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Abstract

We study algebraic degree profile of reduced-round block cipher schemes.
We show that the degree is not maximal with elementary combinatorial
and algebraic arguments. We discuss on how it can be turned into distin-
guishers from balanced random functions.

1 Introduction

1.1 Context and related works

Generic Feistel schemes have received much attention, probably due to the par-
ticular esssential structure that each round identically copies half the entry. Al-
though SP-schemes give the feeling that every bit of input data “goes through”
a non linear boolean function, Feistel schemes give the feeling that this non
linear crossing only occurs one round out of two for any given input bit.
Indeed, the security of reduced round generic Feistel schemes has been stud-
ied under well defined security models. Since the original paper by M. Luby
and C. Rackoff [1], various contributions by Patarin and al. [2, 3, 4, 5] show
how such schemes are “different”, in fact distinguishable, from random permu-
tations. These papers give the complexities of various distinguishers, in terms
of adversary model, amount of known data or chosen queries to an oracle, and
negligible error probability.
In the present paper, we stress that the Feistel structure but also SP schemes
induces abnormal behaviour of algebraic degrees. More precisely, we proove
that algebraic degrees on – very – reduced round is always sub optimal, making
the corresponding scheme indeed different from a random permutation.
The work essentially relies on intrinsic properties of boolean functions. It is
strongly related to evaluation of the algebraic expression of the whole scheme
as a boolean function. Thus, unfortunately, it requires a irrelevant number of
queries and, in this way, cannot pretend to turn into any efficient distinguisher.
Nevertheless, it lightens algebraic features that come to confirm previously
known generic weaknesses on Feistel schemes. Besides, this “algebraic-degree”
approach is, up to our knowledge, an original point of view.
Finally, we are not aware of systematic studies on generic SP schemes, so that
the corresponding results in the present paper may be original as well.
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1.2 Outline

Paper is organized as follows. Section 2 introduces notations and definitions.
In section 3, we give some easy but useful results on boolean functions with
possibly multiple output bits, the proofs of which are gathered in appendix A.
Section 4 studies the algebraic degree profile of a 2-round SP network, as Sec-
tion 5 gives the analogue for a 3-round Feistel network. Section 6 discusses
some consequences on distinguishing those reduced-round block ciphers from
random functions. The results in their brute form appear to be inefficient to
this purpose, possible directions are proposed for further research.

2 Notations and definitions

Let Fn
2 be n-dimensionnal vector space over the finite field F2, and define the

partial order � in Fn
2 by x � y ⇔ ∀i = 1, . . . , n, xi ≤ yi.

We deal with boolean functions with mulitple, say n(> 1) input bits, and pos-
sibly multiple output bits. We refer to a boolean function with single (resp.
multiple) output bit(s) as a scalar (resp. vectorial) boolean function. The sup-
port (resp. weight) of a scalar boolean function denotes the set f−1(1) (resp.
the cardinality of the latter) and is denoted by Supp(f) (resp. wt(f)).
Every scalar boolean function f(x1, . . . , xn) can be uniquely represented by
its algebraic normal form (ANF), a multivariate polynomial in the quotient
polynomial ring F2[x1, . . . , xn]/(x2

1 + x1, . . . , x
2
n + xn):

f(x1, . . . , xn) =
∑

(u1,...,un)∈Fn
2

au1,...,unxu1
1 . . . xun

n

Note that xu1
1 . . . xun

n = 1 if, and only if for every i = 1, . . . , n, xi = 1 whenever
ui = 1.
The algebraic degree of f is the maximum degree of monomials xu1

1 . . . xun
n for

which au1,...,un is not zero. It isdenoted by deg(f).

