Fuzzy extractors for continuous distributions

Abstract

We show that there is a direct relation between the maximum length of
the keys extracted from biometric data and the error rates of the biometric
system. The length of the bio-key depends on the amount of distinguishing
information that can be extracted from the source data. This information can
be used a-priori to evaluate the potential of the biometric data in the context
of a specific cryptographic application. We model the biometric data more
naturally as a continuous distribution and we give a new definition for fuzzy
extractors that works better for this type of data.

1 Introduction

Databases with biometric information are a serious threat to the privacy of
users. The ability to track users across multiple databases is an example
of this threat. The usual solution of using different passwords in different
systems does not apply for obvious reasons - a person only has a limited
number of biometric identification available: ten fingers, two eyes, etc. If
one of these is compromised nothing can be done to undo the harm. This
means that the template of a user, which stores his biometric information,
needs protection.

Template protection can be used to store securely a biometric identity of a
user. Tracking is no longer possible if different template protection schemes
are used in different databases. A protected template will reveal almost noth-
ing about the biometric data. If by some means a database with secured
biometric data is compromised, the attacker cannot learn anything about the
biometric data. Moreover if such an intrusion is detected the biometric is not
lost, since at any time the protection scheme can be reapplied on the original
data.

As one needs measurements to obtain biometric data, another inherent
problem with biometrics is noise. One cannot use biometric data directly as
a password (or key), since classical cryptography cannot cope with the noisi-
ness of the biometric data. Uniform and reproducible randomness is the main
ingredient for a good password. Unfortunately, biometric measurements do



not fit this directly. Template protection schemes can be applied as a trans-
formation function on biometric data to make the password reproducible. By
this transformation, biometrics can be used as passwords.

In the literature often the source of biometric data is considered to be
either continuous or discrete. Therefore template protection schemes can
be divided in two classes. Representatives of the first class are continuous
source shielding functions [5], the reliable component scheme [7] and the
multi-bit scheme [3]. The fuzzy vault [8] and the secure sketch [4] belong to
the second class.

It is difficult to compare the performance of these schemes because there
is no unified view on the evaluation strategy. All authors estimate the error
rate of their system in terms of FAR and FRR. , but when it comes to eval-
uating the security of the resulting binary sequence different authors have
different opinions. Monrose et al. [6] compute the guessing entropy while
Zhang et al. [9] try to estimate the number of effective bits in the result-
ing key and propose a weighting system for choosing the best combination.
Chang et al. [3] analyze the security of a sketch by investigating the remain-
ing entropy of the biometric data, given that the sketch is made public. The
same approach is taken by [2].

Contribution. Fuzzy extractors [4] where proposed as a general model
capable of describing any template protection scheme that assumes a dis-
crete source initial data. In this paper we extend the scope of the classical
fuzzy extractors to continuous source data. We propose CS-fuzzy extractors
as a unifying view on template protection schemes. This give us new in-
sights. We show that the length and the quality of the bio-key depends on the
amount of distinguishing information that can be extracted from the initial
data. This gives a bound on the number of uniformly distributed bits that can
be extracted from a given set of data. This information can be used a-priori
to evaluate the potential of the biometric data in the context of a specific
cryptographic application.

2 Preliminaries

Before we delve into the differences between discrete and continuous source
biometrics, we need to establish some background first. We start by giving
our notations, as well as some basic definitions. Secondly, we introduce the
fuzzy extractor for a discrete source as given by [2, 4]. Thirdly, we briefly dis-
cuss the chosen model of the continuous source and its implications. Lastly,
we remind the reader of the definitions of biometric error rates common in
the literature.

Notation and Definitions. We will use ; to denote the set of uniformly
distributed binary sequences of length {. When referring to keys extracted



from biometric data we are interested in the probability that an adversary
can guess the value of the key on the first try. The min-entropy or the
predictability of a random variable X denoted by H.,(X) is defined as
the logarithm of the most probable element in the distribution: H(X) =
—logy(max, P(X = x)). The min-entropy tells us the number of nearly
uniform bits that can be extracted from the variable X.

The Kolmogorov distance or statistical distance between two probability
distributions A and B is defined as: SD(A, B) = sup,|Pr(4 = v) —
Pr(B =v)|.

For modelling the process of randomness extraction from fuzzy data
Dodis et al. [4] define the notion of a fuzzy extractor.

