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Abstract. In SAC’08, an improved fast correlation attack on stream
ciphers was proposed. This attack is based on the fast correlation attack
proposed at Crypto’00 and combined with the fast Walsh transform.
However, we found that the attack results are wrong. In this paper, we
correct the results of the attack algorithm by analyzing it theoretically.
Also we propose a threshold of the valid bias.
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1 Introduction

Zhang et al. proposed an improved fast correlation attack on stream ciphers
in [7]. For the simplicity, we call this attack IFCA(Improved Fast Correlation
Attack) in this paper. IFCA is based on the fast correlation attack proposed
in [3] and solves the disadvantage of this attack by applying the fast Walsh
transform. Zhang et al. insisted that IFCA can recover the initial state of LFSR
efficiently, even if the number of constructed parity-check equations is low.

However, by simulations, we found that their results are wrong. In this paper,
we correct the results of IFCA by analyzing it theoretically and provide a thresh-
old of the valid bias. This problem is caused by the difference between mean
values of two distribution used in the computation of the success probabilities,
the central chi-square distribution and the noncentral chi-square distribution.
The larger the difference between graphs of two distributions is, the larger the
success probability of IFCA is. However, if a bias or the number of constructed
parity-check equations is small, it is difficult to distinguish two distributions.
Thus, the probability that the wrongly guessed initial states of LFSR pass IFCA
increases, too. Table 1 presents the comparison of complexities between IFCA
and existing fast correlation attacks. Here, L is the length of LFSR, p is a corre-
lation probability and N is the length of keystream sequence. As shown in Table
1, the corrected results of IFCA are not more efficient than them of existing fast
correlation attacks.
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Table 1. Comparison between IFCA and existing fast correlation attacks

Attacks L p N
Complexity

Comp. Memory Precomp.

[1]

40 0.531

8 · 104 231 234.1 237

[6] 222 224 232.8 227

IFCA 4 · 104 220 225 230.6

Correction 4 · 104 243.04 245.48 234.51

2 IFCA(Improved Fast Correlation Attack)

In this section, we introduce IFCA briefly. For the details, see [7]. This attack
is based on the fast correlation attack proposed in [3]. The attack proposed in
[3] is based on the problem of learning a binary linear multivariate polynomial
[2]. However, this attack has a disadvantage that the substitution step to sub-
stitute keystream sequences into parity-check equations and the evaluation step
to evaluate them take a lot of time. Thus, IFCA solve this problem by applying
the fast Walsh transform.

2.1 Brief description of IFCA

Let a = (a0, a1, · · · ) and z = (z0, z1, · · · ) be output sequences of LFSR and
keystream sequences, respectively. Then this attack considers parity-check equa-
tions such as (1), where ‘◦’ denotes the inner product of two vectors. Here,
1t denotes the t-dimensional all-one vector, ak = (a0, a1, · · · , ak−1), aL−k =
(ak, ak+1, · · · , aL−1), at = (ai1 , ai2 , · · · , ait) (ij (1 ≤ j ≤ t) are arbitrary indices
among output bits).

at ◦ 1t = (ak ◦ xk)⊕ (aL−k ◦ vL−k) . (1)

In (1), vL−k means any non-zero vector. Thus, we can construct many parity-
check equations for different vL−k.

(2) is constructed by substituting keystream sequences into (1). Here, a′k is
the guessed value of ak, zt = (zi1 , zi2 , · · · , zit), a′′L−k is the value assigned to
aL−k and ζ = 0 or 1 depending on a′′L−k. An error vector et = (ei1 , ei2 , · · · , eit)
satisfying zt = at⊕et with probability P (eij = 0) = P (aij = zij ) = p = 1/2+ε.

(zt ◦ 1t)⊕ (a′k ◦ xk)⊕
(
a′′L−k ◦ vL−k

)
= ((ak ⊕ a′k) ◦ xk)⊕ (et ◦ 1t)⊕ ζ. (2)

In the precomputation phase, we construct Ω(vL−k) parity-check equations
for each vL−k. In this algorithm, the number of vL−k is n. In the computation
phase, we evaluate the left side of (2) and record the number of times that
(zt ◦ 1t) ⊕ (a′k ◦ xk) ⊕

(
a′′L−k ◦ vL−k

)
= 0. To avoid the high time complexity
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Table 2. The attack procedure of IFCA

Parameters: t, k, n
Precomputation

1. For n different vL−k, precompute n groups of parity-check equations such as
(1).

Input: keystream sequences (z0, z1, · · · , zN−1)
Computation

1. Let Bω = 0 for 2k possible values of ω.
2. For each group of parity-check equations specified by vL−k, do the followings:

(a) Let aL−k take a randomly assigned value.
(b) Define hvL−k (xk) as (3).