2.1 The Mobius transform

Recall that the so called Mobius transform gives a correspondance between the
list of the values of the function f and the list of its ANF coefficients. More
precisely, it goes from one list to the other by the way:

∀(u1, . . . , un) ∈ Fn
2 , au1,...,un =

∑
(x1,...,xn)�(u1,...,un)

f(x1, . . . , xn)

∀(x1, . . . , xn) ∈ Fn
2 , f(x1, . . . , xn) =

∑
(u1,...,un)�(x1,...,xn)

au1,...,un

For x = (x1, . . . , xn) and u = (u1, . . . , un) ∈ Fn
2 , define the symbolic xu to be

the monomial xu1
1 . . . xun

n in the aformentionned quotient polynomial ring.
Here we borrow the notation of indicator function, and denote generically 1(A)
for the boolean number that is 1 (resp. 0) if proposition A holds (resp. does not
hold). It permits a very compact rewriting of all these properties. First, xu =
1 ⇔ u � x, and then xu = 1(u � x). Therefore, the Mobius correspondance
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can be rewritten itself in a short way:

∀u ∈ Fn
2 , au =

∑
x∈Fn

2

f(x)1(x � u)

∀x ∈ Fn
2 , f(x) =

∑
u∈Fn

2

au1(u � x)

The reason why we want to point out this compact writing is actually an epiphe-
nomenon: in our feeling, it makes it easier to formally write the proof of these
equalities. Indicator function notation is generally easy to handle formally, even
if it is not the most concrete writing in this particular case.

3 Results on balancedness of boolean functions

In this section we give a few basic results on the relationship between algebraic
degree and balancedness of boolean functions. We make intense use of those
results in the following sections, and therefore we have decided to summarize
them in the present section, pushing their proofs away to the appendix.
We show that the balancedness of vectorial boolean functions is closely related
to the balancedness of (scalar) nonzero linear forms of their output bits. We also
establish a nice result about balancedness of pointwise products of the output
bits. We finally formulate the properties in the specific case of n-variables
bijections.
Let us start with a lemma. It is rather elementary, but the subsequent results
of this section largely make use of it.

Lemma 1 Let f be a scalar (ie with single output bit) boolean function with
n > 1 input bits. Then:

(i) the coefficient of the monomial x1 . . . xn in the ANF of f is equal to
∑

x∈Fn
2

f(x).

(ii) deg(f) ≤ n− 1 if, and only if wt(f) is even.

(iii) if f is balanced, then deg(f) ≤ n− 1.

Proof See appendix A. 2

We now come out with vectorial boolean functions, ie having multiple, say t,
output bits instead of a single one. We still denote the number of input bits by
n, and we assume that t ≤ n. If f is such a function, we will write f1, . . . , ft

for the components of f , that of course are themselves scalar boolean functions.
Balancedness generalizes very naturally and we will say that f is balanced if all
y ∈ Ft

2 have the same number of preimages by f in Fn
2 , that is

∀y ∈ Ft
2,#{x : x ∈ Fn

2 , f(x) = y} = 2n−t.

Note that it indeed forces t to be ≤ n. We are now ready to give the

Proposition 2 Let 1 < t ≤ n be two integers, and f : Fn
2 → Ft

2 be a vecto-
rial boolean function with scalar components f1, . . . , ft. Then the following two
properties are equivalent:
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(1) f is a balanced function;

(2) every nonzero linear form of the outputs of f is balanced, ie ∀(λ1, . . . , λt) ∈
Ft

2 − {0, . . . , 0}, x 7→ λ1f1(x)⊕ . . .⊕ λtft(x) is balanced.

Proof See appendix A. 2

Corollary 3 Assume (1) or, equivalently, (2) holds in proposition 2. Then
every linear form of the outputs of f is a boolean function with algebraic degree
≤ n− 1.

Proof From proposition 2, every linear form of the outputs of f is either null,
either balanced. In the latter case, lemma 1(iii) applies. 2

We now give a result about the pointwise product of balanced boolean functions.
The pointwise product of two scalar boolean functions f and g is defined by
fg : x 7→ f(x)g(x). Since Supp(fg) = Supp(f)∩Supp(g), there is no systematic
relation between balancedness of fg and the one of f and g. Moreover, in the
case when f and g are balanced, fg cannot be balanced unless we are in the
“degenerate” case where f = g. Nevertheless, we are able to proove a nice result
on the algebraic degree of a product of some balanced functions, provided the
number of factors in the product is not too much. Let us state it precisely.

