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Abstract. We use two parametrizations of points on elliptic curves in
generalized Edwards form x2 + y2 = c2(1 + dx2y2) that omit the x-
coordinate. The first parametrization leads to a differential addition for-
mula that can be computed using 6M + 4S, a doubling formula using
1M + 4S and a tripling formula using 4M + 7S. The second one yields
a differential addition formula that can be computed using 5M + 2S
and a doubling formula using 5S. All formulas apply also for the case
c 6= 1 and arbitrary curve parameter d. This generalizes formulas from
the literature for the special case c = 1.

For both parametrizations the formula for recovering the missing X-
coordinate is also provided.
Keywords. Elliptic curve, Edwards form, addition formula, differential
addition

1 Introduction

Efficient arithmetic (addition, doubling and scalar multiplication) on elliptic
curves is the core requirement of elliptic curve cryptography. It is the corner-
stone in applications such as the digital signature algorithm (DSA), see [10],
and Lenstra’s elliptic curve factoring method [11]. Various ways of representing
elliptic curves have been proposed for the purpose of efficient arithmetic. For an
overview, the reader can consult the standard reference [7] or the online Explicit-
Formulas Database (EFD)1. We have selected some of the top candidates and
summarized them in the table below. Here M (resp. S) refers to multiplication
(resp. a squaring) in the field. We ignore in this paper multiplications by a con-
stant and the additions in the field, since their cost is negligible when compared
to the cost of multiplication or squaring.

With the advent of Edwards coordinates [8], extensive recent work [1–4] has
provided formulas for addition on Edwards form that are more efficient (by a
constant factor) than what is known for other representations. This makes the
Edwards form particularly interesting for cryptographic applications.

1 see http://www.hyperelliptic.org/EFD



Castryck, Galbraith and Farashahi [6] present doubling formulas for Edwards
form with c = 1 like the one given in Corollary 1. They do not consider the case
c 6= 1 and do not provide a general (differential) addition formula.

Gaudry and Lubicz [9] present general efficient algorithms for a much broader
class of curves. In order to adapt their ideas to the context of elliptic curves in
generalized Edwards form, one needs to explicitly express the group law in terms
of Riemann’s ϑ functions. Due to our inability to do so, we derive in this work
formulas for elliptic curves in generalized Edwards form directly. We are in good
company here; Castryck, Galbraith and Farashahi write: “This is an euphemistic
rephrasing of our ignorance about Gaudry and Lubicz’ result, which is somewhat
hidden in a different framework.”

Special cases of our result can also be found on EFD: There are several formu-
las given for c = 1 under the assumption that the curve parameter d is a square
in the field. This restriction on the curve parameter d is annoying in practice,
as the group law on elliptic curves in Edwards form is not complete anymore if
d is a square in the field. The formulas on EFD are on one hand consequences
of [9] but can also be deduced from our general formulas in Theorem 1 and
Corollary 1, as explained at the end of section 3.

Table 1. Some coordinate choices with fast arithmetic

Forms Coordinates Addition Cost Doubling Cost

Short Weierstraß (X : Y : Z) = (X/Z2, Y/Z3) 12M + 4S 4M + 5S
Montgomery form (X : Z) 4M + 1S 2M + 3S
Edwards form (X : Y : Z) 10M + 1S 3M + 4S
Inverted Edwards (X : Y : Z) = (Z/X, Z/Y ) 9M + 1S 3M + 4S
Differential Edwards (Y : Z) 4M + 4S 4S
(c = 1 and d square)

(Y 2 : Z2) 4M + 2S 4S

In this work, we use two parametrizations for elliptic curves in generalized
Edwards form to obtain efficient arithmetic: In the first parametrization a point
on the curve is represented by the projective coordinate (Y : Z). Notice that the
X-coordinate is absent, so we cannot distinguish P from −P . This is indeed sim-
ilar to Montgomery’s approach [12], where he represents a point in Weierstraß-
coordinates by omitting the Y -coordinate. The parametrization used here leads
to a differential addition formula, a doubling formula and a tripling formula on
elliptic curves in generalized Edwards form. The addition formula can be com-
puted using 6M + 4S (5M + 4S in the case c = 1), the doubling formula using
1M + 4S (5S when c = 1) and the tripling formula using 4M + 7S. We also
provide methods for recovering the missing X-coordinate. Compared to earlier
work like [6], [9] or the formulas on EFD, we explicitly consider all formulas also
for the case c 6= 1, even though one would typically use in applications curves
with c = 1.



