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Abstract

Straight line factoring algorithms include a variant Lenstra’s elliptic curve method. This
note proves lower bounds on the length of straight line factoring algorithms.
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1 Introduction

Straight line factoring algorithms include a variant Lenstra’s elliptic curve method. This note
proves lower bounds on the length of straight line factoring algorithms.

1.1 Summary of this Work

A straight line program P is essentially a fixed sequence of ring operations +, −, and ×. A straight
line factoring algorithm is specified by a straight line program P . On input n to be factored, it
does the following two steps

1. It evaluates P in the ring Z/(n) of integers modulo n to get a result value r.

2. It computes gcd(r, n) (using the extended Euclidean algorithm, for example).

If gcd(r, n) 6= 1, n, then the straight line factoring algorithm is deemed to have successfully factored
n.

Note that P does not depend n. So, straight line factoring algorithms cannot adjust P to
depend on n. Typically, a single straight line factoring algorithm will target a finite set of n, such
that the set of all n consist of a product of two primes of some bit length s.

Although this class of algorithms may appear severely limited, and thereby insignificant, we
claim that it includes variants of Lenstra’s elliptic curve method (ECM), with similar performance
to Lenstra’s ECM. For certain ranges of n, Lenstra’s ECM is the fastest known algorithm. Fur-
thermore, some implementations of the fastest known algorithm for n beyond a certain size, the
General Number Field Sieve (GNFS), make use of Lenstra’s ECM as an intermediate step. For
these two reasons, we argue that the class of straight line factoring algorithms is a significant class.

This note proves two lower bounds on the number of steps in a straight line program is successful
to factor randomly chosen RSA keys. The first lower bound is abstract in the sense it depends on
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an infinite set of very large integers and the concept of a length of integer, which can be difficult to
determine even for much smaller integers than those in the set. The second lower bound, derived
from the first, is much more concrete, but too weak to provide sufficient assurance for cryptography.
The second lower bound says that the straight line program has at least a number of steps that is
about equal to the number of bits in the prime factors of the RSA modulus to be factor.

Future research may improve these results. Stronger lower bounds on the lengths of integers,
especially compared to their factorization may help. Better understanding the aforementioned sets
of integers may help. Generalizations to a broader class of algorithms, with division, randomization,
and even forms of branching, may be also be worthwhile, but may be somewhat moot unless weak
concrete lower bounds for the simpler case of straight line factoring can be improved substantially.

1.2 Previous Work

Riesel [Rie94] describes the Pollard rho factoring method in his algebraic model. This algebraic
model is essentially the class of straight line factoring algorithms. Riesel also noticed that such
algorithms may be described as simply computing a huge integer modulo the number to be factored.
On page 223 and 224, Riesel states

Summarizing this line of thought: Pollard’s rho method may be regarded as a tech-
nique for generating huge integers, which, after i steps, contain all the small primes up
to some limit Ci2 as factors, and the amount of work needed to find a specific factor
of p of N is therefore O(

√
p) steps. An “ideal” prime generator could, after i steps,

contain the primes up to about Cri and would thus require only O(ln p) steps, with
each step performing in O(log N)k+1 seconds, in order to identify p as a factor of N .
This corresponds to polynomial time performance.

Even if such an ideal prime generator cannot be constructed, the enormous gap
between the orders of magnitude

√
p and (log p)(log N)k+1 means that there is certainly

much room for improvement of existing algorithms. Ultimately, the ideal could be
approximated so closely that in practice, a factorization algorithm performing in nearly
polynomial would be achieved.

Two interpretations of the Riesel’s paragraphs are as follows:

1. Riesel is conjecturing that there exists a straight line factoring algorithm with a linear num-
ber of steps. This is supported by both his quoting the word ideal and conditioning the
construction of such an ideal thing. Also, the word only suggests that an upper bound on
the number is being described.

2. Riesel is stating a lower bound on the number of steps in a straight line factoring algorithm,
thereby anticipating the result of this paper. Evidence against interpretation is the word
only, which should have been at least if a lower bound were being described.

Even under the interpretation that Riesel is stating a lower bound, no formal proof of such a lower
bound is evident.

