
t — b wires are corrupted in the top band, then more than ¢t — b values will be corrupted in at least
one of the received vectors. After correcting ¢ — b errors in that vector, the RS decoding algorithm
will detect additional errors in the vector. So R will know that more than ¢ — b wires are corrupted
in the top band (though he will not know the identity of the corrupted wires). In this case, R will fail
to recover m. a

Lemma 4 SP-REL communicates O (#f)“)) field elements where |m| = £.

ProoF: Follows from the working of the protocol. O

Theorem 11 OPRMT reliably sends m in at most three phases.

PROOF: The proof is divided into two cases: (a) more than ¢ — b errors take place during Phase I
and (b) at most t — b errors take place during Phase I. If more than ¢ — b errors take place during
Phase I then R detects it (see Lemma 3) and sends ERROR along with the tuple (o, C¥) through the
bottom band where CE is the received n tuple in which R has detected more than ¢ — b errors. In this
case, in the bottom band, there can be at most b — 1 faults. Now since b = mm(%, 5 ), irrespective of
whether b = % or £, R will correctly receive (o, Cf) and ERROR over at least % wires. So S will locally
find the number of mismatches between what R had received and what S had sent during Phase 1.
Thus S will know the identity of more than ¢ — b Byzantine faults and adds them to the list Lyqu:. S
then broadcasts L4, to R through entire top band. So R also comes to know the identity of these
faults. Finally, S re-sends the message by executing SP-REL(m, ¢,n — |Ltquit|,t — |Lfauit], | L fauit])
over the first n — |Lfqu1t| wires. Now since there can be indeed ¢ — |L fqui¢| faults in the top band, by
Lemma 3 R will be able to recover the message after correcting t — |L fq,¢| faults.
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On the other hand, if during Phase I, at most ¢t —b Byzantine faults occur, then from Lemma 3, R
will be able to recover the message correctly after Phase I. R then sends SUCCESS through the bottom
band. Since it has recovered m, it will simply neglect whatever it receives from S during Phase III.
Hence the theorem holds. O

Theorem 12 The protocol OPRMT is a communication optimal PRMT protocol which sends Q(nt)
field elements by communicating O(nt) field elements.

PROOF: Since n = 2t + 1,{ = Q(nt), n — 2t + 2u = Q(n) and b = min(y, §), from Lemma 4, the
communication complexity of Phase Iis O(nt). During Phase II, R either sends SUCCESS or a tuple
(index, n length vector), along with ERROR over all the u wires in bottom band. This involves

communication of at most nu = O(nt) field elements. During Phase III, S either sends nothing or
(n_|Lfault|)|m|
X+‘Lfault|
\Lfauit| >t —b> %, the following holds: |Lfqui| = ©(t) and n — |Lfqui| = ©(t). Hence re-sending m
incurs a communication complexity of O(nt). Thus the total communication complexity is O(nt). O

re-sends the message. Communication complexity of re-sending the message is O( ). Since

APPENDIX B: Necessity Proof of Existing Characterization of Two
Phase PSMT

Theorem 6 [15]: Suppose there are disjoint set of n wires in the top band and u wires in the bottom
band such that Ay controls at most t of these n + u wires. Then there exists a two phase PSMT
tolerating A; only if n > max(3t —u + 1,2t 4+ 1).

PRrROOF: The proof is divided into two cases: (a) 0 < u <t and (b) u > . If u > ¢, then the necessary
condition says that there should exist n = 2t + 1 wires in the top band. By [6, 5], n = 2t + 1 wires from
S to R are necessary for reliably sending m tolerating A;. So it is obviously necessary for PSMT.

Now if 0 < u < t, then n = 3t — u + 1 wires in the top band are necessary for the existence of any
two phase PSMT protocol tolerating A;. The proof is by contradiction. So assume that there exists
a two phase PSMT protocol with 0 < u < t wires in the bottom band and n = 3t — v wires in the
top band, tolerating A;. Let I12Ph25¢ he an execution of the two phase PSMT protocol where S sends
message m. Let A?779%¢ be an adversarial strategy in I1277¢s¢. Given IT127725¢ and A2Phese | we show
that there exist an execution II'F¢5€ of a single phase PSMT protocol over N = n+u = 3t wires from
S to R and an adversarial strategy A}7725¢ in II'7he5¢ such that the views of S and R in IT2Phase
are identical to the views of S and R (respectively) in TI'779%¢. Now by the property of two phase
PSMT, R will recover m in T127795¢ tolerating any strategy A5, Since the views are identical, R
should also recover m in IT'F79%¢ tolerating A}F"5¢. But by results of [6], we show that R can not
recover m in IT'Fhese tolerating A€, This in turn implies that R will fail to recover m in I12Phase
tolerating A?" hase thus showing a contradiction.

