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Abstract. Direct anonymous attestation (DAA) is a special digital sig-
nature primitive, which provides a balance between signer authentication
and privacy. One of the most interesting properties that makes this prim-
itive attractive in practice is its construction of signers. The signer role of
DAA is split between two entities, a principal signer (a trusted platform
module (TPM)) with limited computational capability and an assistant
signer (a computer platform into which the TPM is embedded) with
more computational power but less security tolerance. Our first contri-
bution in this paper is a new DAA scheme that requires very few TPM
resources. In fact the TPM has only to perform two exponentiations for
the DAA Join algorithm and three exponentiations for the DAA Signing
algorithm. We show that this new scheme has better performance than
the existing DAA schemes and is provable secure based on the ¢-SDH
problem and DDH problem under the random oracle model. Our second
contribution is a modification of the DAA security model defined in [13]
to cover the property of non-frameability.

Keywords: direct anonymous attestation, trusted platform module, bi-
linear map.

1 Introduction

Many types of digital signatures have been developed to achieve signer authenti-
cation as well as signer privacy. Generally speaking, there are three categories of
signature primitives depending on which type of public keys is used for signature
verification. Given a signature, if a verifier makes use of the signer’s public key,
like an ordinary signature scheme, that shows the signer’s unique information
and therefore this type of signatures does not provide signer privacy. If a verifier
makes use of a set of public keys each binding to one potential signer, such as
ring signatures, designated verifier signatures and concurrent signatures, signer
privacy is held but the level of privacy is dependent on the size of the public
key set. If a verifier makes use of a group public key, such as group signatures
and Direct Anonymous Attestation (DAA), signer privacy is also held and the
level of privacy is dependent on the size of the group. When the size of a group
is very large, for example all PCs from a well-known manufacturer, the third
category will be the most suitable solution.

The concept and a concrete scheme of DAA were first introduced by Brick-
ell, Camenisch, and Chen [11] for remote anonymous authentication of a trusted



computing platform. The first DAA scheme was adopted by the Trusted Com-
puting Group (TCG), an industry standardization body that aims to develop
and promote an open industry standard for trusted computing hardware and
software building blocks. The DAA scheme was specified in the TCG TPM
Specification Version 1.2 [38] that has recently been adopted by ISO/IEC as an
international standard [28]. A historical perspective on the development of DAA
was provided by the DAA authors in [12].

A DAA scheme involves a set of issuers, signers, and verifiers. An issuer is in
charge of verifying the legitimation of signers and of issuing a DAA credential
(also called a DAA membership credential) to each signer. A signer can prove
the membership to a verifier by providing a DAA signature. The verifier can
verify the membership credential from the signature but he cannot learn the
identity of the signer. The following two unique properties make DAA attractive
in practice.

The first one is that the signer role of DAA is split between two entities, a
principal signer with limited computational and storage capability, e.g. a trusted
platform module (TPM), and an assistant signer with more computational power
but less security tolerance, e.g. an ordinary computer platform (namely the Host
with the TPM embedded in). The TPM is the real signer and holds the secret
signing key, whereas the host helps the TPM to compute the signature under
the credential, but is not allowed to learn the secret signing key and to forge
such a signature without the TPM involvement.

The second one is to provide different degrees of privacy. A DAA scheme can
be seen as a special group signature scheme without the feature of opening the
signer’s identity from its signature by the issuer. Interactions in DA A signing and
verification are anonymous, that means the verifier, the issuer or both of them
colluded cannot discover the signer’s identity from its DAA signature. Instead
of full-traceability as held in group signatures [5], DAA has user-controlled-
traceability, that we mean the DAA signer is able to control if a verifier enables
to determine whether any two signatures have been produced by the same signer.
Moreover, the signer and verifier may negotiate as to whether or not the verifier
is able to link different signatures signed by the signer.

DAA has drawn a lot of attention from both cryptographic researchers and
industry. Many researchers proposed to use DAA in different applications; for
instance, Pashalidis and Mitchell showed how to use DAA in a single sign-on
application [34], Balfe, Lakhani and Paterson utilized a DAA scheme to achieve
peer-to-peer networks [3], and Leung and Mitchell use a DAA scheme to build
an authentication scheme for mobile environment [31]. Researchers have worked
on security analysis of DAA; for example [2,30,35,37]. Researchers have also
worked on performance, implementation and revocation of DAA, e.g. [15,17].

The original DAA scheme [11] and another DAA scheme by Ge and Tate [27]
are based on the strong-RSA problem. We call them RSA-DAA for short. In an
independent work [18], Canard and Traore proposed the concept of list signa-
tures, in which signatures within a certain time frame are linkable. This property
is similar to the user-controlled-traceability in DAA. Also in [18], the authors



proposed a concrete list signature scheme, that, as the same as the first DAA
scheme, is based on the strong RSA problem.

Recently, many researchers have been working on how to create DA A schemes
with elliptic curves and pairings. We call these DAA schemes ECC-DAA for
short. Generally speaking, ECC-DAA is more efficient in both computation cost
and communication cost than RSA-DAA. Two of the most significant benefits
are that the TPM’s operation is much simpler and the key/signature length is
much shorter in ECC-DAA than in RSA-DAA.

To our best knowledge, there are five ECC-DAA schemes available. The first
one was proposed by Brickell, Chen and Li [13, 14]. This scheme is based on sym-
metric pairings. For the purpose of increasing implementation flexibility and ef-
ficiency, Chen, Morrissey and Smart proposed two extensions of this scheme [21—
23]. Their schemes are based on asymmetric pairings. A flaw in the first one was
pointed out by Li and further discussed in [20, 23]. Security of these three DAA
schemes are based on the LRSW problem [33] and DDH problem. The other two
DAA schemes were proposed by Chen and Feng [24] and Brickell and Li [16],
respectively. Security of these two schemes are based on the ¢-SDH problem [8]
and DDH problem.

We have two contributions in this paper. The first one is a new ECC-DAA
scheme, which takes the advantages of multiple existing pairing-based DAA
schemes. More specifically, our new scheme is a modification of the last two
DAA schemes above. One of the most significant benefits is that the scheme
requires very few TPM resources because it places a small computational re-
quirement on a TPM. In fact the TPM has only to perform two exponentiations
for the DA A Join protocol and three exponentiations for the DAA Signing proto-
col. This computational workload is equivalent to a couple of ordinary standard
digital signatures, such as EC-DSA or EC-SDSA [29].

We will give some comparison between the proposed scheme and all the exist-
ing ECC-DAA schemes, and show that this new scheme has better performance
than all the existing schemes. We will also provide a formal security proof of
the scheme, based on the ¢-SDH problem and DDH problem under the random
oracle model. The second contribution is a modification of the DAA security
model defined in [13] to cover the property of non-frameability.

The rest of this paper is organized as follows. We first introduce some pre-
liminaries in the next section, including the formal definition and security model
of DAA, and definitions of pairings and relevant hard problems. We then spec-
ify our new DAA scheme in Section 3 and the corresponding security proofs in
Section 4. We show some comparison between this scheme and all the existing
ECC-DAA schemes in Section 5 that demonstrates the proposed scheme is the
most efficient DAA scheme so far. We conclude the paper in Section 6.

2 Preliminaries

Throughout the paper, we will use some standard notation as follows. If S is
any set then we denote the action of sampling an element from S uniformly at



random and assigning the result to the variable z as x«S. If A is any algorithm
then we denote the action of obtaining x by running A on inputs y1,...,y, as
x — A(y1,-..,yn). We denote concatenation of two date strings z and y as z||y.
We write {0, 1}* for the set of binary strings of length ¢ and {0,1}* for the set
of binary strings of arbitrary length.

2.1 Formal definition and security model of DAA

We recall the formal definition of DAA and modify the DAA security model
described in [13] by adding the property of non-frameability (as described in [7])
or called exculpability (as described in [1]), i.e., the dishonest issuer and signers
together are unable to create a judge-accepted proof that an honest signer pro-
duced a certain valid signature oy, e.g. it can be linked to some given signature
o1 signed by the honest signer, unless this honest signer really did produce this
signature og.

A DAA scheme involves four types of players: a set of DAA issuers i €
J, TPM m; € 9, host h; € $ and verifier v; € U. The index values, k,1, j,
are polynomial. m; and h; form a computer platform in the trusted computing
environment and share the role of a DAA signer. The following three cases
are considered in the security model: (1) neither m; nor b; is corrupted by an
adversary, (2) both of them are corrupted, and (3) b; is corrupted but not m,.
Like in other DAA papers, we do not consider the case that m; is corrupted but
not h;, because m; plays a principal role of the signer, i.e. holding the private
signing key. Throughout the paper, for the purpose of simplicity, we may omit
some of the index values if it does not occur any confusion; for example, we make
use of i instead of ig.