Note that Riesel does not identify Lenstra’s ECM as subject to his algebraic model. Perhaps
this is why his algebraic model did not receive as much attention as it deserved.

For a brief survey of other work related to lower bounds, straight line programs and factorization—
none mentioning any lower bounds on factoring—see Appendix A.
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2 Definitions

Definition 1. A straight line program P of length L is a sequence (σ1, . . . , σL) of steps of the form

σk = (ik, ◦k, jk) (1)

with operation ◦k ∈ {+,−,×} and integer indices 0 6 ik, jk < k.

Definition 2. A straight line program P computes an integer P () as follows. Let x0 = 1. Let

xk = xik ◦k xjk
. (2)

Let P () = xL.

Lemma 1. If P is a straight line program of length L, then P () mod n can be computed using L
arithmetic operations modulo n.

Proof. Evaluate xk mod n using (2) and a single arithmetic operation modulo n.

Note that the naive method of computing P () as integer first, using L integer arithmetic op-
erations, then reducing it modulo n, may be greatly exceed the cost of the method provided by
Lemma 1, because as the integers xk grow in size, so does the cost of each integer arithmetic
operations upon them.
Definition 3. A straight line factoring algorithm F is specified by a straight line program P . On
input of integer n, algorithm A does the following:

1. It evaluates r = P () mod n, using Lemma 1.

2. It evaluates f = gcd(r, n), using the extended Euclidean algorithm.

If f 6= 1, n, then F has succeeded.

Note that f = gcd(P (), n).
Definition 4. Let n be a random variable, taking integer values. Let F be a straight line factoring
algorithm. The success rate µ of F for factoring F is the probability that F succeeds when its
given input is from the random variable n.

3 Straight Line Factoring Algorithms

3.1 Trial division

This section describes a straight line variant of the trial division factoring algorithm.
Definition 5. Let m > 3 be integer. Let L = 2m−3. Let P be the straight line program of length
L with steps

σ1 = (0,+, 0),
σ2 = (1,+, 0),

σ2k−4 = (2k − 6,+, 0), ∀4 6 k 6 m,

σ2k−3 = (2k − 4,×, 2k − 5), ∀3 > k 6 m.
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Lemma 2. P () = m!.

Proof. By definition, x0 = 1. Since ◦1 = +, we see x1 = 1 + 1 = 2. Since σ2 = (1,+, 0), we see
x2 = x1 + x0 = 3.

We claim that x2k−4 = k for all k > 3, by induction. The base of induction is k = 3, was
established above: x2(3)−4 = x2 = 3. For k > 4, we have x2k−4 = x2k−6 + x0 because σ2k−4 =
(2k − 6,+, 0). Now x2k−6 = x2(k−1)−4, which, by inductive hypothesis, equals k − 1. Since x0 = 1,
we see x2k−4 = (k − 1) + 1 = k.

We next claim that x2k−3 = k! for all k > 2. The base case of induction is k = 2, which follows
from x2(2)−3 = x1 = 2 = 2!, as shown above. For k > 3, we have x2k−3 = x2k−4x2k−5 because
σ2k−3 = (2k− 4,×, 2k− 5). We already established above that x2k−4 = k. Now x2k−5 = x2(k−1)−3,
so, by induction, we have x2k−5 = (k − 1)!. Therefore, x2k−4 = k × (k − 1)! = k!.

In particular, P () = xL = x2m−3 = m!.

Lemma 3 (Heuristic). If m is sufficiently large, and n is an integer random variable uniformly
distributed between 1 and m2, then the success rate µ of the straight line program specified by P
is approximately log 2.

Sketch. A heuristic result of Dickman states that the number of positive integers below x with no
prime factors larger x1/a is approximately xρ(a) where ρ(a) is the Dickman function.

Taking x = m2 and a = 2, one can see that ρ(2) = 1− log 2. Therefore, the probability that n
has a prime factor larger than m is approximately log 2.

For such integers n, we have gcd(m!, n) < n, because n has prime factor p > m, so that p - m!.
If n is composite, then we will also have gcd(m!, n) > 1, since any composite n must have a prime
factor between 2 and

√
n < m.

The probability that n is prime is, by the prime number theorem, at most approximately
1/(2 log(m)), which for sufficiently large m is negligible compared to log 2.