Proposition 4 Let 1 < t ≤ n be two integers, and f : Fn
2 → Ft

2 be a vectorial
boolean function with scalar components f1, . . . , ft. Assume that f is balanced.
Then all the pointwise products fi1 . . . fir , with 1 ≤ i1 < · · · < ir ≤ t, 1 ≤ r ≤
min(t, n− 1) have algebraic degree ≤ n− 1.

Proof See appendix A. 2

A particular case we are interested in is the one where f is bijective mapping
of Fn

2 . We have the

Corollary 5 Let f be a n-variable bijection. Then

(i) any nonzero linear form of the fi’s,

(ii) any product of at most n− 1 fi’s

have degree ≤ n− 1.

Proof (i) comes from lemma 1 and proposition 2 put together, while (ii) follows
from proposition 4. 2

4 2-round SPN

4.1 Description

Let n = qm the blocksize of a SP network, each round of which is composed as
follows:

• a non linear layer composed by q parallel substitutions boxes S1, . . . , Sq.
Each S-box is a m-variable bijection. We assume that all Si are the same,
and we simply denote it S. The reason for this assumption is that it does
not change the proof and makes it easier and lighter to read;
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• a linear layer composed by a invertible linear mapping L on Fn
2 , the struc-

ture of which is not relevant for our proof.

Let X = (x1, . . . , xn) be the input variables. The following equations describe
the 2-round SP scheme, and introduce intermediate variables Y = (y1, . . . , yn),
Z = (z1, . . . , zn), T = (t1, . . . , tn) as well as final output U = (u1, . . . , un).
Each n-bit vector is naturally divided into q groups of m variables. For instance
(x1, . . . , xn) is divided into (x1, . . . , xm), (xm+1, . . . , x2m), . . . , (x(q−1)m+1, . . . , xqm),
and these subvectors will be denoted X1, . . . , Xq respectively. An analogous con-
vention defines Y1, . . . , Yq, Z1, . . . , Zq, T1, . . . , Tq, and U1, . . . , Uq.

(First round)

(Non linear layer) (y1, . . . , ym) = S(x1, . . . , xm)
. . .

(y(q−1)m+1, . . . , yqm) = S(x(q−1)m+1, . . . , xqm)
(Linear layer)

(z1, . . . , zn) = L(y1, . . . , yn)
(Second round)

(Non linear layer) (t1, . . . , tm) = S(z1, . . . , zm)
. . .

(t(q−1)m+1, . . . , tqm) = S(z(q−1)m+1, . . . , zqm)
(Linear layer)

(u1, . . . , un) = L(t1, . . . , tn)

(1)

Λ denotes the matrix of L in the canonical basis of Fn
2 . We will make explicit

use of (Λi,j)1≤i,j≤q, that are q2 square m×m submatrices of Λ defined by

Λ =

 Λ1,1 . . . Λ1,q

...
...

Λq,1 . . . Λq,q

 .

With all our notations, the following four writings have the same meaning:

(z1, . . . , zn) = L(y1, . . . , yn),

(z1, . . . , zn) = (y1, . . . , yn).Λ, Z1 = Y1.Λ1,1 ⊕ . . .⊕ Yq.Λq,1

. . .
Zq = Y1.Λ1,q ⊕ . . .⊕ Yq.Λq,q. (z1, . . . , zm) = (y1, . . . , ym).Λ1,1 ⊕ . . .⊕ (y(q−1)m+1, . . . , yqm).Λq,1,
. . .

(z(q−1)m+1, . . . , zqm) = (y1, . . . , ym).Λ1,q ⊕ . . .⊕ (y(q−1)m+1, . . . , yqm).Λq,q,

Here each vector is identified with a row-matrix, and (y(i−1)m+1, . . . , yim).Λi,j =
Yi.Λi,j represents a (row) vector-matrix product (with compatible sizes as easily
checked).
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4.2 Statement

We aim to study the algebraic degree of Y, Z, T, U as (multivariate polynomial)
expression of the input variables x1, . . . , xn. The following theorem summarizes
the results, while next subsection is devoted to the proof.