The second parametrization also omits the X-coordinate. Additionally it uses
the squares of the coordinates of the points only. On elliptic curves in generalized
Edwards form, addition can be done with 5M+2S and point doubling with 5S.
We also provide a tripling formula for this second representation. For point
doubling we get completely rid of multiplications and employ squarings in the
ground field only. This is desirable since squarings can be done slightly faster
than generic multiplications, see for example [7]. This second representation
is best suited when employed in a scalar multiplication. Again we explicitly
consider all formulas also for the case c 6= 1. On EFD several formulas for this
parametrization can be found, but only for the special case c = 1 and d being a
square in the ground field. The idea of this representation can already be found
in Gaudry and Lubicz [9], section 6.2.

The plan of the paper is as follows. We recall the basics of Edwards coordi-
nates in the next section and describe the addition, doubling and tripling formula
in section 3. The formula for recovering the X-coordinate is given in section 4.
The parametrization of the points that uses the squares of the coordinates only
is analyzed in section 5.

2 Edwards Form

We describe now the basics of elliptic curves in generalized Edwards form. More
details can be found for example in [3, 4]. Such curves are given by equations of
the form

Ec,d : x2 + y2 = c2(1 + dx2y2),

where c, d are curve parameters in a field k of characteristic different from 2.
When c, d 6= 0 and dc4 6= 1, the addition law is defined by

(x1, y1), (x2, y2) 7→

(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1 − dx1x2y1y2)

)

. (1)

For this addition law, the point (0, c) is the neutral element. The inverse of a
point P = (x, y) is −P = (−x, y). In particular, (0,−c) has order 2; (c, 0) and
(−c, 0) are the points of order 4. When the curve parameter d is not a square in
k, then the addition law (1) is complete (i.e. defined for all inputs).

3 Representing Points in Edwards Form

As explained in the introduction, we represent a point P on the curve Ec,d using
projective coordinates P = (Y1 : Z1). Write [n]P = (Yn : Zn). Then we have

Theorem 1. Let Ec,d be an elliptic curve in generalized Edwards form defined
over a field k, such that char(k) 6= 2 and c, d 6= 0, dc4 6= 1 and d is not a square
in k. Then for m > n we have

Ym+n = Zm−n

(

Y 2
m(Z2

n − c2dY 2
n ) + Z2

m(Y 2
n − c2Z2

n)
)

,

Zm+n = Ym−n

(

dY 2
m(Y 2

n − c2Z2
n) + Z2

m(Z2
n − c2dY 2

n )
)

.



It can be computed using 6M + 4S. When n = m, the doubling formula is given
by

Y2n = −c2dY 4
n + 2Y 2

n Z2
n − c2Z4

n,

Z2n = dY 4
n − 2c2dY 2

n Z2
n + Z4

n,

which can be computed using 1M + 4S.

On EFD one finds related formulas for c = 1 and d being a square in k. We defer
a detailed study of the relationship between the formulas given there and ours
to the end of this section.

Proof. Let P1 = (x1, y1), P2 = (x2, y2) be two different points on the curve Ec,d.
Since the curve parameter d is not a square in k, the addition law (1) is defined
for all inputs. Let P1 + P2 = (x3, y3) and P1 − P2 = (x4, y4). Then the addition
law (1) gives

y3c(1 − dx1x2y1y2) = y1y2 − x1x2,

y4c(1 + dx1x2y1y2) = y1y2 + x1x2.