The purpose of a fuzzy extractor is to extract robustly a binary sequence
s from a noisy measurement w’ with the help of some public string Q. This
process is presented in figure 1. Enrollment is performed by a function Gen,
that on input of the noise free biometric w and the binary string s,will com-
pute a public string Q. The binary string s can be extracted from the biometric
data itself as in the reliable component scheme, presented in more detail in
section 3.5, or s can be generated independently as in [5]. The dotted lines
in figure 1 illustrate these alternatives.
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Figure 1: A fuzzy extractor.

For a discrete source M endowed with a metric d, the formal definition
of a fuzzy extractor [2, 4] is:

Definition 1 (Fuzzy extractor) An (M, m,l,t,¢€) fuzzy extractor is a pair
of randomized procedures, (Gen, Reg), where:

Gen is a (necessarily randomized) generation function that on input w € M
extracts a private string s€ {0, 1}! and a public string Q, such that for
all random variables W over M such that Ho[W| > m and depen-
dent variables (s, Q) «— Gen[w), it holds that SD|(s,0), (U, Q)] < €

Reg is a regeneration function that given a word w' € M and a public string
Q outputs a string s € {0, 1}, such that for any words w,w' € M
satisfying d(w,w") < t and any possible pair (s,Q) — Genlw], it
holds that s = Reg[w’, Q]



During authentication, function Reg takes as input a noisy measurement
w’ and the public string Q and it will output the binary string s if w and w’
come from the same user.

Distribution modelling. The biometric identity of a user is described by
multiple features. We assume that the features are independent. For simplic-
ity, in this paper all examples and definitions are presented for one feature
only. The extension to higher dimensions is natural.

Let S, (the subscript ¢ meaning authentic) be the probability distribu-
tion that describes a user in the system. We denote with S, the probability
distribution of the whole population; in this case the subscript means global.

We use the Gaussian distribution for both S, and S, since it represents
a common model for real world raw data. The imposter distribution can then
be written as S; = N(ug,0,4). Any user distribution S, is described by a
standard deviation o, and a mean p, drawn from p, € N(pg, 0, — 04).

To estimate w, which represents the biometric identity of a user, multiple
measurements are taken and a mean is estimated. The small perturbations be-
tween measurements hold important information. They represent an estimate
on how far from the mean other genuine samples will be. We can call this
information noise which can be represented as the standard deviation. This
is used to establish suitable probabilities of value acceptance and rejection
area.

A noise free biometric, in the case of a discrete distribution is denoted by
w. When a continuous distribution is assumed, the closest to the notion of w
is j14, the mean of the authentic distribution S,. We will use u, when a noise
free biometric template is computed from continuous source initial data and
w when the initial data is discretely distributed.

For consistency, we use the same notation for a noisy measurement, w’
both for discrete and continuous source data.

Error rates. The error rates of a biometric system are determined by the
accuracy with which the matching engine can determine the similarity be-
tween a measured sample w’ and the expected value p, of distribution S, [1].
We can construct two possible hypotheses:

H, the measured w’ is coming from the authentic user;
H; the measured w’ is not coming from the authentic user;

The matching engine has to decide whether H or H is true. To express
the accuracy of a biometric system the terms false acceptance rate (FAR )
and false rejection rate (FRR ) are used. The false acceptance rate is a type 1
error and represents the probability that H will be accepted when in fact H;
is true. The false rejection rate is a type Il error and represents the probability
that the outcome of the matching engine is H; but Hj is true. In the setting
of figure 2 we have a false acceptance every time another user, from the dis-
tribution Sy is generating a measurement which is in the acceptance region
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Figure 2: Threshold (T1,Ts) determines acceptance and rejection regions

described by the interval (T3, T5). We can then write FAR = fTTl * pdf (Sg)dz,
where pdf stands for probability density function. Every time user S, pro-
duces a sample that is in the rejection area, he will be rejected, thus FRR
=1- ;;2 pdf (Sy)dzx.

Dodis et al. [4] assume that the data source M is discrete for the defini-
tion of fuzzy extractor. However, the class of template protection schemes
that uses continuous sources does not fit this model. Instead of trying to fit
this class by implicitly discretizing the continuous source, the fuzzy extractor
definition should be extended to model both classes. This is the subject of
the next section.