Other straight line variants of the trial division algorithm are possible. For example, instead of
computing m!, the program P can compute the product of all primes 6 m. This can be obtained
from the program above by insertion of some extra addition steps, and removal of multiplication.
Actual construction of such a program is itself a slightly difficult problem. In this paper, however,
we will ignore the difficulty associated with construction of straight line programs, and only consider
the overall length of the straight line program.

3.2 Pollard’s p− 1 factoring algorithm

Pollard’s p− 1 factoring algorithm is essentially straight line factoring algorithm. Its core consists
of computing f = gcd(aM −1, n) for some small integer a, such as a = 2, and some large integer M
which is also product of small factors. If n = pq for primes p and q and p−1|M but aM 6≡ 1 mod q,
then f = p.

Of course, Pollard’s p − 1 algorithm does not compute aM − 1 fully as an integer, but rather
only modulo n, as aM − 1. This may be done by a straight line program.
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For example putting M = m! and a = 2, then the following straight line program P compute
2M − 1 in the following L = 2 +

(
m
2

)
steps:

σ1 = (0,+, 0)
σk = (k − 1,×, t(k) + 1), 2 6 k < L

σL = (L− 1,−, 0)

where t(k) is the largest triangular integer less than k − 1.
Note that a shorter program to compute the same integer can be obtained as follows. The

program P above has stages wherein the jth stage it compute bj from b (where b is the result of
the previous stage) by j − 1 repeated multiplications by b. Each stage can be shortened by using a
square-and-multiply algorithm to compute bj from b, which takes at most 2 log2 j steps. The total
length is then at most about 2m log m.

The success rate of Pollard’s p − 1 factoring algorithm is only significantly better than trial
division if n has exactly one prime factor p such that p − 1 is a product of small primes. So, it
might seem that the algorithm is not cryptographically relevant, since for n chosen with random
prime factor p, the algorithm has a low success rate, unless the length is infeasibly large.

Nevertheless, this algorithm is important because Lenstra generalized it to elliptic curves. Before
getting into this generalization, we can review what we have done so far.

We have described two straight line programs that compute large integers with many small
factors. The first program simply multiplied small integers together to compute m!. The second
program instead computed 2m! − 1. It so happens that the sequence tn = 2n − 1 has the property
that a|b implies ta|tb. Therefore, if n has many small factors, such as d, then tn has many small
factors, such as td. This property of a sequence is called divisibility. We could try to generalize this
by finding other divisibility sequences.

Of course, being a divisibility sequence is no guarantee of having the small factors necessary
to make a good straight line factoring algorithm. Also needed is the that earliest occurrence of a
prime dividing a member of the sequence should be small.

Another view is that we work over the group F∗p, and Lenstra’s generalized this group to to
elliptic curve groups. Elliptic curve groups, with operations also defined in Fp, have orders other
than p− 1, but still close to p, and it is these other orders that will provide an improvement to the
success rate of factorization.

3.3 Lenstra’s elliptic curve method

This section first loosely outlines a straight line variant of Lenstra’s elliptic curve method (ECM)
factoring algorithm [Len87], which we conjecture to have approximately the same complexity as
Lenstra’s original algorithm. Second, a more formal description is describe, including some example
code.

To make Lenstra’s ECM algorithm into a straight line factoring algorithm,

1. fix various parameters, such as those that depend on target class of numbers to factor, and
fix the random choices, such as the choice of random elliptic curves and points,

2. perform the elliptic curve arithmetic without using division, such as by using projective
coordinates, and

5



3. multiply together each of certain values computed during the course of Lenstra’s ECM al-
gorithm to obtain r. Such a value could be the projective z-coordinate of a smooth large
multiple of an elliptic curve point.

It suffices to compute the z-coordinates, and not to bother with the x and y coordinates. One can
do this division polynomials, or more simply with elliptic divisibility sequences. This results in a
brief, albeit not optimal, implementation. We give an example.