We now describe the executions I127hase TT1Phase and the adversary strategies AZ"s€ and A} haese,
The random coin flips of S, R and A; in IT2P725¢ a5 well as in II'F795¢ are RS, RR and RA respectively.
Since IT12P°hese is an instance of a two phase PSMT, without loss of generality, the computation and
communication during IT27"5¢ are as follows:

1. Phase I: R to S: R uses R® to generate /31, . . ., 3, and sends 3; to S through wire b;, 1 < i < u.

2. Phase II: S to R: Let S receive /3, through wire b;. Based on the received information, message
m and coin flips RS, S computes aq, s, ..., o, and sends a; to R through wire f;, 1 < i < n.

3. Computation by R at the end of Phase II: Let R receive o through wire f;. Thus the
view of R at the end of Phase I1is [), ..., a},, (1, ..., Bu], while view of Sis [, ..., ap, 81, - - ., BL]-
R performs local computation according to the protocol specification and correctly recovers m.

HlPhase

Now we present where there exists N = n + u = 3t wires wq,...,wy from S to R.
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1. Phase I: S to R: S uses RS to generate B, - ., 3, (which he can do with non-zero probability).
Now assuming that ..., 3, would have been received through the bottom band in IT27#ase,
S performs the same computation as in II1277¢%¢ and generates a1, ..., a,. Finally, S sends a;
to R through wire w;,1 <7 <n and ﬂlf through wire wp44,1 <7 < w.

2. Computation by R at the end of Phase I: Let R receive of through wire w;,1 < i <n
H2Phase to

and (/' through wire wy,4;,1 < i < u. Now R performs the same computation as in
recover m.

Now consider the following strategy A?7"2s¢ in I12P°hese. A, corrupts entire bottom band and first
t — u wires from top band and ensures that ﬁl’ # f; for 1 <i < wuand a; # q; for 1 <i¢<t—wu. So,
the views of S and R are (a1, ..., 0y, M—yt1,-- -, n, 0, ..., 0,) and (o, ..., a}_,,

ity Qn, P, ..., B) respectively. Now consider the following strategy A}Fhese in TI1Fhase; A,
corrupts last u wires and first ¢ — u wires and ensures that 8/ = ; for 1 <14 < u and o} = o, for
1 < i < (t—u). Since all other wires are honest, it holds that o/ = «; for t —u+1 <4 < n. Hence in
this case, the views of S and R will be exactly same as in the execution 112774%¢ where A?779%€ is the
adversary strategy. If in IT12Ps¢ R is able to recover m, same should hold for TI'7?%%¢ But from [6],
single phase PSMT over 3t wires is impossible tolerating ¢ faults done by A;. Hence by the argument
given before, this leads to a contradiction to our assumption that IT277¢5€ is an execution of two phase
PSMT. Therefore for 0 < u < t, the condition n > 3t — u + 1 should hold for two phase PSMT. O

APPENDIX C: Lower Bound on The communication Complexity of
Two Phase PSMT

Theorem 7: Suppose there exists u wires in the bottom band and n = max(3t —u+ 1,2t + 1) wires in
the top band. Then any two phase PSMT protocol which securely sends a message m € F¢ containing
L field elements must communicate

(a)Q(%) field elements where 0 <u<t,n>3t—u+1and N=n+u>3t+ 1.

(b) (TL%J field elements where u >t and n > 2t + 1.

PROOF : We first prove part (a) of this theorem. This proof is heavily based on the necessity proof
of Theorem 6. Following the same line of argument, we can show that when n = 3t — u + 1 and
0 < u < t, then for every possible pair of IT?""@5¢ and A2Phase there exist a pair IT1'77es¢ and A} hase
(with non-zero probability) such that the view of S and R are same in both the scenarios. It is easy
to see that the communication cost are also same in IT'Phes¢ and T12Phese It implies that for every
two phase PSMT protocol sending m with n > 3t —u+ 1 and 0 < w < ¢ wires in top and bottom band
respectively, there exist a single phase PSMT sending m with N = n+wu wires (from S to R) with same
communication cost. Now any single phase PSMT sending m over N > 3t+1 wires must communicate

Q (N]\iei%t) field elements [7, 22]. Hence any two phase PSMT with v < ¢t and n > 3t — u + 1 must

communicate €2 ( N]\l %t> field elements for sending m.