A DAA scheme DAA = (Setup, Join, Sign, Verify, Link) consists of the follow-
ing five polynomial-time algorithms and protocols:

— Setup: On input of a security parameter 1%, i uses this randomized algorithm
to produce a pair (isk, par), where isk is the issuer’s secret key, and par is the
global public parameters for the system, including the issuer’s public key ipk,
a description of a DAA credential space C, a description of a finite message
space M and a description of a finite signature space 2. We will assume that
par are publicly known so that we do not need to explicitly provide them as
input to other algorithms.

— Join: This protocol, run between a signer (m;, h;) and an issuer i, consists of
two randomized algorithms, namely Join; and Join;. m; uses Join; to produce
a pair (tsk;,comm;), where tsk; is the TPM’s secret key and comm; is a
commitment of tsk;. On input of comm; and isk, i uses Join; to produce cre;,
which is a DAA credential associated with tsk;. The value cre; is given to
both m; and b;, but the value tsk; is known to m; only.

— Sign: On input of tsk;, cre;, a basename bsn; (the name string of v; or a
special symbol L), and a message m that includes the data to be signed and
the verifier’s nonce ny for freshness, m; and h; run this protocol to produce
a randomized signature ¢ on m under (tsk;,cre;) associated with bsn;. The
basename bsn; is used for controlling the linkability.



— Verify: On input of m, bsn;, a candidate signature o for m, and a set of rogue
signers’ secret keys Roguelist, b; uses this deterministic algorithm to return
either 1 (accept) or 0 (reject). Note that how to build the set of RogueList is
out the scope of the DAA scheme.

— Link: On input of two signatures op and o1, v; uses this deterministic algo-
rithm to return 1 (linked), 0 (unlinked) or L (invalid signatures). Link will
output L if, by using an empty RogueList (which means to ignore the rogue
TPM check), either Verify(og) = 0 or Verify(o1) = 0 holds. Otherwise, Link
will output 1 if signatures can be linked or 0 if the signatures cannot be
linked. Note that, unlike Verify, the result of Link is not relied on whether
the corresponding tsk € Roguelist or not.

In this security model, a DAA scheme must hold the notions of correctness,
user-controlled-anonymity and user-controlled-traceability. They are defined as
follows.

Correctness If both the signer and verifier are honest, that implies tsk; &
RoguelList, the signatures and their links generated by the signer will be ac-
cepted by the verifier with overwhelming probability. This means that the above
DAA algorithms must meet the following consistency requirement. If

(isk, par) < Setup(1"),
(tsk;, cre;) < Join(isk, par), and
(my, 0p) «— Sign(my, bsn;, tsk;, cre;, par)|p—{0,1},

then we must have

1 « Verify(my, bsnj, oy, par, RogueList)|,— (0,1} and
1 « Link(og, 01, par) |psn, .1 -

User-Controlled-Anonymity The notion of user-controlled-anonymity is de-
fined via a game played by a challenger C and an adversary A as follows:

— Initial: C runs Setup(1?) and gives the resulting isk and par to A. Alterna-
tively, C receives par from A with a request for initiating the game, and then
verifies the validation of the par by checking whether each element of the par
is in the right groups or not.

— Phase 1: C is probed by A who makes the following queries:

e Sign. A submits a signer’s identity ID, a basename bsn (either L or a
data string) and a message m of his choice to C, who runs Sign to get a
signature o and responds with o.

e Join. A submits a signer’s identity I D of his choice to C, who runs Joiny
with A to create tsk and to obtain cre from A. C verifies the validation
of cre and keeps tsk secret.

e Corrupt. A submits a signer’s identity ID of his choice to C, who re-
sponds with the value tsk of the signer.



— Challenge: At the end of Phase 1, A chooses two signers’ identities I Dy and
IDq, a message m and a basename bsn of his choice to C. A must not have
made any Corrupt query on either I Dy or I D1, and not have made the Sign
query with the same bsn if bsn # | with either 1Dy or ID;. To make the
challenge, C chooses a bit b uniformly at random, signs m associated with
bsn under (tsky,crep) to get a signature o and returns o to A.

— Phase 2: A continues to probe C with the same type of queries that it made
in Phase 1. Again, it is not allowed to corrupt any signer with the identity
either I Dy or ID;, and not allowed to make any Sign query with bsn if
bsn # | with either IDg or ID;.

— Response: A returns a bit ¥'. We say that the adversary wins the game if
b=1"0.

Definition 1. Let A denote an adversary that plays the game above. We denote
by Adv[ALR%] = |Pr[b) = b] — 1/2| the advantage of A in breaking the user-
controlled-anonymity of DAA. We say that a DAA scheme is user-controlled-
anonymous if for any probabilistic polynomial-time adversary A, the quantity
Adv[AL] is negligible.

Note that a value is negligible means this value is a function e(¢), which is
said to be negligible in the parameter t if V ¢ > Z-<o 3 t. € Ry such that
Vit >te,e(t) <t e

User-Controlled-Traceability The notion of User-Controlled-Traceability is
defined via a game played by a challenger C and an adversary A as follows:

— Initial: There are two initial cases. In Initial Case 1. C executes Setup(1')
and gives the resulting par to A, and C keeps isk secret. In Initial Case 2. C
receives par from A and does not know the value of isk.

— Probing: C is probed by A who makes the following queries:

e Sign. The same as in the game of user-controlled-anonymity.

e Semi-sign. A submits a signer’s identity ID along with the data trans-
mitted from h; to m; in Sign of his choice to C, who acts as m; in Sign
and responds with the data transmitted from m; to bh; in Sign.

e Join. There are three join cases of this query; the first two are used
associated with the Initial Case 1, and the last one is used associated
with the Initial Case 2. Suppose that A does not use a single ID for
more than one join case or more than one time.

x Join Case 1: A submits a signer’s identity I.D of his choice to C, who
runs Join to create tsk and cre for the signer, and finally C sends cre
to A and keeps tsk secret.

x Join Case 2: A submits a signer’s identity I'D with a tsk value of
his choice to C, who runs Join; to create cre for the signer and puts
the given tsk into the list of Roguelist. C responds 4 with cre.

x Join Case 3: A submits a signer’s identity I.D of his choice to C, who
runs Join; with A to create tsk and to obtain cre from A. C verifies
the validation of cre and keeps tsk secret.



e Corrupt. This is the same as in the game of user-controlled-anonymity,
except that at the end C puts the revealed tsk into the list of RoguelList.
— Forge: A returns a signer’s identity 1D, a signature o, its signed message m
and the associated basename bsn. We say that the adversary wins the game
if either of the following two situations is true:
1. With the Initial Case 1 (A does not have access to isk),

(a) Verify(m,bsn, o, Roguelist) = 1 (accepted), but o is neither a re-
sponse of the existing Sign queries nor a response of the existing
Semi-sign queries (partially); and/or

(b) In the case of bsn # L, there exists another signature ¢’ associated
with the same identity and bsn, and the output of Link(o,0’) is 0
(unlinked).

2. With the Initial Case 2 (A knows isk), the same as the item (a), in the
condition that the secret key tsk used to create ¢ was generated in the

Join Case 3 (i.e., A does not have access to tsk).

Definition 2. Let A be an adversary that plays the game above. We denote
Adv[A%%S] = Pr[A wins| as the advantage that A breaks the user-controlled-
traceability of DAA. We say that a DAA scheme is user-controlled-traceable if
for any probabilistic polynomial-time adversary A, the quantity Adv[AR%S] is
negligible.

Note that in the above game of the user-controlled-traceability, we allow the
adversary to corrupt the issuer. This is an important difference from the game
in [13], since it covers the requirement of non-frameability or called exculpabilty.

2.2 Pairings and relevant hard problems

Our new DAA scheme is based on asymmetric pairings. As discussed in [21], it
will avoid the poor security level scaling problem in symmetric pairings and allow
one to implement the DA A scheme efficiently at hight security levels. Throughout
we let G = (P), Gy = (Q) and Gt be groups of large prime exponent p ~ 2¢ for
security parameter t. All the three groups will be written multiplicatively. If G
is some group then we use the notation G* to mean the non-identity elements
of G.

Definition 3 (Pairing). A pairing (or bilinear map) is a map t:GyxGo—Grp
such that:

1. The map t is bilinear. This means that VP, P' € G, and VQ, Q' € Gy that
- tA(PP/>Q) :f(P,Q) Lt(Pva) € Gr.
— {(P, Q- Q) =1P,Q) t(P,Q") € Gr.
2. The map t is non-degenerate. This means that
— VP € G3Q € Gy such that {(P,Q) # g, € Gr.
— VQ € GS3P € Gy such that t(P,Q) # 1g, € Gr.
3. The map t is computable i.e. there exist some polynomial time algorithm to
compute t(P,Q) € Gr for all (P,Q) € Gy x Ga.