Table 1, written in J, implements a straight line variant of Lenstra’s ECM. The number of curves
to try is fixed to 40, and a point on each curve is effectively multiplied by 30!. The number to

NB. J 6.0.2
r =: 2 1 0 1
s =: 3 0 1
t =: s,:r
C =: 0,.(t&,@(0&,.))^:3 t
F =: |:|.|:|.C
D =: (|.s),}:F
E =: |:|.|:|.D
mod =: x: */ p: ? 2 # 10 ^ 5
pow =: |:@(*/)@(0|:#~)
evn =: mod | pow & C - pow & D
odd =: mod | pow & E - pow & F
ini =: }.@:|:@:((x:@(-@|.,0&,)@(1 1&,))"1)
raw =: [‘((evn@$:<.@-:)‘(odd@$:<.@-:)@.(2|]))@.(0<])
mid =: 3&{
cur =: 3+i. 40 2
set =: ~. mod +. mid (ini cur) raw ! 30x

Table 1: J code for Straight Line Variant of Lenstra’s ECM

factor in this code is mod, a product of two random primes, uniformly chosen from the first 100000
primes. The factors found, if any, are stored in the result set. Built-in J verb +. computes final
gcd. Actually, the implementation above is not a strict straight line factoring algorithm because it
does not multiply all the partial results, but rather computes the gcd of each partial result with
the number to factor. (It could be regarded as a multi-output straight line program.)

There is no branching except in raw, where branching is made according to the bits of the
multiplier, in this case 30!. Since we will fix the multiplier, we therefore have implemented a straight
line program. Stange’s adaptation of Shipsey’s recursion, which is similar to Montgomery’s ladder,
for elliptic divisibility sequence is used, as follows.

For each bit in the multiplier, in this case 30!, eight consecutive entries in the elliptic curve
divisibility sequence are computed. These eight entries are viewed as a vector, and the recursion
involves raising these vectors to the power of matrices with nonnegative entries (for example,

(2, 3)(
1 1
0 1 ) = (6, 2), which is the job of the defined verb pow). The matrices needed are in the

variables C, D, E, and F. The initial vector is determined by applying ini to the 40 fixed curve
parameters in cur.

The length of the straight line program corresponding to the implementation above is about
242000. It can find prime factors up to size about 220. The straight line version of trial division
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described in §3.1, for a similar success rate, might have length about 220, or about 8 times longer.
Of course, as one factors larger and larger numbers, the ECM based programs become shorter
than the comparably successful trial division based programs. A question to ask to what is the
shortest straight line program that has a comparable success rate for the same class of numbers
to factor. Later, we will show some theoretical and weak concrete lower bounds on the lengths of
such programs.

4 Lengths of Integers

The length λ(n) of a given integer n is the shortest length L of a straight line program P such that
P () = n.

Note that Shub and Smale [SS96] and Moreira [Mor97] write τ(n) for λ(n), Moreira calls it the
cost of the integer, while Cheng [Che04] calls it complexity.

Some weak bound for the length of a positive integer n are

1 + log2(log2(n)) 6 λ(n) 6 2 log2(n) (3)

The lower bound is strict except at n = 22m
. The lower bound follows by comparison to the straight

line whose first step a double, and all other steps squarings of the previous value. The upper bound
is obtained from double-and-add algorithm.

Moreira proves that, for almost all n, the lower bound

λ(n) >
log n

log log n
(4)

and a slightly upper bound that holds for all sufficiently large n. Note that here log is to the natural
base.

5 Lower Bounds for Straight Line Factoring

A straight line factoring algorithm A computes the homomorphic image of some integer I, using a
straight line program P , in the ring Z/(n) where n is the integer to factored. It follows that the
length L of this factoring algorithm is at least L > λ(I).

5.1 An Abstract Lower Bound

Assuming that A has success rate µ for random variable n, the probability that gcd(n, I) 6∈ {1, n}
is at least µ. Let I(n, µ) be the set of integers I with this property. Therefore, we have a lower
bound on the length L of a straight line factoring algorithm:

L > Λ(n, µ) = min
I∈I(n,µ)

λ(I) (5)

Of course, with no concrete knowledge about Λ(n, µ), this remains merely an abstract lower bound.
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5.2 A Weak Concrete Lower Bound

In this section, for special cases of n and µ of potential interest, we find a concrete lower bound
below the abstract lower bound Λ(n, µ). The concrete lower bound, though, does not provide much
assurance.