We now proceed to prove part (b) of the theorem. Any PSMT protocol has to deliver the message
correctly. Thus any PSMT protocol is also a PRMT protocol. Now neglecting the communication
from R to S, any two phase PRMT can be reduced to single phase PRMT by following the conversion
shown in [23] (see proof of Theorem 2). Now from [23], any single phase PRMT protocol over n = 2t+1
wires has to communicate Q(n’_LZQt) field elements. So any two phase PSMT protocol with v > ¢ and
n > 2t + 1 has to communicate Q(nﬁgt

) field elements as well. O

APPENDIX D: Properties of Protocols O2PSMT

Theorem 13 In protocol O2PSMT, R will correctly recover m at the end of Phase II.
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PROOF: From the description of the protocol, it is easy to see that S and R will agree on NV — ¢ values
(components) among N values in C. In other words, C' and Y will differ at most at ¢ locations. From
Theorem 1, by substituting d = 0, we find that the maximum number of errors ¢ that can be corrected
in Y is t. Hence by applying RS decoding on Y, R can recover C. Thus at the end of Phase II, both
S and R will share the common pad Z (which is computed from C). Now since the blinded message
I" is broadcast over n > 2t + 1 wires, it reaches to R correctly. Hence R will recover m correctly. O

Theorem 14 In protocol O2PSMT, A; will get no information about m.

PRroOOF: In the protocol, m will be secure iff the pad Z is secure. Z is computed from C' which is
a RS codeword encoded using a polynomial of degree §. Thus though C is of length N, any § + 1
values on C' are independent and uniquely defines C' (the rest of the values of C' are dependent on the
selected set of § + 1 values). So, consider the first 0 + 1 values on C', denoted by C(s;1). Since those

0 + 1 values were transmitted over fi,..., fsi1, Ay may know t of them by corrupting ¢ wires among
fi,---, fs11.- But the remaining § + 1 — ¢ values will not be known to A;. Hence EXTRAND can
extract an information theoretically secure pad Z of length 6 +1 —¢ from C(s41). O

Theorem 15 Protocol O2PSMT sends a message m containing { = (6 + 1) — t field elements by
communicating (n +u) +n(d + 1 —t) field elements.

PRroOOF: During first phase, R sends u field elements to S through the bottom band. During second
phase, S sends n field elements for sending n components of C to R. In addition, S broadcasts I" over
the top band, incurring a communication complexity of n(d + 1 — t) field elements. O

Theorem 16 Protocol O2PSMT is a communication optimal two phase PSMT protocol, satisfying
the lower bound given in Theorem 7.

PROOF: We consider the following two cases:

1. Case I: u <t: In this case, § = t and hence |m| = ¢ = 1. So from Theorem 15, the commu-
nication complexity of protocol O2PSMT will be n + u = O(N). Moreover, N = 3t + 1. By
substituting these values in part (a) of Theorem 7, we find that the communication complexity
of protocol O2PSMT satisfies the lower bound given in Theorem 7(a).

2. Case I: u > t: In this case, 6 = u and hence |m| = ¢ = (u+ 1 —t). Moreover, n = 2t + 1.
Son+u = O(n(u—t)) will hold. Hence from Theorem 15, the communication complexity of
protocol O2PSMT will be O(n(u — t)). By substituting the values of n and ¢ in part (b) of
Theorem 7, we find that the communication complexity of protocol O2PSMT satisfies the lower
bound given in Theorem 7(b).

APPENDIX E: Proof of the Properties of O3PSMT
Theorem 17 In Protocol O3PSMT, R will correctly recover m.

PROOF: First note that since n = 3t — 2u + 1 > 2t + 1, any information broadcast by S over the
top band will be received by R correctly. This implies that R correctly receives blinded message
I' and either one of the two (depending upon what S has sent during Phase III): all quadruples
(B, p?, 77, CORRUPTED?) or the message “Entire Bottom band is corrupted”. Now to prove
that R recovers the message m sent by S, we show that S and R shares the same pad Z. S and R
will share Z if (i) A is same at both ends and (ii) R is able to recover polynomials F;(x) for i ¢ A.
Since S sends all valid triples to R over all wires in top band, A will be same at both ends. Now we
show that irrespective of the behavior of 4;, R will always recover all the polynomials.