Our DAA scheme is based on the pairing based signature scheme that is
used by Delerablee-Pointcheval [25] as a group membership certificate and also
mentioned by Boneh-Boyen-Shacham in [9] as an alternative group member cre-
dential. This scheme (called the BBS signature scheme in the later part of this
paper) is given by the following triple of algorithms:

— KeyGeneration: Select P, Po«Gq, QG2 and w27, and compute X —
Q" € Ga. The public key is the tuple (P;, Py, @, X) and the private key is z.

— Signing: On input of a message m € Z, the signer chooses e<7, and
computes A« (P; - Py*)Y/(@+€) € G;. The signature on m is o+ (A4, e).

— Verification: To verify a signature o on a message m the verifier checks
whether £(A4, X - Q°) = {(P, - PJ", Q).

The security of the above signature scheme is related to the hardness of the
¢-SDH problem introduced by Boneh and Boyen [8]. The ¢-SDH problem in
(G1,Gy) is defined as follows:

Definition 4 (¢-SDH). Given a (q+ 2)-tuple (P,Q,QI,Qg”Z,...,QIq) € Gy x
Gg“ as input output a pair (e, P/(*+€)) where e € Zy. An algorithm A has
advantage € in solving ¢-SDH in (G1,Gz) if

PAP,Q,Q%, Q% , ... Q"") = (e, PY/=+))] > ¢,

where the probability is over the random choice of generator Q in Go (with P «—
Y(Q)), of x in Z; and of the random bits of A. We say that the (q,t,€)-SDH
assumption holds in (G1,Gs) if no t-time algorithm has advantage at least € in
solving the q-SDH problem in (G1,Gs).

As the same as the DAA scheme in [23], our DAA scheme requires the DDH
problem for G; to be hard. The formal definition of this problem is defined as
follows:

Definition 5 (G;-DDH). We define the Adv° () of an G1-DDH adversary

A against the set of parameters (G1,G2,Gr, P,Q,p,t) as

|Pr [2,y, 2Zp; X —aP,Y —yP, Z—2zP; A(G1,G2,Gr, i, P,Q, X, Y, Z,p) = 1]
—Pr [z,y«Zy; X—xP,Y —yP; Z—zyP; A(G1,G2,Gr,t, P,Q, X, Y, Z,p) = 1]|

We then say a tuple (G1,Go, Gr, P,Q, p,1) satisfies the DDH assumption for G,
if for any p.p.t. adversary A its advantage AdeDH(t) is negligible in t.

Often this problem in the context of pairing groups is called the external Diffie—
Hellman problem, or the XDH problem.



3 The Proposed DAA Scheme

In this section, we give a detailed description of the new DAA scheme. Before
proceeding we note a general point which needs to be born in mind for each
of the following protocols and algorithms. Every group element received by any
party needs to be checked that it lies in the correct group, and in particular does
not lie in some larger group which contains the specified group. This is to avoid
numerous attacks such as those related to small subgroups etc (e.g. [10,32]).
In asymmetric pairings this is particularly important since G; and Gy can be
considered as distinct subgroups of a large group G. If transmitted elements are
actually in G, as opposed to G; and Go, then various properties can be broken
such as anonymity and linkability.

Hence, our security proofs implicitly assume that all transmitted group el-
ements are indeed elements of the specified groups. For the situation under
consideration, namely Type-III pairings [26], efficient methods for checking sub-
group membership are given in [19]. Note, we do not count the cost of these
subgroup checks in our performance considerations later on, as their relative
costs can be quite dependent on the specific groups and security parameters
under consideration.

3.1 The Setup Algorithm
On input of the security parameter 1, the setup algorithm executes the following:

1. Select three groups, G1, Gy and G, of sufficiently large prime order p along
with a pairing ¢ : G; x Gy — Grp. Select four random generators, Py, P,
P; and Q, such that G; = (Py) = (P,) = (P3) and Gy = (@) and compute
Ty = t(P,Q), To = t(P,Q) and T3 = £(Ps, Q). Select five hash functions
Hy :{0,1}* — Z,, Hy : {0,1}* — Z,, H3 : {0,1}* — Gy, Hy : {0,1}* — Z,
and Hs : {0,1}* > Z,,.

2. For each issuer i € J, select an integer x < Z, and compute X = Q* € G,
and Ty = f(Pg,X). The issuer secret key isk is assigned to be z and the
corresponding public key ipk is assigned to be X.

3. For each TPM m € 9, select a sufficiently large integer DAAseed at random
(e.g. choose DAAseed from {0,1}") and keep it inside of the TPM secretly.

4. Describe a DAA credential space C, a finite message space M and a finite
signature space Y. The spaces C and X will be defined in the Join protocol
and Sign protocol respectively. The space M is dependent upon applications.

5. Finally, the system public parameters par are set to be (Gy, Go, Gr, p, t,
P17 PQ, Pg, Q, Tl, TQ, T‘g7 T‘;]:7 I’Il7 HQ, H3, H4, H5, ka) together with C, M
and X, and are published.

The group order p is selected so that solving the G;-DDH problem or the g-
SDH problem takes time 2¢. The three generators Py, P, Ps are selected so that
the discrete logarithm relation between each other, e.g. logp, P, is unknown.
Including the four pairing values, T, T3, T3 and T}, in the published par is



optional; alternatively these values are computed by hosts and verifiers. To make
sure these four values are formed correctly, it is recommended that each host
and verifier should compute them once before storing them with other values of
par.

We do not specify that issuers supply a proof of correctness of their public
keys, i.e. that they know the underlying secret key value, or that a given user
checks the correctness of the issuer public keys. Instead, during the join protocol,
the correctness of issuer public keys are verified for any DAA credential issued
by a given issuer. Also during the verification algorithm, the correctness of issuer
public keys are verified for any signature produced from such a credential issued
by a given issuer.

The value DAAseed is created by a given TPM and never leave the TPM. We
assume that prior to any system setup each TPM has its private endorsement key
SK embedded into it and that each issuer has access to the corresponding public
endorsement key PK. This key pair is used to build up an authentic channel
between the TPM and issuer in the following Join protocol.

3.2 The Join Protocol

This protocol is run between a given TPM m € 91, the corresponding Host
h € $H and an Issuer i € J. We first give an overview of how a general Join
protocol proceeds. There are 3 main stages to a Join protocol. First the TPM m
generates a DAA secret f € Z, using the value K; provided by the issuer, an
account number cnt provided by the host and its internal secret seed DAAseed’.
The TPM then computes a commitment on this value, i.e. F = sz € G, along
with a proof of possession of this value, i.e. (v, w), and passes the commitment
and proof to its Host who adds these to a list of commitments and forwards
them to the Issuer. In the second stage the issuer performs some checks on
the commitment and proof it receives and, if these correctly verify, computes a
credential, cre, and then sends it to the host. The final stage of a Join protocol
is the Host verifies the correctness of the credential.

We note that one of the reasons why our DAA scheme is more efficient than
the DAA schemes in [16,24] is that we make use of a simplified construction of
the DAA credential cre. In our scheme cre = (A, e) where A = (P; - Pg)l/("”e),
but in the both schemes of [16,24], cre = (A, e, y) where A = (Py - PJ . PY)1/(+e)
and the value y is contributed by both the TPM and Issuer. Our security proof in
Section 4 will show that our cre construction is sufficient for achieving required
security features of the new scheme.

Our protocol proceeds as shown in Figure 1. The following notes should be
kept in mind when examining this protocol.

! In this paper, we refer the value K; as the identifier of the issuer i. Note that for a
given issuer a TPM could compute many values of f, dependent on the values of K;
and cnt. The purpose of using K; and cnt can be found in [11, 12].
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TPM (m) Host () Issuer (i)

nr—{0,1}*
str—X||P1||Po|| P3||Q|nr <4 —q req—ny
f—H,(DAAseed||cnt|| K1)
ULy
F—Pf;U—Py
v Hy (str||F||U)
w—u + f-v (mod p)
comm«—(F,v,w,ny) comm _ comm _ If n; & {req}, or

U'—py P
str—X || Py || P2 || P3[|QlIm 1
v # Ha(str||[F||U")

then abort

e—Zp
A—(Py _F)l/(m+e)
If{(A, X -Q°) < C& cre—(A, e)
#1i(P1 - F,Q)
then abort

Fig. 1. The Join Protocol

— We note that the nonce ny on which the proof (v, w) is generated must be one
that was sent out by the issuer. The host reminds the issuer of the value of
ny it was sent in comm,.4 and the issuer then checks this against its records.

— The triple (F,v,w) is essentially a proof of knowledge of the discrete loga-
rithm of the value F'. In contrast with the RSA-DAA schemes [11, 27] we do
not require a relatively complicated proof of knowledge of the correctness of
a given commitment. Instead, the proof of knowledge is provided by a very
efficient Schnorr signature [36] on the value F' computed using the secret key
f. This is the same as in some existing pairing-based DAA schemes [13, 21,
23].