Suppose that µ = 1/2. Suppose that the random variable n is generated as n = pq where p
and q are identically distributed independent random variables uniformly distributed in the set S
of primes integers in the interval (2s, 2s+1). For the sake of simplicity, suppose that the number of
primes in S is even. (If not, just remove one prime.) For specificity, we denote this random variable
by ns. This ns is somewhat similar to the distribution of RSA public key moduli.

The set I(ns, 1/2) is the set of integers which are divisible by exactly half of the primes in S.
Using the lower bound λ(n) > 1 + log2 log2(n), we get a lower bound

Λ(ns, 1/4) > 1 + log2 log2

(2s + |S|/2)!
2s!

, (6)

by noting that for I ∈ I(ns, 1/2), we must have I at least the product of the first |S|/2 numbers
larger than 2s.

The right-hand side of (6) is not entirely concrete, because |S| may be unknown. Rigorous
concrete lower bounds can be provided, but in this paper, mere approximations will be given,
but the rigorous lower bounds should be quite similar. From the prime number theorem, we
derive an approximation |S|/2 ≈ 2s+1

4 log(2s+1)
= 2s−1

(s+1) log(2) . Let 2s + |S|/2 = 2s(1 + ε) where ε ≈
1/(2(s+1) log(2)). Taking Stirling’s approximation, that log(n!) = n log(n)−n+ 1

2 log(n)+ 1
2 log(π),

we have an approximation:

log
(2s(1 + ε))!

2s!
≈ 2sε log 2s − ε2s + 2s(1 + ε) log(1 + ε)

Using the fact that ε is small, we get an approximation log(1 + ε) ≈ ε. Throwing away dominated
terms, gives a crude approximation:

log
(2s(1 + ε))!

2s!
≈ 2s−1

Therefore, we get a lower bound for L of approximately s.

5.3 Failure of Applying Moreira’s Lower Bound

A heuristic one could try to apply is to assume that Moreira’s bound holds for all I ∈ I(n, µ), since
it holds for almost all integers. This heuristic would lead to the following bound:

Λ(ns, 1/2) >
log

log log

(
(2s + |S|/2)!

2s!

)
, (7)

which, under the approximations above, amounts to something like Λ(ns, 1/2) > 2s−1/s. This lower
bound seems too high, because straight line versions of Lenstra’s elliptic curve method of factoring
seem to have lower lengths than this heuristic lower bound. In fact, applying this heuristic yields a
lower bound approximately matching the cost of straight line version of the trial division method.
So, assuming the Moreira lower bound over all of I(n, µ) seems like an incorrect heuristic. In other
words, Lenstra’s ECM computes an integer I for which λ(I) is significantly less than Moreira’s
lower bound.
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6 Conclusion

A linear lower bound on the length of integral-generic factoring algorithms was given. A linear lower
bound can be given for the number of bit operations for the addition and multiplication operations
of the ring corresponding to the number to be factored. This results in a quadratic lower bound
for the number of bit operations for an integral-generic factoring algorithm. This lower bound is
no better than the cost of RSA decryption operation. So, there is room for improvement. It is
natural to hope that the lower bounds can be improved, and such would be worthy exercise even
if one only ever obtains a polynomial lower bound.
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A Related Work

Shoup [Sho97] introduced the generic group model and proved lower bound the difficulty of solving
the discrete logarithm problem in this model. Damg̊ard and Koprowski [DK09] extended Shoup’s
model to groups with unknown order, and imply a lower bound of the difficulty of group order in
this model. Their lower bound is larger than the cost of existing factoring algorithms, but such
algorithms are not restricted to group operations only. Leander and Rupp [LR06] introduced the
generic ring model, and Aggarwal and Maurer [AM09] proved that the RSA problem is as difficult
as the factoring problem, in this model.

Boneh and Venkatesan [BV98] essentially proved that a generic factoring algorithm with an
RSA oracle could be converted into one without an RSA oracle.

Upper bounds on the difficulty of generic factoring are provided by examples of generic factoring
algorithms. The trial division factoring algorithm has a version which is integral-generic. Lenstra’s
[Len87] elliptic curve method has version that is an integral-generic factoring algorithm, and which
may have similar running time.