If A; spares (either does not control or behave passively) at least one wire, say b;, in the bot-
tom band, then S will correctly receive (B?,p’,77) = (B,p,Z) and hence CORRUPTED’ will con-
tain all the wires which were corrupted during first phase. In this case, R will correctly receive
CORRUPTED?, from which it identifies all wires which were corrupted during first phase. R ignores

16



the values received over those wires during Phase I and with the remaining values all the polynomials
can be recovered correctly. On the other hand, if A; corrupts the entire bottom band such that either
S detects that all the received triples are invalid or R detects that his original triple is not present in
the list of triples received by S (at the end of Phase II), then R concludes that entire bottom band is
corrupted. Hence R applies RS decoding on the received vector Y; to correct ¢t —u errors (see Theorem
1) and reconstruct polynomial Fj(z) for i ¢ A. Hence the theorem. O

Theorem 18 In Protocol O3PSMT, m is information theoretically secure.

PrROOF: The message m will be information theoretically secure from A; if the pad Z is infor-
mation theoretically secure. According to the protocol, Z contains F;(0) iff i ¢ A. Notice that
A = U; {ZV|(B7,p?, 1) is a valid triple}. Now a valid triple (B7,p’,Z7) can be either the original
triple (B,p,Z) sent by R or it may be different from (B,p,Z) and generated by A; (who can guess
with non-zero probability). In the former case (B7,p’,Z7) may be eavesdropped by A; during its
transmission over the bottom band. In later case, A; knows (B7,p’, 77) since he himself has generated
them. Hence it is possible that all F;(0)’s with ¢ € A are already exposed to A;. But for remaining
polynomials 4; knows at most ¢ points on them (by listening during first phase) and hence constant
term of each Fj(z) with ¢ ¢ A is information theoretically secure. O

Theorem 19 Protocol O3PSMT sends a message m containing ¢ = n’u field elements by commu-

nicating O(n3u) = O (#%) = O(nl) field elements. Moreover, the protocol is communication

optimal.

PROOF: During Phase I, S communicates P = n?u + ut codewords to R which has communication
complexity of Pn = n3u+ nut = O(n3u) field elements. In Phase II, R sends triple (3, p, Z) through
the bottom band. This incurs a communication cost of O(nt.u+1.u+t.u) = O(n?u). In the worst case,
it may happen that over every wire in bottom band, S receives a distinct valid triple (B7,p/, Z7). Then
communication complexity of Phase III for sending the triples will be O(n?u.n) = O(n3u). Since
message is of size n?u, sending blinded message I' results in a communication cost of O(n3u). Hence
overall communication complexity of Protocol is O(n3u). Thus from Theorem 9, Protocol O3PSMT
is a communication optimal PSMT protocol. O

APPENDIX F: Protocol O6PSMT and The Proof of its Properties

Protocol O6PSMT is given in Table 1.
Theorem 20 In Protocol O6PSMT, R correctly recovers m.

PRrROOF: First note that for each codeword C;, the corresponding N length vector Y;, possessed by R,
differs from C; only at ¢ locations. This is because A; controls at most ¢ wires from top band and
bottom band. With this observation, the correctness proof of this theorem simply follows from the
correctness proof of Protocol O3PSMT (see theorem 17), OPRMT and EXTRAND. O

Theorem 21 In Protocol O6PSMT, m will be information theoretically secure.

PRrROOF: The secrecy of the message follows using similar argument as in Theorem 18 and the properties
of EXTRAND algorithm. O

Theorem 22 Protocol O6PSMT sends a message m containing ¢ = n’u field elements by communi-

cating O ( ) =0 (#{%» =0 (#f“) field elements and hence is communication optimal.

2u—t

PrROOF: During Phase I, R sends @ = m + ut vectors, each of size u, thus communicating
2,2

Qu=0(5=7+ u?t) field elements. During Phase II S communicates ) = 7 + ut codewords

2u t+
to R which incurs a communication cost of Qn = 5.~ +1 + nut field elements. In Phase III, R sends
triple (B, p,Z) through the bottom band. This incurs a communication cost of O(nt.u + l.u + t.u) =
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O(n?u). In worst case it may happen that over every wire in bottom band, S receives a distinct
valid triple (B87,p7,77). Then communication complexity of Phase IV for sending the triples using
Protocol OPRMT will be O(n?u). Similarly sending the blinded message I" of size n?u using protocol
OPRMT results in a communication cost of O(n?u). Hence overall communication complexity of
Protocol O6PSMT is O( nu ). Since the total communication complexity of O6PSMT satisfies

2u—t+1
the lower bound given in Theorem 9, it is a communication optimal PSMT protocol. O
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Protocol O6PSMT (m, ¢, n,u,t)

Phase I: R to S R selects Q = M’fﬁ + ut = ﬁ + ut random wu length vectors Ri,..., Rg such that R; =
(ri1y ..., 7u). Now R sends " component of all the vectors along wire b; in bottom band.