After multiplying the two equations above, we obtain

y3y4c
2(1 − d2x2

1x
2
2y

2
1y

2
2) = y2

1y
2
2 − x2

1x
2
2. (2)

Next we substitute x2
1 =

c2
−y2

1

1−c2dy2

1

and x2
2 =

c2
−y2

2

1−c2dy2

2

(obtained from the curve

equation) in (2) yielding

y3y4(−dy2
1y

2
2 + c2dy2

1 + c2dy2
2 − 1) = c2dy2

1y2
2 − y2

1 − y2
2 + c2. (3)

After switching to projective coordinates, we see that for m > n the formula for
adding [m]P = (Ym, Zm) and [n]P = (Yn, Zn) becomes

Ym+n

Zm+n

Ym−n

Zm−n

=
Y 2

m(Z2
n − c2dY 2

n ) + Z2
m(Y 2

n − c2Z2
n)

dY 2
m(Y 2

n − c2Z2
n) + Z2

m(Z2
n − c2dY 2

n )
. (4)

This proves the addition formula. If P1 = P2, we obtain by the addition law (1)

y3c(1 − dx2
1y

2
1) = y2

1 − x2
1.

Similarly, if we substitute x2
1 =

c2
−y2

1

1−c2dy2

1

into the equation above to obtain

y3(cdy4
1 − 2c3dy2

1 + c) = −c2dy4
1 + 2y2

1 − c2.

This proves the doubling formula in Theorem 1 after switching to projective
coordinates. ⊓⊔

We obtain additional savings in the case c = 1:



Corollary 1. Assume the same as in Theorem 1. If c = 1 we have for m > n

Ym+n = Zm−n

(

(Y 2
m − Z2

m)(Z2
n − dY 2

n ) − (d − 1)Y 2
n Z2

m

)

,

Zm+n = −Ym−n

(

(Y 2
m − Z2

m)(Z2
n − dY 2

n ) + (d − 1)Y 2
mZ2

n

)

,

which can be computed using 5M + 4S. For doubling we obtain

Y2n = −(Y 2
n − Z2

n)2 − (d − 1)Y 4
n ,

Z2n = (dY 2
n − Z2

n)2 − d(d − 1)Y 4
n ,

which can be computed using 5S. ⊓⊔

Remark 1. A simple induction argument shows that the computation of the 2j-
fold of a point can be computed using 5jS.

A slight variant of the doubling formula in this Corollary is given by Castryck,
Galbraith and Farashahi [6] in their section 3. On EFD similar doubling formulas
can be found, but only for the special case of d being a square in the ground
field. For general c the formulas of Theorem 1 do not seem to be in the literature.

In the remainder of this section we will explore this relationship in more
detail. We focus here in particular on Corollary 1 since EFD covers the case
c = 1 only. As on EFD we assume now that d = r2 for some r ∈ k. Then we can
write

y2n =
−r2Y 4

2n + 2Y 2
2nZ2

2n − Z4
2n

r2Y 4
2n − 2r2Y 2

2nZ2
2n + Z4

2n

,

where y2n denotes the corresponding affine y-coordinate of the point. Thus we
have

ry2n =
2r/(r − 1) ·

(

r2Y 4
2n − 2Y 2

2nZ2
2n + Z4

2n

)

−2/(r − 1) · (r2Y 4
2n − 2r2Y 2

2nZ2
2n + Z4

2n)
.

If we set A := 1+r
1−r

(rY 2
2n − Z2

2n)2 and B := (rY 2
2n + Z2

2n)2 we can write the
numerator of the last expression as B − A and the denominator as B + A,
yielding the formulas dbl-2006-g and dbl-2006-g-2 from EFD. This can be
computed with 4S, but only for those restricted curve parameters.

The addition formulas dadd-2006-g and dadd-2006-g-2 from EFD can be
deduced in a similar way from our differential addition formula in Corollary 1.

3.1 A Tripling Formula

One also obtains a tripling formula that can be computed using 4M+7S. This is
cheaper than by doing first a doubling and afterwards an addition, which costs
7M + 8S (5M + 9S when c = 1).



Proposition 1. Assume the same as in Theorem 1. Furthermore let char(k) 6=
3. Then we have

Y3n = Yn(c2(3Z4
n − dY 4

n )2 − Z4
n(8c2Z4

n + (Y 2
n (c3d + c−1) − 2cZ2

n)2

− c−2(c4d + 1)2Y 4
n )),

Z3n = Zn(c2(Z4
n − 3dY 4

n )2 + dY 4
n (4c2Z4

n − (Y 2
n (c3d + c−1) − 2cZ2

n)2

+ c−2((c4d + 1)2 − 12c4d)Y 4
n )),

which can be computed using 4M + 7S.