Shamir [Sha79] provides an asymptotic upper bound of O(log n) arithmetic steps to factor n.
This very low upper bound proves that factoring can only have very low lower bound in terms of
number of arithmetic steps. However, Shamir’s arithmetic steps include integer division, which is
the floor of rational division, and these steps are excluded from the generic ring model: Shamir’s
algorithm is not a generic factoring algorithm and a lower bound on the number of steps in a
generic factoring algorithm could exceed Shamir’s upper bound on arithmetic steps.1 Furthermore,
the steps in Shamir’s algorithm involve arbitrarily large integers, whereas in the generic factoring,
the steps measured are operations on inputs of fixed bit size. Upon conversion to bit operations,
Shamir’s bound becomes quite large.

Lipton [Lip94] provides effectively yet another kind of upper bound: showing the factoring is
no harder than computing, with a straight line program, polynomials with many distinct rational
roots.

Cheng [Che04] recasts Lenstra’s elliptic curve method factoring as an upper bound on the
straight line complexity of certain integers (which we shall call the length of integers). Our lower
bounds may be expressed in terms of the length of integers, we study lower bounds for these. Cheng

1The extra operations in Shamir’s algorithm, integer division, can be used to implement the Euclidean algorithm
for finding modular inverses, which seems to be hard to do with mere ring operations, unless factoring is easy.
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[Che04] later speculates about lower bounds on the lengths of integers and the possibility of certain
factoring algorithms, but does not give an explicit lower bound on factoring.

Moreira [Mor97] provides lower bounds on the length of almost all integers. Lower bounds of
the lengths of integers are exactly what is needed in this paper, but because Moreira’s bound only
applies to almost all integers, it is not directly applicable, unless some heuristic assumptions are
made. An adversary is not bound to choose a compute integer, but may seek one that can be
computed more efficiently than average.

Shub and Smale [SS96] show that the short length of certain (sets of) integers is equivalent to an
algebraic version of NP 6= P . Assuming the hardness of the latter also provides a conditional lower
bound on the lengths of certain integers. Perhaps this conditional lower bound can be extended to
become a lower bound on integral-generic factoring algorithms.

B Schools of Thought

One rather strict school of thought in cryptology is that a cryptographic technique should only be
considered secure to the extent that it can be proved secure. This is mainly applied to advance
a preference between two cryptographic techniques, where the one with better proofs of security
deemed as secure(r). Such preference may in fact be contrary to a well-established history of
remaining unbroken under heavy use and intense scrutiny. A rationale may be that an unforeseen
attack may just be waiting around the corner.

Nevertheless, many such proofs of security actually rely on unproven security assumptions,
such as factoring being hard, whose security is assured primarily on well-established history of
reaming unbroken under heavy and intense scrutiny. Strict adherence to the above school of
thought demands seeking either proofs of security for such assumptions or other assumptions that
have security proofs (or both). So, strictly speaking, this school of thought should prefer discrete
logarithm cryptography (DLC) over integer factoring cryptography (IFC), because the former has
better security proofs, provided by Shoup’s proof, whereas integer factoring cryptography has no
useful proofs. The fact that Shoup’s proof for DLC has limitations is a given, but IFC has no proofs
at all, so the case for DLC is better than nothing.

C Lambda Examples

This section gives some examples of λ computations.
First, λ(83) = 5. The only length 5 integral-generic program computing 83 is:

((+, 0, 0), (+, 0, 1), (×, 2, 2), (×, 3, 3), (+, 1, 4)).

Second, λ(720) = 6. Seven integral-generic programs compute 720, with intermediate values given
by one of the five rows of the following array:

1 2 3 9 27 729 720
1 2 3 9 81 80 720
1 2 3 9 81 729 720
1 2 4 6 24 30 720
1 2 4 16 20 36 720

11



The last two rows account for two programs each because 4 can be computed as either 2 + 2 or
2× 2.

The n 6 10000 for which λ(n) = d1 + log2 log2 ne are:

2, 3, 4, 5, 6, 8, 9, 16, 17, 18, 20, 24, 25, 27, 32, 36, 64, 81, 256, 257, 258, 260, 272, 288,

289, 320, 324, 400, 512, 576, 625, 729, 1024, 1296, 4096, 6561.
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