(c) Apply the fast Walsh transform to compute HvL−k (ω) for 2k possible ω.

(d) Update Bω = Bω +
(
HvL−k (ω)

)2
/4 for 2k possible ω.

3. Search for Bω ≥ T and accept the corresponding ω as a candidate for ak.

Output: ak = (a0, a1, · · · , ak−1) or a small list of candidates

in the substitution and evaluation step, the fast Walsh transform is applied to
IFCA.

For a fixed set of parity-check equations specified by vL−k, we define a func-
tion hvL−k(xk) as (3). Here, if xk does not appear in these parity-check equations,
hvL−k(xk) = 0.

hvL−k(xk) =
∑
xk

(−1)(zt◦1t)⊕(a
′′
L−k◦vL−k). (3)

The walsh transform of hvL−k(xk), HvL−k(ω) is defined as the following. We can
use the fast Walsh transform to simultaneously compute 2k hvL−k(xk)’s Walsh
transforms.

HvL−k(ω) =
∑

xk∈Zk2

hvL−k(xk)(−1)xk◦ω

=
∑

Ω(vL−k)

(−1)(zt◦1t)⊕(a
′′
L−k◦vL−k)⊕(xk◦ω).

Table 2 is the attack procedure of IFCA. Here, T is the threshold deter-
mined by the success probability of IFCA. Given N -bit keystream sequences,
the precomputation complexity and computation complexity of this attack are
Ndt/2e log2N and

∑
vL−k

(
2kk +Ω(vL−k)(t+ k)

)
, respectively. The memory com-

plexity is c · 2k +
∑

vL−k
(tdlog2Ne+ L)Ω(vL−k) bits.
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2.2 Success probability of IFCA

If a′k is correctly guessed, there will exist a deviationΩ(vL−k)2t−1εt from 1
2Ω(vL−k)

in the number of times that (zt ◦ 1t)⊕(a′k ◦ xk)⊕
(
a′′L−k ◦ vL−k

)
= 0. Otherwise,

such a bias should not be observed.(
HvL−k(ω)

)2
/4 used to update Bω is deduced from the following. Here,

u(vL−k) is the number of times that (zt ◦ 1t)⊕ (a′k ◦ xk)⊕
(
a′′L−k ◦ vL−k

)
= 0.

∑
vL−k

(
u(vL−k)− Ω(vL−k)

2

)2

=
∑
vL−k

( |HvL−k |+Ω(vL−k)

2
− Ω(vL−k)

2

)2

=
∑
vL−k

(
HvL−k(ω)

)2
4

.

Thus, Bω ≥ T can be expressed as (4).

Bω ≥ T ⇔
∑
vL−k

(
u(vL−k)− Ω(vL−k)

2

)2

≥ T. (4)

If a′k is correctly guessed, then u(vL−k) follows the binomial distribution
B(Ω(vL−k), q). Otherwise, it follows the binomial distribution B(Ω(vL−k), 12 ).
Here, q = 1/2 + 2t−1εt is the correlation probability of parity-check equations of
weight t. Thus, when a′k is correctly guessed, (4) is expressed as (5).

Ω(vL−k)n

4q(1− q)
≥
∑
vL−k

(
u(vL−k)−Ω(vL−k)q√

Ω(vL−k)q(1− q)
+

Ω(vL−k)2t−1εt√
Ω(vL−k)q(1− q)

)2

(5)

≥ T

Ω(vL−k)q(1− q)
.

On the other hand, when a′k is wrongly guessed, (4) is expressed as (6).