Proof. Let (x3, y3) = 3(x, y) = 2(x, y) + (x, y). Using the addition law (1),
we obtain an expression for y3. Inside the expression, make the substitution

x2 = c2
−y2

1−c2dy2 and simplify to obtain an expression in y only. Then we have

y3 =
y(c2d2y8 − 6c2dy4 + 4(c4d + 1)y2 − 3c2)

−3c2d2y8 + 4d(c4d + 1)y6 − 6c2dy4 + c2
.

Switch to projective coordinates y = Y/Z and rearrange terms. The formula
follows. ⊓⊔

Corollary 2. Assume the same as in Theorem 1. Furthermore let char(k) 6= 3
and assume c = 1. Then we have

Y3n = Yn((dY 4

n
− 3Z4

n
)2 − Z4

n
((2Z2

n
− (1 + d)Y 2

n
)2 + 8Z4

n
− (1 + d)2Y 4

n
)),

Z3n = Zn((Z4

n
− 3dY 4

n
)2 − dY 4

n
((2Z2

n
− (1 + d)Y 2

n
)2 − 4Z4

n
+ (12d − (1 + d)2)Y 4

n
)),

which can be computed using 4M + 7S. ⊓⊔

4 Recovering the x-coordinate

In some cryptographic applications it is important to have at some point both:
x- and y-coordinates. Theorem 2 shows how to obtain them. There have been
results [13, 5] in this direction for other forms of elliptic curves. To recover the
(affine) x-coordinate, we need the following

Proposition 2. Fix an elliptic curve Ec,d in generalized Edwards form such
that char(k) 6= 2 and c, d 6= 0, dc4 6= 1 and d is not a square in k. Let Q = (x, y),
P1 = (x1, y1) be two points on Ec,d. Define P2 = (x2, y2) and P3 = (x3, y3) by
P2 = P1 + Q and P3 = P1 − Q. Then we have

x1 =
2yy1 − cy2 − cy3

cdxyy1(y3 − y2)
, (5)

provided the denominator does not vanish.



Proof. By the addition law (1), we have

c(1 − dxx1yy1)y2 = yy1 − xx1,

c(1 + dxx1yy1)y3 = yy1 + xx1.

Add the two equations and solve for x1, and the Proposition follows. ⊓⊔

The following lemma provides a simple criterion, which tells us when the de-
nominator in formula (5) does not vanish.

Lemma 1. Assume the same as in Proposition 2. Furthermore, let P1, Q be
points whose order does not divide 4. Then the formula (5) holds.

Proof. The points P1 and Q have orders that are not 1, 2, 4, so x, x1, y, y1 6= 0.
Suppose now y2 = y3 (i.e. y-coordinates of P1 + Q and P1 − Q are the same).
By the addition law (1), this implies

yy1 − xx1

c(1 − dxx1yy1)
=

yy1 + xx1

c(1 + dxx1yy1)
.

By solving for d it follows that dy2y2
1 = 1, which is a contradiction since d is not

a square in k.

We are now ready to prove

Theorem 2. Let Ec,d be an elliptic curve in generalized Edwards form defined
over a field k such that char(k) 6= 2, c, d 6= 0, dc4 6= 1 and d is not a square in
k. Let P = (x, y) be a point whose order does not divide 4. Let yn, yn+1 be the
affine y-coordinates of the points [n]P, [n + 1]P respectively. Then we have

xn =
2yynyn+1 − cCn − cy2

n+1

cdxyyn

(

Cn − y2
n+1

) ,

where

A = 1 − c2dy2,

B = y2 − c2,

Cn =
Ay2

n + B

dBy2
n + A

.