Theorem 6 Let equations (1) define a 2-round SP network with n = qm vari-
ables. Put X = (x1, . . . , xn) the input variables, and consider Y, Z, T, U as
algebraic expressions of the xi’s. Then:

(i) deg(Z) = deg(Y ) ≤ m− 1;

(ii) deg(U) ≤ deg(T ) ≤ q(m− 1);

4.3 Proof of theorem 6

Since Z (resp. U) is linearly computed from Y (resp. T ), it is clear that
deg(Z) ≤ deg(Y ) (resp. deg(U) ≤ deg(T )). Now let us examine the degrees of
Y and T .

(i) The degree of Y is ≤ m− 1
Y1 = (y1, . . . , ym) only depends on variables x1, . . . , xm. Since S is a bijection,
the degree of each yi is ≤ m − 1. The same argument holds for Y2, . . . , Yq,
completing the proof of the statement for Y .

The degree of Z is equal to the one of Y Each Zi is a linear form of the Yj (via
the matrix Λ). But the subsets of variables xj that are involved in expression of
the Yj are pairwise disjoint, such that terms of degree max can not cancel each
other when linearly combined.

(ii) The degree of T is ≤ q(m− 1)
We will proove that the partial degree degXi

(Tj) is ≤ m − 1 for 1 ≤ i, j ≤ q.
We write the proof for i = 1, the general case works in a similar way.
Fix j0 ∈ {1, . . . , q}. Consider the ANF of Tj0 as a polynomial of variables
x1, . . . , xm with coefficients that are themselves multivariates polynomials in
variables xm+1, . . . , xqm. Let h(xm+1, . . . , xqm) be the coefficient of the mono-
mial x1 . . . xm. Now write

Tj0 = S(Zj)
= S(Y1.Λ1,j0 ⊕ . . .⊕ Yq.Λq,j0)
= S(S(X1).Λ1,j0 ⊕ . . .⊕ S(Xq).Λq,j0)
= S(S(x1, . . . , xm).Λ1,j0 ⊕ . . .⊕ S(x(q−1)m+1, . . . , xqm).Λq,j0) (2)

Fix xm+1, . . . , xqm to any numerical value x∗m+1, . . . , x
∗
qm ∈ F(q−1)m

2 , and put

T ∗
j0 = S(S(x1, . . . , xm).Λ1,j0 ⊕ S(x∗m+1, . . . , x

∗
2m).Λ2,j0 ⊕ . . .

⊕S(x∗(q−1)m+1, . . . , x
∗
qm).Λq,j0).

The multivariate polynomial function (x1, . . . , xm) 7→ T ∗
j0

is bijective, as equa-
tion (2) easily shows that it is a composition of bijections. It follows that the
degree of T ∗

j0
with respect to x1, . . . , xm is ≤ m− 1. Then, the ANF of T ∗

j0
does

not contain the monomial x1 . . . xm, whose coefficient is h(x∗m+1, . . . , x
∗
qm). In
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other words, h(x∗m+1, . . . , x
∗
qm) = 0. Now the crucial point is that this latest

equality holds for any fixed numerical choice of x∗m+1, . . . , x
∗
qm, and therefore h

is identically zero as a multivariate polynomial in the variables xm+1, . . . , xqm.
We finally get that Tj0 is a multivariate polynomial in variables x1, . . . , xn whose
partial degree with respect to the first group X1 = (x1, . . . , xm) of variables is
≤ m−1, ie that does not contain any monomial in which the variables x1, . . . , xm

all appear.
An identical argument prooves that, in fact, Tj0 has partial degree ≤ m−1 with
respect to every group Xi, i = 1, . . . , q. In other words, the ANF of Tj0 does
not contain any monomial in which all the variables of a given group Xi appear,
for any i = 1, . . . , q. It finally follows that the ANF of Tj0 does not contain any
monomial whose total degree strictly exceeds q(m− 1), and that completes the
proof of the statement for T .