Ω(vL−k)n ≥
∑
vL−k

(
u(vL−k)− Ω(vL−k)

2

)2
(

1
2

√
Ω(vL−k)

)2 ≥ 4T

Ω(vL−k)
. (6)

(5) means that when a′k is correctly guessed,
∑

vL−k

(
u(vL−k)−

Ω(vL−k)

2

)2

Ω(vL−k)q(1−q)
follows the noncentral chi-square distribution. On the other hand, (6) means

that when a′k is wrongly guessed,
∑

vL−k

(
u(vL−k)−

Ω(vL−k)

2

)2

1
2

√
Ω(vL−k)

follows the central

chi-square distribution. Thus, Pright, the probability that a right a′k satisfies
Ba′k

≥ T , and Pwrong, the probability that a wrong a′k passes this algorithm,
are computed as (7), respectively. Here, φ1(x) and φ2(x) are probability density
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functions of the noncentral chi-square distribution and the central chi-square
distribution, respectively.

Pright =

∫ Ω(vL−k)n

4q(1−q) +0.5

T
Ω(vL−k)q(1−q)

φ1(x)dx, Pwrong =

∫ Ω(vL−k)n+0.5

4T
Ω(vL−k)

φ2(x)dx. (7)

A threshold T is chosen to satisfy that Pwrong < 2−k. It means that none
of wrongly guessed a′k passes IFCA and the correctly guessed a′k passes it with
proper probability.

3 Analysis on IFCA

3.1 Simulation results on IFCA

For various attack environments, Zhang et al. have computed the complexities
of IFCA by setting parameters satisfying that Pright ≈ 1 and Pwrong < 2−k.
For example, given 40000-bit keystream sequences, the initial state of LFSR of
length 40 can be recovered with the 230.6 precomputational complexity, the 220

computational complexity and the 225 memory complexity.

Table 3 and 4 present the comparison between our simulation results and
attack results of [7]. Here, parameters are that L = 40, N = 40000, t = 3 and
k = 12. We computed the complexities by using MATLAB R2008a. In Table
3, the complexities have been computed by choosing n and T to satisfy that
Pright ≈ 1 and Pwrong < 2−12 for various correlation probabilities. In Table 4,
they have been chosen to satisfy that our complexities are similar to them of [7].
As shown in these tables, our simulation results are different from them of [7].

The mean value of the central chi-square distribution, the distribution of
Pwrong, is degrees of freedom. In the case of IFCA, this value is n. On the other
hand, the mean value of the noncentral chi-square distribution, the distribution
of Pright, is n+ δ2. Here, δ2 is the non-centrality parameter. If δ2 is a very large
number, then we can set parameters satisfying that Pright ≈ 1 and Pwrong < 2−k.
Since δ2 is dependent on n and ε, these two values should be the more larger
for the more larger δ2. For parameters L = 40, N = 40000, k = 12, t = 3 and
ε = 0.031, Fig. 1 and Fig. 2 present the graphs of two cases that n is 10(Table
4) and 223.74(Table 3), respectively. In the case that n = 10, it is difficult to
distinguish two graphs. Thus, Pright and Pwrong are also similar. On the other
hand, if n = 223.74, they are apart from each other. So, Pright is entirely different
from Pwrong. In (7), the lower bounds of Pright and Pwrong,

T
Ω(vL−k)q(1−q) and

T
Ω(vL−k)

, are almost similar from simulation results. Thus, the more larger δ2

needs in order that Pright ≈ 1 and Pwrong < 2−k.

Our simulation results show that if a threshold T is chosen to satisfy that
T

Ω(vL−k)q(1−q) = T
Ω(vL−k)

= n+(n+δ2)
2 , the mean value of two distributions, then

Pright and Pwrong are close to the criteria of IFCA, Pright ≈ 1 and Pwrong < 2−k.
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Table 3. Comparison between [7] and our simulation results 1