— The communication between the TPM and issuer is via the host. However,
this communication must be authentic, that we mean the issuer must be sure
that he only creates the DAA credential for a genuine TPM. An authentic
channel between the TPM and issuer can be built by using the TPM en-
dorsement key pair (SK, PK). We suggest using the same mechanism as in
the RSA-DAA scheme [11, 38] to achieve this.

— The credential computed by the issuer i is the BBS signature on the value f
signed in a blind manner, that we mean the issuer i does not known this value,
although i is convinced of the possession of f from verifying its commitment.
Once a credential is issued from i, the Host h; verify that this credential is
correctly formed.
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3.3 The Sign Protocol

This protocol is run between a given TPM m € 9t and the corresponding Host
h € 9. During the protocol m and h work together to produce a DAA signature
on some message. The signature should prove knowledge of a discrete logarithm
f, knowledge of a valid credential cre and that this credential was computed for
the same value f by a given Issuer i € J. We note that the Host will know a lot
of the values needed in the computation and will be able to take on a lot of the
computational workload. However, if the TPM has not had its secret f published
(i.e. it is not a rogue module) then the Host h will not know f and will be unable
to compute the whole signature without the aid of the TPM. Therefore, we say
that the TPM is the real signer and the Host is a helper.

TPM (m) Host (b)
msg € M
If bsn =1 then J«Gq
else J« Hgs(bsn)
Either ny «{0,1}" or receive
ny € {0,1}" from the verifier
str—X|| Py || Pz || P3| Q[Inv
a,Ta,Tes Taet"Lp
R—A.Pg
SeTTe ,T;‘V‘e+Y‘ae _T4Ta

rpe—Lyp h, J, S, msg he—Hy(str|| R)
KeJf LeJ'r
S5 - T;f
np«—{0,1}*
c—Hs (h||J|| K| L||S||msg|[rr)

(K,c,sf,n7)

spery+ f-c (mod p) Sqa =Tq +a-c (mod p)
Se =Te —e-c (mod p)
Sae = Tge +a-e-c (mod p)

o (R, JK,c,sf,5q, 5, Sac)

Fig. 2. The Sign Protocol

The protocol then proceeds as in Figure 2, so as to produce the signature o.
We note that in this scheme, the Host h precomputes T' = f(A, Q) and stores
it as a long-term parameter. In Table 1 of Section 5, we do not list this pairing
computation in the signing computational cost since it will only be computed
once.

Again we provide some notes as to the rationale behind some of the steps:

— We let msg denote the message to be signed. As the same as in the original
DAA scheme [11], msg is presented as b||msg’ where b = 0 means that the
message msg’ is generated by the TPM and b = 1 means that msg’ was input
to the TPM by the Host. In the case that msg’ is generated by the TPM,
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for example, the TPM creates a cryptographic key, called an Attestation
Identity Key (AIK), and forms its public key and relevant public system
parameters as msg’. A DAA signature on an AIK is used as a self-certificate.
For the purpose of this paper, we leave the specific details of how such
signed messages are created by the TPM as an implementation detail. If
msg’ is not generated by the TPM, it may either be chosen/selected by the
Host, or passed to the Host by the verifier. We let bsn denote the base name,
that may either be chosen/selected by the Host, or passed to the Host by
the verifier.

During the run of the protocol two nonces are used: one from the verifier ny
and one from the TPM ny. In most applications of the Sign protocol, the
signature is generated as a request from the verifier, and the verifier supplies
its own value of ny, to protect against replays of previously requested sig-
natures. If a signature is produced in an off-line manner we allow the Host
to generate its own value of ny . These are used to ensure each signature is
different from previous signatures and to ensure no adversarially controlled
TPM and Host pair, or no honest TPM and adversarially controlled Host,
can predict or force the value of a given signature.

We note that the correctness of the protocol holds because of the following
equation:

S=28.T,"

— e .Téwc”ac Tye .T;f
A, Q)Te . T;'Te+?‘ae . Ti'a . T27’f
H(A,Q) Tg) - Tyee - Tj» - Ty

—

Shy SRy~ o~ Ry

= ({(A,Q) - i(P3,Q)*)" - Tg*e - Ty - Ty’
=i(A-P§,Q) - Ty - Ty - Ty’
=i(R, Q) - Ty - Ty - Ty
— tA(R, Q)Se+€'0 . T;f*f'c . T45a7a<c . T?facfa-e-c
=1(R,Q)* - T, - Tj* - T - ({(R,Q)~¢ - Tf - Tg - Tg-)~°
= f(Rv Q)Se ! T2Sf : Tzfa : Tgae ! (tA(RaX) . f(RvX)il'
{(R,Q)c T -T2 Twe)e '
{(R,Q)% Ty - Tje - Ty - (((R, X) - #(R, X - Q°)~L - T - Tgp - Tge)=¢
=i(R,Q)* - T3" - T - T3 - (i(R, X) - {(P/ "+,

w3,
=
5

P/ Py X Q)T Ty 1)

t(R7 Q)Se .T;f -T;fa .T;ae . (t(R7X) _T1—1 . (Tzf -Tg‘}'e ) Tf)*l) .
T T 1) A

= (R, Q)% - Ty - Tj* - T3 - (i(R, X)/T1)~

= (R, Q% - X—°) - Ty - T3« - T3 - T

— Prior to running the protocol the Host decides if it wants o to be linkable
to other signatures produced for the same verifier. If it does not want the
signature to be linkable to any existing or future signatures then it chooses
bsn =_. If it decides that it wants the signature to be linked to some previ-
ously generated signatures with this verifier then it sets bsn to be the same as
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that used for the signature it wants to link to. Otherwise, if the Host decides
it may want future signatures to be able to be link to this one then it chooses
a verifier bsn that it has not used before. In some real DA A applications, the
Host and Verifier should reach an agreement on what type of bsn and which
bsn should be used in the Sign protocol.

— The use of J and K allows the verifier to identify if the signature was pro-
duced by a rogue TPM by computing J/* for all f; values on the RogueList
and comparing these to K. This check is performed during the verification
algorithm.

— The Host is trusted to keep anonymity because it is assumed that the Host
has the motivation to protect privacy and also because the host can always
disclose the platform identity anyway. However, the Host is not trusted to
be honest for not trying to forge a DAA signature without the aid of TPM.

3.4 The Verification Algorithm

This algorithm is run by a verifier v. Intuitively the verifier checks that a signa-
ture provided proves knowledge of a discrete logarithm f, checks that it proves
knowledge of a valid credential issued by a given Issuer on the same value of f
and that this value of f is not on the list of rogue values. We now describe the
details of our Verify algorithm. On input of a signature ¢ = (R, J, K, ¢, s¢,54,
Se, Sae), two nonces (ny,nr), a message msg, a basename bsn, an issuer public
key ipk = X and the public system parameters par, this algorithm performs the
following steps:

1. Check Against Roguelist. If K = Jfi for any f; in the set of rogue secret
keys then return reject.
2. Check J computation. If bsn #1 and J # Hjz(bsn) then return reject.
3. Verify Correctness of Proofs. This is done by performing the following sets
of computations:
— S i(R,Q% - X~¢) - Ty - Ty - Ty - T¢.
— L'—Jsr - K—C.
— str—X| P || B, Ps| Qv .
— h/«Hy(str||R).
Finally if ¢ # Hy (B'||J|| K || L ||S"||msg||nr) return reject and otherwise return
accept.

We note the verify algorithm ensures the bsn submitted with the signature
is the one used by the TPM to compute K by checking J and K are correctly
related to each other, and that J = Hg(bsn) for bsn # 1.

3.5 The Linking Algorithm

This algorithm is run by a given verifier v; € U which has a set of basenames
{bsn} ; in order to determine if a pair of signatures were produced by the same
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TPM. This algorithm is the same as in the DAA schemes of [13,23]. Signa-
tures can only be linked if they were produced by the same TPM and the
user wanted them to be able to be linked together. Formally, on input a tu-
ple ((og, msgy), (01, msgy ), bsn, ipk) the algorithm performs the following steps:

1. Verify Both Signatures. For each signature oy, for b € {0,1} the verifier runs
the algorithm Verify(o},, msg,, bsn, ipk) and if either of these returns reject
then the value L is returned.

2. Compare J and K values. If Jy = J; and Ky = K; then return linked, else
return unlinked.

It may be the case that one or both signatures input to the Link algorithm
have previously been received and verified by the verifier. Regardless of this we
insist that the verifier re-verify these as part of the Link algorithm since the list
of rogue TPM values may have been updated since the initial verification.