3 Fuzzy extractors for continuous distributions

We show in this section that in the fuzzy extractor (M, m, [, t, €) there is a
natural link between parameter m, the threshold ¢, the length of the resulting
binary sequence [ and ¢ the distance between the distribution of the key and
the uniform distribution. For the cs-fuzzy extractors we choose slightly dif-
ferent parameters which are more natural for biometric data that are suited
for continuous distributions.

3.1 From continuous to discrete sources

Definition 1 relies on a source M with min-entropy m. How can we con-
struct a source with min-entropy m out of a continuous distribution like S,?
A common solution is to divide the measurement axis into intervals. To each
interval d; a discrete string s; will be associated.

Example. In the setting of figure 3 the result of this division is the
discrete distribution D, = (d;),i = 1..n. In figure 3, n is equal to 8.
The public string Q contains the representation of the quantization. The
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Figure 3: Discretization of a continuous distribution

probability of selecting an interval is computed as p; = Pr[Dy = d;] =
/ 4, PAf (S4|Q)dx where the integral is taken over the interval d;. The con-
tinuous distribution S, has been transformed into the discrete distribution
Dy = (d;), i = 1,...,n where n=8. A user S, can be described by only
one authentic interval. We denote with p,.+p the probability associated to
the authentic interval. We chose the authentic interval d; for which the value
Pauth = f 4 pdf (S,)dx is maximized since this describes best our user. In
figure 3, d7 best describes user S,,.

Now we are able to speak of the min-entropy of D, denoted by m and
defined as m = —l0gaPmagz Where prqp = maz;(Pr(Dgy = d;]).

The effects of the discretization on the error rates, the FAR and the FRR
are shown in figure 4. If we associate to user .S, the discrete variable d; the
FAR for this user will be equal to pg,p, in figure 4 the crosshatched area.
The probability of a false rejection is determined by what is left from the
distribution of S, after removing pgq:h, in figure 4 the FRR is the dashed
area.

3.2 Relating min-entropy m and FAR

The above construction using the biometric data creates a tight relation be-
tween the min-entropy m of distribution D, and the error rates of the bio-
metric system. For the output sequence s to have a small chance of guessing
the correct value from the first try we have to maximize the min-entropy by
lowering the values of all the probabilities p;. Unfortunately, by lowering p;
we increase the FRR .

Proposition 1 For the above defined distribution Dy we have m < —logaFAR
with equality when Dayih = Pmazs-



Probability

dl d2 d3 d4 d5 db d7 as
Measurements

Figure 4: Effects on the error rates of discretization of a continuous distribution

Proof: We take Dyar = max;p;. SINCE Dyar > Pauth, WE know that:

m= _1092pma1 < _log2pauth = _ZOQ2FAR

Corrolary 1 FAR < 2™ with equality when poyin = Pmaz-

Fact: m is maximized when the probabilities associated with the discrete
distribution Dy, are uniform.

3.3 Parameters t and FRR

According to definition 1 the Reg[w’, Q] procedure will output the same bi-
nary sequence s as Gen|[w] whenever w and w’ are close. The idea behind
closeness is that w and w’ probably belong to the same user. In definition 1
this is written as d(w, w’) < t, where d is some metric, for example the Eu-
clidian distance or the set difference metric. The value of ¢ is a number. This
value as such, does not say anything about the acceptance or the rejection
probability of a user which, we feel, is more relevant. Also a suitable metric
is not always available in the case of continuous sources.

The probability of correctly identifying that two measurements belong to
the same user is the opposite of a type II error, thus the detection probability
P; =1 —FRR is a suitable generalization of the threshold ¢.

3.4 Relating min-entropy and / to ¢

We show in this section that given the number of bits [ that we want to extract,
and the min-entropy, m = H,(D,) for a feature we can estimate ¢, the
distance of the output sequence distribution to the uniform distribution.

We are interested in the statistical distance between the ideal distribution
of s where the generated key is distributed uniformly, i.e. in U, and the



actual distribution of s given the helper data Q.

e = SD[(s,Q),(U1,Q)]
= sup|P(s€Sj0eQ)— P(s €U0 e Q)

Looking at the last term, since the uniform distribution is independent of the
helper data, we can write

P(selUoeQ)=P(sel)=2""
Introducing the notation P(s,Q) := P (s € S|Q € @), this gives
e = sup|P(s,Q) — 2_1‘ .