Attack p N n T Pright Pwrong
Complexity

Precom. Comp. Memory

[7] 0.531 4 · 104 · · ≈ 1 < 2−k 220.00 225.00 230.60

Ours

0.650 4 · 104 2 217.34 0.9999

2−12

220.29 222.76 234.51

0.600 4 · 104 29 219.26 0.9902 224.16 226.60 234.51

0.550 4 · 104 215.46 228.77 0.9910 234.76 237.20 234.51

0.531

4 · 104 223.74 237.02 0.9934 243.04 245.48 234.51

5 · 104 221.90 236.14 0.9960 242.11 244.60 235.18

105 215.87 233.15 0.9942 239.03 241.62 239.27

Parameters: L = 40, t = 3, k = 12

Criteria: Pright ≈ 1, Pwrong < 2−k

Table 4. Comparison between [7] and our simulation results 2

Attack p N n T Pright Pwrong
Complexity

Precom. Comp. Memory

[7] 0.531 4 · 104 · · ≈ 1 < 2−k 220.00 225.00 230.60

0.531 4·104

1 217.03 2−11.98

2−12

219.30 221.79 234.51

2 217.33 2−11.97 220.30 222.76 234.51

4 217.71 2−11.97 221.30 223.75 234.51

Ours 6 217.97 2−11.96 221.88 224.33 234.51

8 218.17 2−11.96 222.30 224.74 234.51

10 218.33 2−11.96 222.62 225.06 234.51

12 218.48 2−11.96 222.88 225.33 234.51

Parameters: L = 40, t = 3, k = 12

Criteria: complexities
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Fig. 1. L = 40, N = 40000, k = 12, t = 3, ε = 0.031, n = 10
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Fig. 2. L = 40, N = 40000, k = 12, t = 3, ε = 0.031, n = 223.74
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3.2 Proposal of the valid bias

In this subsection, we propose a threshold of the correlation probability where
IFCA is valid. Firstly, we examine the attack environment considered in the
previous subsection (L = 40, N = 40000, k = 12 and t = 3) and then the
shrinking generator using LFSR of length 61.

L = 40, N = 40000, k = 12 and t = 3 Table 5 presents the complexities
for various correlation probabilities, given parameters that L = 40, N = 40000,
k = 12 and t = 3. Here, as mentioned in the previous subsection, T is chosen

to satisfy that T
Ω(vL−k)q(1−q) and T

Ω(vL−k)
are equal to n+(n+δ2)

2 , the mean value

of two distributions. As shown in Table 5, if ε ≤ 0.10, n where IFCA is valid
increases rapidly. Thus, in this attack environment, IFCA is valid only in the
case that ε ≥ 0.10.

Table 5. Valid bias on the environment that L = 40, N = 40000, k = 12 and t = 3

ε n δ2 T Pright Pwrong
Complexity

Precom. Comp. Memory

0.15 2 57.97 218.23 0.9831 2−22.35 220.29 222.76

234.51

0.14 3 57.47 218.27 0.9821 2−20.68 220.88 223.34

0.13 4 49.11 218.11 0.9719 2−16.67 221.3 223.75

0.12
5 37.97 217.86 0.9484 2−12.16 221.62 224.07

7 53.16 218.35 0.9749 2−15.57 222.11 224.55

0.11
5 22.53 217.30 0.8798 2−7.35 221.62 224.07

14 63.08 218.79 0.9814 2−14.87 223.11 225.55

0.10
5 12.72 216.78 0.7824 2−4.48 221.62 224.07

29 73.75 219.32 0.9842 2−13.17 224.16 226.60

0.09
5 6.76 216.35 0.6727 2−2.84 221.62 224.07

75 101.36 220.25 0.9899 2−12.13 225.53 227.97

3.3 The shrinking generator using LFSR of length 61

Zhang et al. applied IFCA to the shrinking generator using LFSR of length 61 in
order to analyze the efficiency compared with existing fast correlation attacks.
They insist that IFCA can recover the initial state of LFSR with 235.86 com-
putation complexity and 10000-bit keystream sequences. Here, Pright = 97.42%
and Pwrong = 2−32.16.

However, our simulation result on this attack environments shows that Pright
is 2−32.16 and not 97.42%. See Table 6. As shown in Table 6, the attack results
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where a correlation probability is 0.60482 are almost similar to them of [7]. Thus,
if IFCA conducts validly on the shrinking generator using LFSR of length 61, ε
should be more than or equal to 0.1.

Table 6. Valid bias on the shrinking generator using LFSR of length 61

Attack ε δ2 T Pright Pwrong
Complexity

Comp. Memory

[7] 0.0195281 · 8.6 · 108 0.9742 2−32.16 235.86 236.23

Ours
0.0195281 4.8 · 10−6 8.6 · 108 2−32.16

2−32.16 235.85 236.23

0.1048200 95.34 8.6 · 108 0.9742

Parameters: L = 61, N = 10000, n = 12, t = 5, k = 27

4 Conclusion

This paper shows that the computation of the success probability on IFCA is
wrong. Also we analyze it theoretically. Furthermore, we propose a threshold of
the valid bias. From our simulation results, IFCA is valid only in the case that
ε ≥ 0.1.
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