Also we note the condition that Ky = K; ensures only signatures produced
with the same basename and internal f value can be linked together. Since both
signatures correctly verify with bsn this means that in each case the K and J
values relate correctly to each other.

Note, our linking algorithm works due to the way that J and K are computed
in the signing algorithm. Also note that anyone who knows bsn can link the two
signatures, but they cannot link the signatures to the signers.

3.6 Revocation Consideration

In the literature, there are four types of revocation solutions are known for DAA.
The first two solutions were proposed in the original DAA paper [11], whilst the
third was proposed by Brickell and Li in [15] and the last one was proposed
by Chen, Morrissey and Smart in [23]. These four solutions are summarized as
follows:

1. Revocation is consequent upon a Signer’s DA A secret becoming known. Any-
body believing they have come into possession of a Signer’s DAA secret
(which, of course, should not happen) can put the secret into the rogue list
Roguelist and then check if this is truly the case by carrying out a check to
verify whether a DAA signature from the Signer was signed using the secret
in Roguelist or not - if yes, the signature is rejected as the Signer’s DAA
secret has clearly been compromised. This solution works after a Signer’s
DAA secret is revealed.

2. A Verifier builds his own black list of unwelcome Signers. In order to find
whether a DAA signature was signed by a black-listed Signer, the Verifier
requires the Signer to use a specific basename in his DAA signature.

3. In each DAA signature, a Signer is required to prove, in a zero-knowledge
proof manner, that his private signing key is not listed in a black list main-
tained by a revocation manager. The computation in the zero-knowledge
proof requires possession of the private signing key, that means it needs to
be done by the TPM rather than the host.
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4. An Issuer updates his private and public keys at intervals, preferably regular;
at each update of his keys the Issuer also correspondingly updates each
DAA credential it holds unless, from the Issuer’s knowledge, a Signer is no
longer a legitimate DAA signer in which case the Issuer refuses to update the
credential concerned. The Issuer publishes his updated public key and makes
each updated DAA credential available to the corresponding Signer. In this
solution, there is no extra cost to the TPM in the DAA signing algorithm.
The key updating process is transparent to the TPM.

Our new DAA scheme is suitable for all of these revocation solutions. Choice of
them is dependent upon applications. This feature has no difference from the
existing DAA schemes. So we do not discuss them further in this paper.

4 Security Proof of the DAA Scheme

In this section, we will state the security results for the new DAA scheme under
the definitions of security notions in Section 2.1. In general, we will argue that
our new DAA scheme is secure, i.e., correct, user-controlled-anonymous and
user-controlled-traceable, as addressed in the following theorems.

Our security results are based on the ¢-SDH assumption and the G;-DDH
assumption as defined in Section 2.2. The security analysis of the notions of
user-controlled-anonymity and user-controlled-traceability is in the random or-
acle model [6], i.e., we will assume that the hash functions Ho H3 and Hj in the
new DAA scheme are random oracles. Note that the hash function H; used to
compute the value f and H, used in the Sign protocol do not have to be random
oracles, since they are internal functions.

Theorem 1. The DAA scheme specified in Section 3 is correct.
Proof. This theorem follows directly from the specification of the scheme. [J

Theorem 2. Under the G1-DDH assumption in Definition 5, the above DAA
scheme is user-controlled-anonymous. More specifically, if there is an adver-
sary A that succeeds with a non-negligible probability to break user-controlled-
anonymity of the scheme, then there is a simulator S running in polynomial
time that solves the G1-DDH problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible
probability to break user-controlled-anonymity of the DAA scheme may be used
to construct a simulator S that solves the G;-DDH problem. Let (P, P?, Pb, Pe) e
G{ and a,b,c € Z, be the instance of the G1-DDH problem that we wish to an-
swer whether P is equal to P?® or not. We now describe the construction of
the simulator S, which performs the following game with A, as defined in Sec-
tion 2.1.

In the initial of the game, S runs Setup (or takes A’s input) to create an
issuer, which is named by an identifier K; and which is of two issuer public keys,
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say ip and i;. Each public key is presented as (G1, G2, G7, p, i, Py, Py, P3,Q, Ty, T,
T5,Ty4, Hi, Hy, Hs, Hy, Hs,ipk = Q%) and its corresponding secret key is pre-
sented as isk = x. All the values of the public and secret keys are known to A.
For the purpose of simplicity, we do not ask these two keys to be completely
different to each other. We only assume that these two public keys have different
P, values and their H3 functions are each relevant to their P, values. Note that
actually it does not matter if some other values between these two keys are dif-
ferent from each other, although it is not required for the purpose of our proof.
Throughout the proof, except for some individual specification, we do not use
different notation to distinguish these two keys.

More specifically, in the first key for iy, P» = P, and in the second one for
i1, P, = P®. In both of the public keys, H3(w) = P;* € Gy, where r,, is chosen
uniformly at random in Zj. Note that since these two Hj functions make use of
different P, as the base, so for the same input w value, their outputs of H3 are
different to each other. Throughout the proof specification, /i, where b = {0, 1},
indicates which issuer’s public key is associated with.

S creates algorithms to respond to queries made by A during its attack, in-
cluding three random oracles denoted by Hy, H3 and Hs in the DAA scheme.

To maintain consistency between queries made by A, S keeps the following
lists: L; for ¢ = 2, 3,5 stores data for query and response pairs to random oracle
H;. L;. stores data for query and response records for Join queries and Corrupted
queries. Each item of L. is {ID/, f, F,cre,c}, where ¢ = 1 means that the
corresponding signer is corrupted and ¢ = 0 otherwise. L stores data for query
and response records for Sign queries. Each item of Lg is {ID/i,, m,bsn, o, s},
where s = 1 means that bsn = 1 and s = 0 means that bsn # | under the
Sign query. At the beginning of the simulation, S sets all the above lists empty.
An empty item is denoted by the symbol *. During the game, A will asks the
H; queries up to ¢; times, asks the Join query up to g; times, asks the Corrupt
query up to g, times, and asks the Sign query up to ¢s times. All of these time
values are polynomial.

Simulator: Hy(m). If (m,ha) € Lg, return ho. Else choose hy uniformly at
random from Z;; add (m, h2) to Ly and return hs.

Simulator: H3(m)/ip. If m has already been an entry of the H3 /i, query, i.e. the
item (m,w, hs/ip) for an arbitrary w and hs/i, exists in L3, return hs/i,. Else
choose v from Z; uniformly at random; compute h3z /iy Py'; add (m,v, h3/i,) to
L3 and return hs/ip.

Simulator: Hs(m). If (m,hs) € Ls, return hs. Else choose hs uniformly at
random from Z;; add (m, hs) to L5 and return hs.

Simulator: Join(ID). At the beginning of the simulation choose «, uni-

formly at random from {1, ...,¢;}. We show how to respond to the i-th query
made by A below. Note that we assume A does not make repeat queries, but we
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also assume that for each query, the Join protocol could be run twice, one with
ip and the other with i;. Although it seems redundant for the query of every I D
to be run twice, it is necessary for i = o or 3. We use IDx /iy, b € {0,1}, to
indicate the singer identity I Dx associated with 1.

— If i = @ and in the run associated with ig, set F, < P? (i.e. P3); run Join,
with A to get cre,, and add {ID,/io, %, Fu, creq, 0} to Lj.. Note that since
S does not know the value f, = a (which is indicated as * in Lj.), it is not
able to compute (v, w) by following the Schnorr signature scheme. However
S can forge the signature by controlling the random oracle of Hy as follows:
randomly choose w and v and compute U = P;"F_". The only thing S has
to take care of is checking the consistency of the Lo entries. S verifies the
validation of cre, before accepting it.

— If i = ¢ and in the run associated with iy, set Fg « P¢ (i.e. ch/b); do the
same thing as in the previous item to get creg.

— Else, including i = a with i; and ¢ = 3 with iy, choose f uniformly at random
from Zy; compute F' = P2f ,if = P3 or P, abort outputting “abortion
0”; else run Join; with A to get cre; verify cre before accept it and then add
(ID/, f,F,cre,0) in Lj.

Simulator: Corrupt(/D). We assume that A makes the queries Join(ID) be-
fore it makes the Corrupt query using the identity. Otherwise, S answers the
Join query first. Find the entry (ID/i, f, F,cre,0) in Lj., return f and update
the item to (ID/iy, f, F,cre, 1).

Simulator: Sign(ID,m,bsn). Let m’ be the input message A wants to sign,
ny € {0,1}" be a nonce chosen by A and nr € {0,1}* be a nonce chosen by S
at random, so m = (m/, ny, ny). We assume that .4 makes the queries Join(ID)
before it makes the Sign query using the identity. Otherwise, S answers the Join
query first. We have the following multiple cases to consider.