4.4 What about going further ?

We briefly explain the reason why the argument collapses at round 3. We have,
for example

U1 = T1.Λ1,1 ⊕ . . .⊕ Tq.Λq,1

We have proved, as intermediate steps of previous lines, that X1 7→ T1, . . . ,
X1 7→ Tq are bijective mappings, but there is no reason that their sum should
still be a bijective mapping (the only property that is preserved by summing
bijective mappings altogether is that their degree remains ≤ m − 1). In other
words, the mapping

X1 7→ S(U1) = S(T1.Λ1,1 ⊕ . . .⊕ Tq.Λq,1)

can be non bijective, and then can contain monomials of (maximal) degree m.
The only upper bound we can easily deduce is that the degree of the global 3-
round SP output is ≤ qm−1, since the global SP is bijective and hence balanced.
Actually, we performed experiments on toy examples and they showed that the
latter bound can be reached.

5 3-round Feistel

5.1 Description

Let n = 2m be an even integer. Define the following 3-round Feistel on n-bit
blocks:

L1 = R0, R1 = L0 ⊕ f(R0),
L2 = R1, R2 = L1 ⊕ g(R1),
L3 = R2, R3 = L2 ⊕ h(R2).

(3)

where the 3 round functions f, g, h are assumed to be m-variable bijections. We
set

(L0, R0) = (x1, . . . , xn),
(L1, R1) = (y1, . . . , yn),
(L2, R2) = (z1, . . . , zn),
(L3, R3) = (t1, . . . , tn).
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Throughout this section, the “algebraic degree” of any expression is meant with
respect to - explicit or implicit - variables x1, . . . , xn in the algebraic expansion
of the expression.

5.2 Statement

We aim to study the algebraic degree of (Li, Ri)’s as (multivariate polynomial)
expression of the input variables x1, . . . , xn. Since Li = Ri−1, it suffices of course
to study the degree of the Ri’s. The following theorem summarizes the results,
while next subsection is devoted to the proof. Some remarks mention results
for partial degrees (with respect to x1, . . . , xm on one hand, and xm+1, . . . , x2m

on the other hand) of the Ri’s.

Theorem 7 Let equations (3) define a 3-round Feistel scheme with n = 2m
variables. Put (L0, R0) = (x1, . . . , xn), and consider R1, R2, R3 as algebraic
expressions of the xi’s. Then:

(i) deg(R1) ≤ m− 1;

(ii) deg(R2) ≤ 2m− 3;

(iii) deg(R3) ≤ 2m− 2;

5.3 Proof of theorem 7

(i) The degree of R1 is ≤ m− 1
We have

(ym+1, . . . , y2m) = (x1, . . . , xm)⊕ f(xm+1, . . . , x2m), (4)

ie  ym+1 = x1 ⊕ f1(xm+1, . . . , x2m)
. . .
y2m = xm ⊕ fm(xm+1, . . . , x2m)

(5)

f is a m-variable bijection, hence each fi has degree ≤ m− 1 (corollary 5) and
therefore, each yi, i = m + 1, . . . , 2m has itself degree ≤ m− 1.

Remark. Results for partial degrees can be established here directly from the
algebraic expression of R1. We have:

degx1,...,xm
(R1) = 1,

degxm+1,...,x2m
(R1) = max(deg(f1), . . . ,deg(fm)) ≤ m− 1.