Proof. Let [n]P = (xn, yn), where P is not a 4-torsion point on Ec,d. Our task
is to recover xn. By Proposition 2 with P1 = [n]P and Q = (x, y), we may write

xn =
2yyn − cyn−1 − cyn+1

cdxyyn(yn−1 − yn+1)
, (6)



where yn−1,yn+1 are the y-coordinates of the points [n − 1]P and [n + 1]P
respectively. Now the variable yn−1 can be eliminated because of (4). Indeed we
may write using (4) in affine coordinates

yn−1yn+1 =
Ay2

n + B

dBy2
n + A

, (7)

where

A = 1 − c2dy2, B = y2 − c2.

Now from (7), yn−1 can be isolated and put back in (6). This gives

xn =
2yynyn+1(dBy2

n + A) − c(Ay2
n + B) − cy2

n+1(dBy2
n + A)

cdxyyn

(

Ay2
n + B − y2

n+1(dBy2
n + A)

) .

The claim follows. ⊓⊔

5 A parametrization using squares only

The formulas in Theorem 1 show that for the computation of Y 2
m+n and Z2

m+n

it is sufficient to know the squares of the coordinates of the points (Ym : Zm),
(Yn : Zn) and (Ym−n : Zn−m) only. This gives

Theorem 3. Assume the same as in Theorem 1. Then for m > n we have

Y 2
m+n = Z2

m−n ((A + B)/2)2 ,

Z2
m+n = Y 2

m−n

(

(A − B)/2 + (d − 1)Y 2
m(Y 2

n − c2Z2
n)

)2
,

with

A := (Y 2
m + Z2

m)((1 − dc2)Y 2
n + (1 − c2)Z2

n),

B := (Y 2
m − Z2

m)((1 + c2)Z2
n − (1 + dc2)Y 2

n ).

This addition can be computed using 5M + 2S if one stores the squares of the
coordinates only. When n = m, we obtain

Y 2
2n =

(

(1 − c2d)Y 4
n + (1 − c2)Z4

n − (Y 2
n − Z2

n)2
)2

,

Z2
2n =

(

dc2(Y 2
n − Z2

n)2 − d(c2 − 1)Y 4
n + (c2d − 1)Z4

n

)2
,

which can be computed using 5S if one stores the squares of the coordinates only.

Proof. This follows directly from Theorem 1 and elementary calculus. ⊓⊔



A direct adaption of Corollary 1 does not give any speedup. Again on EFD one
finds related formulas for c = 1 and d being a square in k.

We will now sketch the computation of a scalar multiple [s]P in this parametri-
zation. Assume P has affine coordinates (x : y). Then one would proceed as fol-
lows: After changing to projective coordinates (X : Y : Z), two squares (one for
each of the coordinates Y and Z) have to be computed. Now a differential addi-
tion chain is employed to compute the multiple [s]P . During all but the last step
of the computation we store the squares of the coordinates of the intermediate
points only. The last step plays a special role now, since we wish to obtain at the
end the coordinates of the point [s]P and not the square of the coordinates. To
do so, we run the last step using the first parametrization. If we construct from
the beginning the differential addition chain such that for each computation of
Pm+n we have that m − n = 1, we obtain an efficient algorithm for computing
the scalar multiple [s]P on an elliptic curve in generalized Edwards form using
the second parametrization. In order to recover then the x-coordinate one would
have to compute also the scalar multiple [s+1]P and use the recovering formula
from Theorem 2.

Also the tripling formula given in Proposition 1 can be adapted to this second
parametrization. Namely we have

Corollary 3. Assume the same as in Theorem 1. Furthermore, we assume
char(k) 6= 3. Then we have

Y 2
3n = Y 2

n (c2(3Z4
n − dY 4

n )2 − Z4
n(8c2Z4

n + (Y 2
n (c3d + c−1) − 2cZ2

n)2

− c−2(c4d + 1)2Y 4
n ))2,

Z2
3n = Z2

n(c2(Z4
n − 3dY 4

n )2 + dY 4
n (4c2Z4

n − (Y 2
n (c3d + c−1) − 2cZ2

n)2

+ c−2((c4d + 1)2 − 12c4d)Y 4
n ))2,

which can be computed using 4M+7S if one stores the squares of the coordinates
only. ⊓⊔
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