Case 1: ID/iy # IDa/ig and ID/iy, # IDg/i1. Find the entry (ID/iy, f, F,
cre, 0/1) in Lj., compute o « Sign, add (ID/iy, m,bsn,o,0/1) to L, and re-
spond with o.

Case 2: ID/i, = ID,/ip. S is not able to create such a signature since S
does not know the corresponding secret key. But S is able to forge the sig-
nature by controlling the random oracles of H; and Hs. S finds the entry
(IDy /10, *, Fa,creq = (Aa,€q),0) in Lj., and forges o by performing the fol-
lowing steps:

1. When bsn = L, choose a random r; search whether r is an entry of Lg; if
yes, go back to the beginning of this item. When bsn % 1, take the given
bsn, search whether bsn is an entry of Lg; if yes, retrieve the corresponding
v and hg = P3. With a new input of L3, query Hj to get v and hs.

2. Set J«—hz = PV and K« (P?)".

3. Choose random a«Z; and compute R«—A, - Py
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4. Compute str«X || Py || P|| P5|| Q]| 7.

Choose s¢, Sq, Se; Sae € Zy, at random.

6. Choose ¢ at random; search whether c is an entry of Ls; if yes, go back to
the beginning of this item.

7. Compute S«+it(R, Q% - X~¢) - Ty - Tj* - Ty - T¥.

Compute L« J%f - K€

Set w = Hy(str||R)||J|| K ||L||S||m||nT. Search whether w is an entry of Ls; if

yes, go back to the beginning of the item of choosing sy, s4, Se, Sqe; Otherwise,

add (w,c¢) in Ls.

10. Output o = (R, J, K, ¢, S5, Sa; Ses Sae)-

11. Add (IDy/ig,m,bsn,o,1/0) to Ls.

Case 3: ID/iy, = IDg/i;. Again, S cannot create this signature properly without
the knowledge of fg. S forges the signature in the same way as in Case 2 above,
except setting J = hz = PY = (P®)Y and K = (P°)".

o

© x

At the end of Phase 1, A outputs a message m, a basename bsn, two identities
{IDy,ID1}. If {IDy,ID1} # {ID,,IDg}, S aborts outputting “abortion 1”.
We assume that Join has already been queried at 1D, and I Dg by A associated
with both iy and i;. If this is not the case we can define Join at these points as
we wish i.e. as for ID,/ig, Fo = P? and for IDg/i1, Fg = P°. Neither 1Dy nor
I1D; should have been asked for the Corrupt query and the Sign query with the
same bsn # 1 by following the definition of the game defined in Section 2.1.

S chooses a bit b at random, and generates the challenge in the same way as
Case 2 or 3 of the Sign query simulation, by querying Sign(ID,,, m, bsn) with
ig if b = 0 or Sign(IDg, m, bsn) with i; otherwise. S returns the result o* to A.

In Phase 2, S and A carry on the query and response process as in Phase 1.
Again, A is not allowed to make any Corrupt query to either IDg or 1D, and
to make any Sign query to either I Dy or 1D with the same bsn # 1. At the
end of Phase 2, A outputs b'. If ¥ = b, S outputs 0, which means P° # P2b;
otherwise S outputs 1, which means P¢ = P2b,

Let € be the probability that A succeeds in breaking the anonymity game.
Suppose S does not abort during the above simulation. If ¢ # ab, S emulates
the anonymity game perfectly, i.e., Pr[b = b'] = 1/2 + €. If ¢ = ab, then the
private keys for IDg/ip and IDq/i; are identical and thus the signature o* is
independent of b. It follows that Pr[b = b'] = 1/2. Therefore, assuming S does
not abort, it has advantage at least ¢/2 in solving the G;-DDH problem.

We can argue that creating two issuer public keys in the game does not make
the simulation distinguishable from the real DAA scheme. In the formal defi-
nition of DAA specified in Section 2.1, a system can involves multiple issuers,
signers and verifiers; each signer can obtain multiple DAA credentials associ-
ated with the same DAA secret. For the flexibility, the signer’s DAA secret f
is relevant to the issuer’s identifier K, which could be the issuer’s root public
key as specified in [38] or the issuer’s partial public parameters which is used
by the TPM. In our proof, we only require that the two issuer public keys are
associated with the same K value, and a single TPM DAA secret f could natu-
rally be computed and then associated with the two different issuer pubic keys.
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Therefore the adversary A should not be able to notice any difference between

the real DAA scheme and the simulation based on the double issuer public keys.
Let us now consider how our simulation could abort i.e. describe events that

could cause A’s view to differ when run by S from its view in a real attack.

It is clear that the simulations for Hy, H3 and Hj are indistinguishable from
real random oracles.

If the event abortion 0 happens, S gets the value a or b, § can compute
P? and thus to solve the DDH problem (because the DDH problem is weaker
than the CDH problem). Since S chooses its value uniformly at random from
Z,, the chance of this event happening is negligible.

The event abortion 1 happens only if {IDy,ID;} # {ID,,IDg}. Since
ID, and IDg are chosen at random, the probability of this case is at least
1/(g5(q; — 1))

Based on the above discussion, the probability that S does not abort the
game at some stage and produces the correct output is non-negligible, since it
follows the fact that A wins the game with a non-negligible probability. O

Theorem 3. Under the q-SDH assumption, the above DAA scheme is user-
controlled-traceable. More specifically, if there is an adversary A that succeeds
with a non-negligible probability to break user-controlled-traceability of the scheme,
then there is a simulator S running in polynomial time that solves the q-SDH
problem with a non-negligible probability.

Proof. We will show how an adversary A that succeeds with a non-negligible
probability to break user-controlled-traceability of the DAA scheme may be used
to construct a simulator S that solves the ¢-SDH problem. Let (P/, Q’, Q'*, Q’IQ,
.y Q") € Gy x GIT! be the instance of the ¢-SDH problem. We let S performs
the user-controlled-traceability game as specified in Section 2.1 with A twice.
Each performance is corresponding to one of the two initial cases. We now de-
scribe the construction of the simulator S in these two performances one by one.

In the first performance, we apply the technique used in the proof of Boneh
and Boyen’s Lemma 1 [8], obtaining generators P; € G1, Q € Go, X = QF,
and ¢ — 1 SDH pairs (B;, e;) such that #(B;, X - Q%) = t(P1, Q) for each i. We
wish to provide one more SDH pair (B’,e’) besides these ¢ — 1 pairs that can
be transformed into a solution to the original ¢-SDH instance, again based on
Boneh and Boyen’s proof of Lemma 1.

S performs the following game with A. In the initial of the game, S sets the
system public parameters par as (Gi,Gy,Gr,p,t, Pi, Py, Ps, Q,T1,Ts, T3, Ty,
Hy, Hy, Hs, Hy, Hs5,ipk) as follows: randomly select three random numbers a, b,
e € Z, set PL = (Q) and P, = ¢([(Q° - Q°)" - Q']*/*). Note that P, =
Pl((“_e)b_l)/a holds. § also sets J’s public key ipk = X = Q” and the corre-
sponding secret key, namely isk, as z. S gives par to A, but keeps the values
a, b, e for itself. Note that S does not know isk. It also creates algorithms to
respond to queries made by A during its attack.

S sets three random oracles Ho, Hs and Hj in the ordinary way. To main-
tain consistency between queries made by A, S keeps the following lists: L;
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for ¢+ = 2,3,5 stores data for query and response pairs to random oracle H;.
L. stores data for query and response records for Join queries and Corrupted
queries. Each item of L;. is {ID, f, F,cre, c}, where ¢ = 1 means that the corre-
sponding signer is corrupted (via either Case 2 of the Join query or the Corrupt
query) and ¢ = 0 otherwise. Note that the set of f values with ¢ = 1 will be used
as the Roguelist list. L, stores data for query/response records for Sign queries.
Each item of Ly is {ID, m,bsn, o, s}, where s = 1 means that bsn = 1 under
the Sign query and s = 0 means that bsn # | under the Sign query. At the
beginning of the simulation, S sets all the above lists empty. An empty item is
denoted by the symbol *. During the game, A will asks the H; queries up to g;
times, asks the Join query up to ¢ times, asks the Corrupt query up to g, times,
and asks the Sign query up to g5 times. All of the time values are polynomial.

Simulator: Hs(m). The same as in the proof of Theorem 2.

Simulator: Hs(m). If m has already been an entry of the Hs query, return
hs. Else choose hg from Zj uniformly at random and return hs.

Simulator: Hs(m). The same as in the proof of Theorem 2.