(ii) The degree of R2 is ≤ 2m− 3
We compute R2 as a function of xi’s. We have

(zm+1, . . . , z2m) = (y1, . . . , ym)⊕ g(ym+1, . . . , y2m)
= (xm+1, . . . , x2m)⊕ g((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))

ie  zm+1 = xm+1 ⊕ g1((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))
. . .
z2m = x2m ⊕ gm((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))

(6)
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Let us examine the expression of zm+k, for k = 1, . . . ,m. Since g is a m-variable
bijection, each gk, k = 1, . . . ,m is balanced and its ANF only contains terms of
degree ≤ m− 1. Write

gk(ξ1, . . . , ξm) =
∑

0≤r≤m−1

∑
1≤i1<···<ir≤m

α
(k)
i1,...,ir

ξi1 . . . ξir

where r = 0 corresponds to the constant term gk(0, . . . , 0). We derive

gk((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))
= gk(x1 ⊕ f1(xm+1, . . . , x2m), . . . , xm ⊕ fm(xm+1, . . . , x2m))
=

∑
0≤r≤m−1

∑
1≤i1<···<ir≤m

α
(k)
i1,...,ir

(xi1 ⊕ fi1(xm+1, . . . , x2m)) . . . (xir ⊕ fir (xm+1, . . . , x2m))

(7)

A basic development of the right hand side raises terms of the form

xi1 . . . xirfj1(xm+1, . . . , x2m) . . . fjs(xm+1, . . . , x2m) (8)

with  1 ≤ i1 < · · · < ir ≤ m,
1 ≤ j1 < · · · < js ≤ m,
r + s ≤ m− 1.

The degree of each fj is ≤ m− 1 because f is bijective. The same holds for the
products of fj ’s, because there are s ≤ m − 1 factors fj ’s and thus corollary 5
applies. We get the following upper bound for the degree of each term (8):

• if s = 0, then r ≤ m− 1 and

deg(term (8)) = r ≤ m− 1;

• if s = 1, then r ≤ m− 2 and

deg(term (8)) ≤ r + deg(fj1) ≤ (m− 2) + (m− 1) = 2m− 3;

• if s ≥ 2, then r ≤ m− 3 and

deg(term (8)) ≤ r+deg(product of several fj ’s) ≤ (m−3)+(m−1) = 2m−4.

We have proved that deg(gk((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))) ≤ 2m− 3, and
so is deg(zm+k), for k = 1, . . . ,m. That completes the proof of the statement
for R2.

Remark. Consider equation (6) and write it in the following compact form :

R2 = R0 ⊕ g(L0 ⊕ f(R0)).

If we fix R0, the partial function L0 7→ R0 ⊕ g(L0 ⊕ f(R0)) is bijective on Fm
2

because g is. Hence its degree (more exactly, the degree of each of its scalar
component) is less than m − 1. In similar way, if we now fix L0, the partial
function R0 7→ g(L0 ⊕ f(R0)), is bijective on Fm

2 because g and f are. Hence
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its degree is ≤ m − 1, and so is the degree of R0 7→ R0 ⊕ g(L0 ⊕ f(R0)). We
conclude:

degx1,...,xm
(R2) ≤ m− 1,

degxm+1,...,x2m
(R2) ≤ m− 1

Hence any monomial of R2 cannot contain the whole “left” (nor “right”) vari-
ables, ie no monomial is multiple of x1 . . . xm (nor multiple of xm+1 . . . x2m).
What is remarkable from the upper bound for total degree of R2 is that when-
ever m− 1 “left” (resp. “right”) variables appear in a given monomial, then at
most m− 2 “right” (resp. “left”) ones appear in the same monomial. In other
words, there is no monomial containing m − 1 left variables and m − 1 right
variables simultaneously.

(iii) The degree of R3 is ≤ 2m− 2
We have

(tm+1, . . . , t2m) = (z1, . . . , zm)⊕ h(zm+1, . . . , z2m) (9)

ie  tm+1 = z1 ⊕ h1(zm+1, . . . , z2m)
. . .
t2m = zm ⊕ hm(zm+1, . . . , z2m)

(10)

Note that z1, . . . , zm are degree ≤ m − 1, because of the bound on R1 and
R1 = L2 = (z1, . . . , zm). Hence, to proove the statement, it suffices to proove
that hk(zm+1, . . . , z2m), for k = 1, . . . ,m, have degree ≤ 2m− 2 (recall that the
degree of any expression is meant with respect to the – implicit – variables xi’s).
We will use the same strategy as previously. Actually, it will not work exactly
in the same way, and will require some refinement.
First we “slide” expression (7) one round forward. What we mean is that (7)
is still valid when moving:

• xi to yi;

• gk to hk (and moving the α’s coefficients to some new ones, say β’s);

• fi to gi.