Phase II: S to R S receives Ri,...,Rg and selects Q codewords C4,...,Cq from C such that last u components
of C; is same as R;. This is always possible because every codeword C; corresponds to a 2u degree polynomial F;(z).
Now S sends 5 component of all the codewords over wire f; in the top band.

Phase III: R to S

1. After receiving information over top band, R possesses N length vector (by combining the values sent over
bottom band and the values received over top band) Y; = C; + E; corresponding to codeword C; such that Y;
is different from C; at most at ¢ locations. Let Y = {¥1,...,Yg}.

2. Now R does same computation and communication as in Phase II of Protocol O3PSMT. The only difference
is that here ) contains N = 2t 4+ 1 + u length vectors {Y1,...,Yo} whereas in O3PSMT Y contains n =
3t — 2u + 1 length vectors {Y1,...,Yp}. Notice that FindPseudo-basis will still be able to find out pseudo-
basis. This is because the code C used here has a hamming distance of at least t + 1.

Phase IV: S to R

1. With respect to the triples received through the bottom band, S performs the same computation (not commu-
nication) as done in Phase III of Protocol O3PSMT. That means S identifies the valid triples and for each
valid triple (B%,p?,Z7) finds list of corrupted wires CORRUPTED’. But here there are following differences:
(i) the pad Z is generated in a different manner, (ii) the valid triples, their corresponding list of corrupted
wires and the blinded message are sent in a different manner.

2. Generation of pad Z:
(a) S computes A = U; {Z7|(B%,p?,77) is a valid triple}.
(b) S computes Z" = (2i,...,25,_111) = EXTRANDy 2,—1+1(C;) for each i & A.
2 2

(c) Since [A| < ut and @ = 547 + ut, S has generated at least 5

Z's. Hence concatenating all A
2u—t+1 )
S obtains a pad Z of length at least n2u.

3. Communication done by S:
(a) S merges all the quadruples (B7,p’, 7/, CORRUPTED?) such that (B%,p’,77) is a valid triple into a
list called L and sends it to R reliably by executing Protocol OPRMT.

(b) If there is no valid triple, then S simply sends the message “Entire Bottom band is corrupted”
over all the wires in top band.

(c) S sends the blinded message I' = Z; @ m by executing another instance of Protocol OPRMT where 7,
contains first £ elements from Z.

(d) Since n = 2t + 1 and n — 2t + 2u = Q(n), OPRMT sends message in three phases. R receives all
information communicated by S during Phase IV at the end of Phase VI.

Local Computation by R At The End of Phase VI:

1. R correctly receives all the information that S had sent during Phase IV and computes A in the same manner
as done by S.

2. If either R gets the message “Entire Bottom band is corrupted” or if R finds his original triple (B, p,Z)
is not present in the list of valid triples sent by S, then R does the following:
(a) Conclude that entire bottom band is corrupted and hence in the top band there are at most ¢t — u faults.

(b) Neglect last u components of all ¥; and then recover all C; such that ¢ ¢ A by applying RS decoding
algorithm on truncated Y; and correcting ¢ — u Byzantine faults.

(¢) Compute pad Z in the same way as done by S and recovers m =T @ Z,.

3. If R finds that his original triple (B, p,Z) is present in the list of valid triples sent by S and let (5%, p?,Z7) be
same as (B, p,T), then R does the following;:

(a) Identify all the wires in CORRUPTED as the corrupted wires (including top and bottom band). Notice
that in protocol O3PSMT, a valid CORRUPTED’ contains only the corrupted wires in the top band
while in O6PSMT, it contains all the corrupted wires including top as well as bottom band.

(b) Ignore all information communicated over the wires in CORRUPTED?. Reconstruct all C; such that
i ¢ A. This is possible because (CORRUPTED’| < t. Hence N—|CORRUPTED?| > (t+1+4u) > 2u+1
and each codeword C; is encoded using a polynomial of degree 2u.

(¢) Recover the message m in the same way as described in step 2.

Table 1: Protocol O6PSMT (m, {,n,u,t): n=2t+ 1,5 <u <t =nu
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