Simulator: Join(ID). A allows to make upon to ¢ Join queries. We assume
A does not make repeat queries. As defined in the game of user-controlled-
traceability, there are two Join cases associated with the Initial Case 1. In the
Join Case 1, given a new ID from A, S returns the credential cre for the value
f, and adds {ID, f, F,cre,0} to Lj.. In the Join Case 2, S receives a new pair
of ID and f from A, returns cre and adds {ID, f, F,cre,1} to L;.. S randomly
selects one query from the Join Case 1 and treats it specially by letting f = a
and cre = (A, e) where A = P}. In the other times of the Join Case 1, S selects
the value f; at random. In each of the remaining ¢ — 1 queries including both
the Join Case 1 and Case 2, S makes use of one SDH pair (B;,e;) to compute
cre; = (A;, e;) for f;, where

A = (P _szi)l/(m—ﬁ-ef,) _ Bilffi/aJrfib(@*ei)/a . Plfib/a.

Simulator: Corrupt(/D). We assume that A makes the queries Join(ID) be-
fore it makes the Corrupt query using the identity. Otherwise, S answers the
Join query first. Find the entry (ID, f, F,cre,0) in Lj., return f and update the
item to (ID, f, F,cre, 1).

Simulator: Sign(ID,m,bsn). Let m’ be the input message .4 wants to sign,
ny € {0,1}" be a nonce chosen by A and nr € {0,1}* be a nonce chosen by S
at random, so m = (m/, ny, ny). We assume that .4 makes the queries Join(ID)
before it makes the Sign query using the identity. Otherwise, S answers the Join
query (Case 1) first. Find the entry (ID, f, F,cre,0/1) in L;., compute o < Sign.
In the end, S adds (ID, m,bsn,c,1/0) to L, and responds with o.
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Simulator: Semi-sign(/D,m, J,S',h). We assume that A makes the queries
Join(ID) before it makes the Semi-sign query using the identity. Otherwise,
S answers the Join query (Case 1) first. Find the entry (ID, f, F,cre,0/1) in
Ljc, compute (K, ¢,sf) by following TPM’s action in Sign, add (I.D,m,bsn,o =
(x,J,K,c,sr,%,%,%), 1/0) to Ly and respond with (K, ¢, sy).

At the end of the phase of probing above, A outputs an identity ID*, a
message m*, a basename bsn® and a signature o*. We consider the following two
cases:

— Case 1. If Verify(c*) = 1 and (ID*, m*,bsn*, 0*,1/0) (or (ID*, m* ,bsn*,c* =
(*,J, K, ¢,sf,%,%,%),1/0) is not in L, S rewinds A to extract the knowledge
of cre* and f*, satisfying cre* = (A*, e*) is a BBS signature on the message
f*. To rewind A, S controls the challenge ¢ by choosing two different ¢ val-
ues ¢’ and ¢” to the same R and S. A will responds them with s, s7,, ¢, 85
and s’Jf, siost sl respectively. S then computes A. = ¢ — ¢’ and extracts

£ = (5~ )/ Ay € = (5] 51/, " = (s}, — 7))/ A, and A" = R/(PY").

Since the value f* ¢ Roguelist (implied in Verify(c) = 1), there are the

following two possible results:

1. If e* 3 {e;, e} for any i, S computes

B* = (A* . Pl—bf*/a)a/(aff*erf*(efe*)).

2. If e* € {e;, e} and A* 5 {A;, A} for any ¢, with the probability of 1/g,
e* = e, S computes

B* — (A* . Pl—bf*/a)a/(aff*).

Observe that S is able to create more than ¢ “valid” copies of the DAA
secret f and its credential cre. For example, from any pair of (B;,e;)
where i = {1,2,...,¢— 1}, § can randomly choose two f;o, fi1 values and
computes two corresponding A;g, A;; values, and then obtains two valid
triples (fio, Aio, €:) and (fi1, Aix,e;). The triple (f = a, A = P{, e) is
a special case for § but not for 4. From A’s point of view, this case is
indistinguishable from the other ¢ — 1 cases in the total ¢ Join queries,
since A does not know the values of a and b, and does not know the
index of (f, A, e). We can argue that if A is able to create (fjo, f;1) and
(Ajo, Aj1) with the same e; for any j = {1,2,...,¢} (rather than the
total ¢ — 1 values of ¢ for §), then the probability of choosing the j value
should be equal to 1/q.

In either of these two results, S takes (B*, e*) as the extra SDH pair to solve
the given ¢-SDH problem.

— Case 2. Suppose bsn*™ # L. If there is no any entry (ID*,m’,bsn* ¢’ 0)
for the arbitrary pair of m’ and ¢’ is found in L,, A has not managed
to break user-controlled-traceability. Otherwise, S runs Link(c*,0"). If the
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output of Link is 1 or L, again, A has not managed to break user-controlled-
traceability. Otherwise, there exist the following pair of data sets o* =
(R,J,K,c,sf,5q,Sec,Sqc) and 0’ = (R’7J’,K’7c',s’f,s;,s’e,sfw). J = J' holds
since two signatures have the same bsn and S has maintained the consistency
of the random oracle Hs outputs. The only thing to make K # K’ happen
is that A has managed to create a different tsk for /D. Then S can use the
same trick as in Case 1 to extract a right solution of the ¢-SDH problem

from A.

In either of the above two cases, S can solve the ¢-SDH problem with a non-
negligible probability if A4 wins the game with a non-negligible probability.

In the second performance, S performs the following game with A. In the
initial of the game, S sets the system public parameters par as (G, Ga, Gz, p, 1,
Pl, PQ, Pg, Q, Tl, TQ, Tg, T4, Hl, HQ, Hg, I‘[47 H5, ka) as follows: randomly select
a number r € Z;, set Q = Q', P» = ¢(Q) and P, = Py. S sends A the values
of par and receives J’s public key ipk = X = Q% from A. Note that the value =z,
namely isk, is not known to S, although S does verify that the value X is in the
right group Go.

S also creates algorithms to respond to queries made by A during its attack.
S sets three random oracles Hs, Hs and Hj, maintains consistency between
queries made by A, and keeps the lists of L; (for ¢ = 2,3,5), Lj, and L, in the
same way as in Performance 1. During the game, A will asks the H; queries
up to g; times, asks the Join query up to g; times, asks the Corrupt query up
to ¢, times, and asks the Sign query up to gs times. All of the time values are
polynomial.

Simulator: Hs(m). The same as in the proof of Theorem 2.

Simulator: Hs(m). If m has already been an entry of the Hj query, i.e. the
item (m,w, hs) for an arbitrary w and hg exists in Lz, return hs. Else choose
v from Z; uniformly at random; computer hz«Pj; add (m,v,hs) to L3z and
return hs.

Simulator: Hs(m). The same as in the proof of Theorem 2.

Simulator: Join(ID). At the beginning of the performance, choose « uni-
formly at random from {1,...,¢;}. We show how to respond to the i-th query
made by A below. Note that we assume A does not make repeat queries.

— Ifi = a, set F, «— ¥(Q"®); run Join; with A to get cre,, and add {ID,, *, F,
creq, 0} to Lj.. Note that since S does not know the value f, = x (which
is indicated as * in Lj.), it is not able to compute (v,w) by following the
Schnorr signature scheme. However S can forge the signature by controlling
the random oracle of Hs as the same as it did in the proof of Theorem 2. S
verifies the validation of cre, before accepting it.
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— Else choose f uniformly at random from Zy; compute FHPQf, if F=4(Q"*),
abort outputting “abortion 0”; else run Join; with A to get cre; verify cre
before accept it and then add (ID, f, F,cre,0) into Lje.

Simulator: Corrupt(ID). The same as in Performance 1.

Simulator: Sign(ID,m,bsn). We assume that A makes the queries Join(ID)
before it makes the Sign query using the identity. Otherwise, S first answers the
Join query (as described before for this performance). Find the entry (ID, f, F,
cre, 0/1) in Lj.. If ID # ID,, compute o « Sign; otherwise, S does not know
the value f, and it forges a o using the same techniques as in Theorem 2. In the
end, S adds (I D, m,bsn,0,1/0) to L, and responds with o.

Simulator: Semi-sign(ID,m, J, S, h). Again, we assume that .4 makes the
queries Join(ID) before it makes the Semi-sign query using the identity. Other-
wise, S answers the Join query first. Find the entry (ID, f, F,cre,0/1) in Lj.. If
ID # ID,, compute (K,c,sy) by following TPM’s action in Sign, otherwise, S
does not know the value f, and it forges the triple (K, ¢, s¢) using the same tech-
niques as it forges the signature 0. Add (ID,m,bsn,c = (x,J, K, ¢, sg,*, *, %),
1/0) to Ls and respond with (K, ¢, sy).