This rewriting gives

hk(y1 ⊕ g1(ym+1, . . . , y2m), . . . , ym ⊕ gm(ym+1, . . . , y2m))
= hk(0, . . . , 0)⊕

∑
1≤r≤m−1

∑
1≤i1<···<ir≤m

β
(k)
i1,...,ir

(yi1 ⊕ gi1(ym+1, . . . , y2m)) . . . (yir ⊕ gir (ym+1, . . . , y2m)) (11)

Then we have to examine terms of the form

yi1 . . . yirgj1(ym+1, . . . , y2m) . . . gjs(ym+1, . . . , y2m) (12)

with  1 ≤ i1 < · · · < ir ≤ m,
1 ≤ j1 < · · · < js ≤ m,
r + s ≤ m− 1.
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In the previous case, the crucial point was that the factors xi1 . . . . . . xir
and

the factors fj1(xm+1, . . . , x2m) . . . fjs(xm+1, . . . , x2m) have separate groups of
variables xi – more precisely, the former only contain variables x1, . . . , xm al-
though the latter only contain variables xm+1, . . . , x2m. As (y1, . . . , ym) =
(xm+1, . . . , x2m) this separation no longer holds, and if we expand the left hand
side of (11) with respect to the variables xi, all of them would be mixed alto-
gether. Indeed, if the previous strategy could be applied in the same way, we
would get that the degree of (11) is ≤ 2m− 3, which is not compliant to what
we are aiming to proove1.
Let us express the terms (12) with respect to variables xi’s. Using (4) and
(y1, . . . , ym) = (xm+1, . . . , x2m), we get expressions of the form

xm+i1 . . . xm+ir
[gj1 . . . gjs

]((x1, . . . , xm)⊕ f(xm+1, . . . , x2m))
= xm+i1 . . . xm+ir g∗((x1, . . . , xm)⊕ f(xm+1, . . . , x2m)) (13)

with  1 ≤ i1 < · · · < ir ≤ m,
1 ≤ j1 < · · · < js ≤ m,
r + s ≤ m− 1.

Here g∗ = gj1 . . . gjs denotes the pointwise product of the functions gj1 , . . . , gjs .
The new trick here is that we apply corollary 5 to both product of several gj ’s
and fi’s, since f and g are bijections : the pointwise products [f`1 . . . f`t

], with
t ≤ m− 1, 1 ≤ `1 < · · · < `t ≤ m are m-variable functions with degree ≤ m− 1,
and so is g∗, as the product of s ≤ m− 1 functions gi’s.
Now write

g∗(ξ1, . . . , ξm) =
∑

0≤s≤m−1

∑
1≤k1<···<ks≤m

γk1,...,ksξk1 . . . ξks ,

where s = 0 corresponds to the constant term g∗(0, . . . , 0). Then (13) becomes

xm+i1 . . . xm+ir

∑
0≤s≤m−1

∑
1≤k1<···<ks≤m

γk1,...,kr (xk1 ⊕ fk1(xm+1, . . . , x2m)) . . .

(xks ⊕ fks(xm+1, . . . , x2m))

= xm+i1 . . . xm+ir

∑
0≤s≤m−1

∑
1≤k1<···<ks≤m

γk1,...,ks

 ∑
0≤t≤s∑

(`1,...,`s)∈S(k1,...,ks)

x`1 . . . x`t
[f`t+1 . . . f`s

](xm+1, . . . , x2m)


=

∑
0≤s≤m−1

∑
1≤k1<···<ks≤m

γk1,...,ks

 ∑
0≤t≤s∑

(`1,...,`s)∈S(k1,...,ks)

x`1 . . . x`t xm+i1 . . . xm+ir [f`t+1 . . . f`s ](xm+1, . . . , x2m)


(14)

1The upper bound that we target corresponds to our observations on a toy example, hence
is tight.
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with 
1 ≤ i1 < · · · < ir ≤ m,
1 ≤ j1 < · · · < js ≤ m,
1 ≤ `1, . . . , `s ≤ m, `i pairwise distinct,
r + s ≤ m− 1,
t ≤ s.