— ma sup,(P(s,Q) —27!) when P(s,Q)>27!
= M3\ sup, (27! — P(s,0)) when P(s,0) <2

S

Note that the true value of € will be the largest of these two cases. Studying
the first case, we get

sup (P(s,Q) — 24) = (sup P(S,Q)) —27t=9™m _ 9o

while in the second case we get

sup (2_l — P(s,0)) = 27t~ iI;f(P(S,Q)) <27l

with equality when there exists a key sequence that is never attained. If we
compare the two cases, we see that the first case represents the value of ¢ if
2 m _ 9=l 5 97l je whenm <[ —1.

To conclude, this shows that € can be bounded from above in terms of the
min-entropy m and [ as follows:

o

if m=1,

e <e(m,l) =427 if I—-1<m<l,
27m 27l if m<I-1.

3.5 CS-fuzzy extractors

The above relations lead us to the following definition of the fuzzy extractors
for continuous sources.

Definition 2 An (S,, m, [, FRR) cs-fuzzy extractor (continuous source fuzzy
extractor) for the user distribution S, is a pair of randomized procedures,
“generate” (Gen) and “regenerate” (Reg) with the following properties:



Gen is a (necessarily randomized) generation function that on an input S,
extracts a private string s € {0, 1}! and a public string O, such that for
any user distribution Sy, if (s, Q) < Gen[S,] then SD[(s,0), (U, Q)]
e(m, 1), where e(m, 1) is defined in section 3.4.

N

Reg is a regeneration function that given a measurement v’ sampled from
S, and a public string Q outputs a string s € {0,1}!, s = Reglu', ),
where (s,Q) <« Gen[S,], with probability equal to the detection prob-
ability, Py = 1 — FRR.

Since cs-fuzzy extractors preserve the mechanism of the generate and
regenerate functions as was used in the original fuzzy extractors, any fuzzy
extractor is also a cs-fuzzy extractor. The link between the used parameters
in each model was described in the preceding sections. However, cs-fuzzy
extractors are better suited to handle continuous source biometric data.

4 CS-fuzzy extractors in practice

In order to demonstrate the usefulness of the cs-fuzzy extractor, we take three
prominent template protection schemes for continuous distributions from the
literature and fit them in our model. As we discussed earlier, these template
protection schemes cannot be described in terms of classical fuzzy extractors.

4.1 Reliable component scheme

One of the most intuitive schemes in the area of template protection was
proposed by Tuyls et al. [7] and is known as the reliable component scheme.
We briefly describe this scheme for 1 user.

Probability

0

]
Measurements

Figure 5: Example 1 Reliable component scheme

Gen During enrollment M samples (wy,ws,..wys) are measured. This is
followed by quantization, where a sequence (g1, g2, ..qas) is computed.



Here, each measured value w;, j = 1..M is compared to the imposter
mean [iq, in figure 5, p14 is equal to 0. If w; < pg then g; = 0O else
q; = 1. A feature is called reliable if all ¢;, j = 1..M are equal. Only
in that case will the feature be used. The public string Q represents the
positions of the reliable components.

Reg During authentication, a noisy version of w, w’ is measured. For each
reliable component (we look at Q) its value is compared to j4. The
result of this comparison will represent the key.

This scheme will extract 1 bit from every reliable component, with prob-
ability equal to 1-FRR . Robustness is assured by the fact that only the
features with very small FRR are chosen, as can be seen in figure 5. We can
write the reliable component as a (Sg, 1, 1, FRR) cs-fuzzy extractor, where

—(2—pa)?
Hg
[l eT e dr, pe > p
_J)J- v Ha 9
FRR = (mpa)?

f#ge Wa dr,  flg < fg-

The output bit is uniformly distributed, because the probability of a bit
being equal to O is equal to the probability of the same bit being a 1. The
main merit of this scheme is its robustness. The disadvantage is that there
are many features that are disregarded and depending on the quality of the
data used the total length of the output key is rather short.

4.2 Shielding functions

Linnartz et al. [5] were among the first to suggest how to get keys from con-
tinuously distributed sources. Their technique is inspired by watermarking.
They propose a multiple quantization level system with odd-even bands, see
figure 6.

Gen For one feature, the bit s is embedded by shifting the mean w of the
template distribution to the center of the closest even-odd ¢ interval if
the value of the key bit s is a 1, or to the center of the closest odd-even
q interval if the value of the key bit s isa 0.