At the end of the phase of probing above, A outputs an identity ID*, a
message m*, a basename bsn® and a signature o*. If ID # ID,, S aborts out-
putting “abortion 1”. Otherwise, we consider the following situation:

If Verify(c*) = 1 and (ID*, m*,bsn*,0*,1/0) (or (ID*, m*,bsn*,c* = (x,J, K,
¢, Sf,%,%,%),1/0) is not in Ly, S rewinds A to extract the knowledge of f*. To
rewind 4, S uses the same technique as in Performance 1 by choosing two dif-
ferent ¢ values ¢’ and ¢’ to the same R and S. A will responds them with
8’y Sqs Ses Sqe and s, sy, 8¢, Sy, respectively. S then computes A, = ¢’ — ¢ and
extracts f* = (s} —s’)/Ac. S treats the value f as the value x in the given ¢-SDH
problem. Since the ¢-SDH problem is weaker than the discrete logarithm prob-
lem, S in possession of the value z can easily find a new SDH pair (e, P''/(+€))
by choosing a random e in Z;,.

By following the same discussion in the proof of Theorem 2, we can show how
our simulation could only abort with reasonably small probabilities, since both
abortion 0 and abortion 1 are similar to these two abortions in the previous
proof.

In either of the above two performances, S can solve the ¢-SDH problem with
a non-negligible probability if A wins the game with a non-negligible probability.
The theorem follows. i

5 Performance Comparison
In this section, we compare efficiency of the proposed DAA scheme with all the

existing ECC-DAA schemes, based on our best knowledge. We do not include
RSA-DAA schemes such as these in [11,27], since the comparison between the
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RSA-based schemes and pairing-based schemes has been presented in a number
of papers. In general speaking, we see that the ECC-DAA schemes are a lot
more efficient than the one based on factoring. We refer to [13, 21,23, 24] for the
detailed information.

In Table 1, we present some performance figures for the six ECC-DAA
schemes. For the computational cost, we consider the Join protocol, Sign pro-
tocol and Verify algorithm, with respect to each player. We do not specify the
computational cost of the Setup algorithm and its verification, since this is only
run once and the resulting parameters are only verified once by each part. We
do not specify the cost for the linking algorithm either, as it is closely related to
that of the verification algorithm. For the communication cost and storage cost,
we consider the credential size and signature size, but ignore the size of TPM
secret key (i.e. the values of f and DAAseed) because this could be the same in
all of the six schemes.

In this table, for the computational cost, we let G; (i = {1,2,T}) denote the
cost of an exponentiation in the group G;, and G}* denote the cost of a multi-
exponentiation of m values in the group G;. Note, that a multiexponentiation
with m exponents can often be performed significantly faster than m separate
exponentiations, which is why we separate this out. We also let P denote the cost
of a pairing computation. In addition in the table we let n denote the number
of keys in the verifier’s rogue secret key list. For the credential and signature
sizes, we let p denote the size of the prime order p, G; (i = {1,2,T}) denote the
size of an element of the group G;, G denote the size of an element of the group
G, which is used in [13, 16, 24] as a group that might be separated from Gi, G
and Gp, and h denote an output of a hash-function used in the Schnorr-type
signature schemes [36]. The Brickell et al. scheme [13] uses symmetric pairings
t: Gy x G; — G, and the other five schemes in [16,21, 23, 24] and this paper
use asymmetric pairings t : G; x Gy — Gr.

We recall the argument made in [23] regarding the pairing implementation.
In the implementation of symmetric pairings ¢ : G, x G; — G, the operations
in G; are about 1/4 the cost of operations in Gr. This is a rough estimate
derived as follows: At best Gr is a subgroup of Fs and operations in F, will be
36 = 62 times more efficient generally than operations in Gr, Gy is an elliptic
curve over F, and so will have operations which take around 10 F, operations,
and 10/36 ~ 1/4. By using asymmetric pairings ¢ : G; x Gy — G, one can
use highly efficient curve choices such as Barreto-Naehrig curves [4]. We are
thus able to obtain, for the same size of G, operations in G; which are around
144/10 ~ 14 times more efficient than those in Gr, as opposed to 4 times as
above. This is because now Gr is a subgroup of F, 2. Using Barreto-Naehrig
curves and sextic twists the operations in Gy will cost roughly four times those
in Gy, since G will be a subgroup of an elliptic curve defined over the field IFg..

Observe that in [24], the rogue ragging operation is not defined in the Verify
algorithm, but it can be easily added in the same way as every existing DAA
scheme does. So in Table 1, we add this computation n-G7. Another observation
of this scheme is that the pairing computation in the Join protocol can be done
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Table 1. Cost Comparison of the Six Pairing-Based DAA Protocols

Operation[ Party Computational Cost [Credential Size[ Signature Size
Scheme of [13]
Join TPM 3Gy
Issuer 2G1 + 2G%
Host 6P 3G1 2p+3G1 +2G+ 1h
Sign TPM 3Gy
Host 3G +1Gr + 3P
Verify Verifier |1G% + 1G3 + 5P + (n 4 1)Gr
Scheme of [21]
Join TPM 3Gy
Issuer 2G; + 2G3
Host 6P 3Gy 1p 4+ 4Gy + 1h
Sign TPM 1Gy
Host 4G, + 3Gr + 1P
Verify Verifier 1G? + 1G% + 5P + nG,
Scheme of [23]
Join TPM 3G,
Issuer 2G; + 2G2
Host 4P 3Gy 1p+5G1 + 1h
Sign TPM 2G1 + 1Gr
Host 3Gy + 1P
Verify | Verifier 1G? + 1G% + 5P 4+ nG,
Scheme of [24]
Join TPM 3GT + (2P)
Issuer 1G3 + 1G?
Host (2P) 2¢+1G1  |6p+2G1+2G+1h
Sign TPM 2G; + 1G2
Host 1G1 + 2G? + 1G$ + 1G%
Verify | Verifier |[1G? + 2G% + 1G5 + 3P + nGr
Scheme of [16]
Join  [TPM/Host] 2G? + 1Go + 2P + proof
Issuer 1G? + verify 20+ 1G;  |4p+1G; +2G + 1k
Sign  |TPM/Host 1G1 + 2Gr + 1G4
Verify Verifier 1G% + 1G5 + 2P + nGr
Scheme of this paper
Join TPM 2G1
Issuer 1G1 + 1G?
Host 1G1 + 2P 1qg+ 1Gy 4p + 3G1 + 1h
Sign TPM 2G1 + 1Gr
Host 1G1 + IG%
Verify Verifier IG% + 1G§ + 1G4T + 1P + nG,
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by the Host instead of the TPM, because it is expensive to implement the pairing
operation in TPMs. We mark this change as (2P) in Table 1. Observe also that
in the scheme in [16], the signer is a single entity, but it is not difficult to split
the signer role between a TPM and a Host. So in the following comparison, we
assume that these changes have been taken into account.

When a DAA scheme is used in the trusted computing environment, as the
original design in [11], the most significant performance is a TPM’s computa-
tional cost and storage requirement. As shown in the table, our proposed DAA
scheme has the most efficient computational cost in the Join protocol, that in-
cludes not only the computational cost of the TPM but also the computational
cost of the whole signer (the TPM and Host) and the computational cost of the
issuer.

In the Sign protocol, the most efficient scheme regarding the TPM’s oper-
ation is the scheme in [21]. However, this scheme is not secure as the attacks
demonstrated in [20, 23]. Especially in the important operation of signing by the
TPM, our scheme is the same as the scheme in [23], which is a repair of the
scheme in [21] and these two schemes are more efficient than the other three
schemes [13, 16, 24]. Note that in the scheme in [23], the pairing computation of
the Host in the Sign protocol can be replaced by an exponentiation in G with
the precompution on #(B, X). In the Verification algorithm, our scheme has the
same computation cost of the verifier as in [16], and they are more efficient than
all of the other schemes in [13,21, 23, 24].

Except the efficiency in the computational cost, the attractive performance
of our scheme is that it has the smallest credential size and signature size, com-
paring with the other schemes in the table. This comparison is based on the
fact that the size of G is various, and to our best knowledge it can be chosen
between the sizes of G; and Gp. In summary, our scheme is the most efficient
DAA scheme so far with the acceptable security level.

6 Conclusions

In this paper?, we have introduced a new DAA scheme, which is based on elliptic
curves and asymmetric pairings. This scheme is more efficient than all the exist-
ing DAA schemes, in particular, this scheme requires very few TPM resources.
We have also modified the definition of the user-controlled-traceability in [13] in
order to cover the non-frameability property.

Recently TCG TPM working group has been working on the next generation
of TPM. One of the most interesting features is that the new TPM supports
algorithm agility. If a TPM supports multiple DAA algorithms, such as both
RSA-DAA and ECC-DAA, we can make use of DAAseed as a master secret and
create multiple DA A secret f values from it. In that case, we do not require extra

2 This is a full version of the paper. An extended abstract of this paper appears in

the Proceedings of the 5th China International Conference on Information Security
and Cryptology (Inscrypt’09).
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internal storage for long-term secrets. Our conclusion is that DAA is algorithm
agile and our ECC-DAA implementation is fairly efficient.
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