The public string Q, called helper data is computed:

0— (2n+1)g—w when s=1
B (2n—1)g—w when s=0

Where n € Z and is chosen such that: —qg < Q < q.
Reg is defined as:

1, when 2ng<w' 4+0<(2n+1)q
0, when (2n—1)¢g<w' + Q< 2ng

Re.g[wl7Q} = {
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Figure 6: Shielding function discretization, embedding a 0 value key bit.

During authentication a noisy feature w’ is extracted. The key bit is
1 if the sum of the noisy feature and the helper data is in an odd-even
interval and is O otherwise. Whenever the measured value has an error
greater than  we can get an error in the key computation.

This scheme can be written as a:

(Sg,1,1, FRR) cs-fuzzy extractor where
(3+4i) q

FRR =0, 2250 [ 20 7 e % da.

2V2 o

The FRR depends on the quantization step g. When ¢ is larger, the noise
tolerance is higher as well. On the other hand, if ¢ is smaller, the FAR goes
down. The output sequence is uniform in this scheme as well.

4.3 Chang multi-bit scheme

Chang et al. [3] extract multiple bits from each feature of a user. They select
distinguishable features to generate more key bits from each feature. For
each feature the left and the right boundaries, L and R are selected so that
with high probability a measurement from any user falls in this interval.

Gen The selected FAR determines for each feature an authentic region, see
figure 7, delimited by 77,75. The whole region L, R is divided in
segments that have a length equal to the segment determined by 7}
and 75. A label is associated with each segment. It can happen that
some redundant segments are added to the left and to the right of L
respectively R to use all labels of a given length. In figure 7 three more
segments with the labels 000, 100 and 011 can be added. In the picture
the genuine interval has label 101. The public string O contains the
description of the intervals and the associated labels.

Reg Every time a user submits his biometric data to the system his feature
will fall in one of the published intervals. The label associated with
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Figure 7: Chang discretization

this interval represents the key of this user. An authentic user will be
in the authentic area with probability 1-FRR. .

This process is repeated for every user, for every feature. Thus they have
|Tp =T |
defined an (S,, m,,FRR) where m = logs f:g”jT:;Tll‘ pdf (Sy)dx and

I = log /=1 The mathematical relation for FRR is 1 — S pdf (Sg)de.

Comments on the distinguishable components. To generate stable
cryptographic keys Chang et al. [3] propose to use only the distinguishable
features for key generation. We show that in this case choosing the distin-
guishable feature makes life easier for an intruder and in a particular case the
intruder can almost certainly guess the authentic feature on the first try.

A feature is called distinguishable if the distance between the imposter
mean and the authentic mean is sufficiently large. In the original paper a
feature is distinguishable if |pg — | > kq - 04. In this scheme the authentic
mean p,, due to the construction is always at the center of the authentic
interval.

The goal of an intruder trying to attack this scheme is to find the authentic
interval with a minimal number of trials. We model two types of intruders.
It is assumed that the first imposter or the type one imposter knows the dis-
tribution of the population (S,). The second type intruder called, fype II also
knows the parameters L and R.

Type I The intruder knows that the authentic area of a user is far away from
the global mean. In this case he can safely disregard the segment
where the mean is situated. This leaves a new probability distribution

p1 Pn
Topo " T—po- 35 the central segment falls out.
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Type II This attacker knows not only S, but he also knows the values of L
and R. In Chang et al. [3] these limits are computed as follows:

L = min(pug —kgog, pla — ka0a)
R

min(pg + kgog, fla + kaoa)

Here k; and £, are natural numbers chosen by the designers of the system.
For example the author recommends for k4 the value 5 so that it covers almost
the entire user distribution.

If the margin L (and the reasoning is the same for R) is somewhere sit-
uated in the right half of a segment we can safely eliminate that segment.
According to the definition L will always be smaller then (,, which is in the
middle of an interval. Thus the attacker can eliminate all intervals for which
the middle value is smaller then L.

Example In figure 8 we show how dangerous this combination can be.
Assume the imposter distribution is divided in 4 intervals (d,ds,ds, dy).
These intervals are published as helper data. The imposter has to guess which
interval is the authentic one. It is assumed that the imposter distribution is
known to the attacker.

Probability

g T

a4 d3 d2 R d1
Measurements

Figure 8: The genuine interval can be guessed from one try.

The attacker can eliminate interval number d3 because it contains the
global mean p, and he knows that a distinguishable feature should be far
away from the global mean.

A type I attacker has 3 candidates for the correct authentic interval. How-
ever, the three intervals have different probabilities associated so the order of
guessing will be: ds, d4, dy. In this case he is lucky from the first trial.

A type II attacker also knows the value of L and RR. The authentic mean
is situated at the center of the authentic interval. The interval d, cannot be
the authentic one since its middle value is smaller then L. Thus the attacker
can eliminate d4. The same reasoning holds for R which eliminates d;.
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As a result the intruder now has only one candidate for the authentic
interval, namely ds.

5 Conclusion and Future Work

Fuzzy extractors are a theoretical tool for modelling and comparing template
protection schemes which use a discrete source. We generalize the definition
to cs-fuzzy extractors, which can also handle the continuous source cases.
Our model can cope with both classes of template protection schemes. Bio-
metric authentication systems are evaluated using the false acceptance rate
and the false rejection rate. The link between the two was hitherto not obvi-
ous even though they refer to the same data.

In this paper we show, for the first time that there is a natural connection
between the false acceptance rate, false rejection rate and the parameters used
to evaluate a template protection scheme implemented on the same data.

We also show that the error rates have a direct influence on the length and
robustness of the key extracted from the features of a user.

In this paper we only consider the one dimensional case. However, bio-
metric data contains multiple features for each user. For generalizing to mul-
tiple independent features, one approach is to analyze each dimension in-
dependently. In this case, the relationship between the min-entropy and the
FAR is as expected: the more dimensions we have, the lower the FAR is
and the number of bits that can be extracted increases. However, the FRR
increases with the number of dimensions that are used. Therefore, this may
not be the best approach for aggregating multiple features. Zhang et al [9]
propose a better approach which can reduce both the FAR and the FRR by
simultaneously analyzing all dimensions.

As future work we want to investigate the influence of feature aggregation
on the length and robustness of the key.

References

[1] Ruud Bolle, Jonathan Connell, Sharanthchandra Pankanti, Nalini Ratha,
and Andrew Senior. Guide to Biometrics. SpringerVerlag, 2003.

[2] Xavier Boyen. Reusable cryptographic fuzzy extractors. In Vijayalak-
shmi Atluri, Birgit Pfitzmann, and Patrick Drew McDaniel, editors, ACM
Conference on Computer and Communications Security, pages 82-91.
ACM, 2004.

[3] Yao-Jen Chang, Wende Zhang, and Tsuhan Chen. Biometrics-based
cryptographic key generation. In /CME, pages 2203-2206. IEEE, 2004.

[4] Yevgeniy Dodis, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. In
Christian Cachin and Jan Camenisch, editors, EUROCRYPT, volume

14



(5]

(6]

(7]

(8]

(9]

3027 of Lecture Notes in Computer Science, pages 523-540. Springer,
2004.

Jean-Paul M. G. Linnartz and Pim Tuyls. New shielding functions to en-
hance privacy and prevent misuse of biometric templates. In Josef Kit-
tler and Mark S. Nixon, editors, AVBPA, volume 2688 of Lecture Notes
in Computer Science, pages 393—-402. Springer, 2003.

Fabian Monrose, Michael K. Reiter, Qi Li, and Susanne Wetzel. Crypto-
graphic key generation from voice. In IEEE Symposium on Security and
Privacy, pages 202-213, 2001.

Pim Tuyls, Anton H. M. Akkermans, Tom A. M. Kevenaar, Geert Jan
Schrijen, Asker M. Bazen, and Raymond N. J. Veldhuis. Practical bio-
metric authentication with template protection. In Takeo Kanade, Anil K.
Jain, and Nalini K. Ratha, editors, AVBPA, volume 3546 of Lecture Notes
in Computer Science, pages 436—446. Springer, 2005.

Umut Uludag, Sharath Pankanti, and Anil K. Jain. Fuzzy vault for fin-
gerprints. In Takeo Kanade, Anil K. Jain, and Nalini K. Ratha, editors,
AVBPA, volume 3546 of Lecture Notes in Computer Science, pages 310—
319. Springer, 2005.

Wende Zhang, Yao-Jen Chang, and Tsuhan Chen. Optimal thresholding
for key generation based on biometrics. In ICIP, pages 3451-3454,2004.

15