The summation
∑

(`1,...,`s)∈S(k1,...,ks) ranges over all s-tuples for which the `i’s
are pairwise disjoint and the set {`1, . . . , `s} is equal to the set {k1, . . . , ks}. The
terms appearing in (14) have the form:

x`1 . . . x`t xm+i1 . . . xm+ir [f`t+1 . . . f`s ](xm+1, . . . , x2m) (15)

which we will be refered as “term (15)”. Let us examine their degree:

• if r = 0, then deg([f`t+1 . . . f`s
](xm+1, . . . , x2m)) ≤ m− 1, because s− t ≤

m− 1 and corollary 5. Hence,

deg(term (15)) = t + deg([f`t+1 . . . f`s
](xm+1, . . . , x2m))

≤ (m− 1) + (m− 1)
= 2m− 2;

• if r ≥ 1, then on one hand t ≤ s ≤ m − 1 − r ≤ m − 2 and, on the other
hand,

deg(xm+i1 . . . xm+ir
[f`t+1 . . . f`s

](xm+1, . . . , x2m)) ≤ m

because the degree of any multivariate polynomial expression is always
upper bounded by the number of variables. Hence,

deg(term (15)) = t + deg(xm+i1 . . . xm+ir [f`t+1 . . . f`s ](xm+1, . . . , x2m))
≤ (m− 2) + m
= 2m− 2.

That completes the proof of the statement for R3.

Remark Expression of R3 with respect to (L0, R0) is

R3 = R1 ⊕ h(L1 ⊕ g(R1))
= L0 ⊕ f(R0)⊕ h(R0 ⊕ g(L0 ⊕ f(R0)))

If we fix R0, the partial function L0 7→ f(R0) (resp. L0 7→ h(R0⊕g(L0⊕f(R0))))
is a bijection on Fm

2 beacause f is (resp. beacause g and h are). Hence both
functions have degree ≤ m−1, and their sum L0 7→ R3 has also degree ≤ m−1,
that is

degx1,...,xm
R3 ≤ m− 1.

Now if we fix L0, the partial function R0 7→ g(L0 ⊕ f(R0)) is a bijection on
Fm

2 , hence has degree ≤ m− 1. Therefore, R0 7→ R0 ⊕ g(L0 ⊕ f(R0)) has itself
degree ≤ m− 1, but is no longer a bijection so that there is no reason a priori
why R0 7→ h(R0⊕ g(L0⊕ f(R0))) should be a bijection and should have degree
≤ m−1. Indeed, in the experiments we performed, there were some cases where
the partial degree was m.
It is even more remarkable that degree of R3 is ≤ 2m − 2. The facts, that we
encountered during the proof and that we want to stress out here, are that
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• in any monomial, there are at most m− 1 “left” variables that appear;

• there are some monomials multiples of xm+1 . . . x2m, but whenever it oc-
curs, there are at most m− 2 “left” variables appearing in the monomial.

It is also the reason why it is impossible to go further in the sequent rounds.
For a 4-round Feistel, the only upper bound we can obtain is that the degree of
the output is ≤ 2m − 1, since the global Feistel function is bijective. Actually,
we performed experiments on toy examples and they showed that the bound
can be reached.

6 Distinguishing aspects

One can be tempted to use the various results on what we could call the “de-
gree profile” to distinguish a reduced round Feistel or SP scheme from a random
function. Indeed, a random function with n variables has degree n with prob-
ability 1/2. Of course, the relevance of the distinguishing issue makes sense if
one targets to distinguish the scheme from a balanced random function. In
this case, the degree cannot exceed n− 1, and since there are n monomials with
degree (n − 1), the probability for a balanced random function to have degree
exactly n−1 is equal to 1−2−n. A similar argument shows that the probability
degree exactly n − 2 is 1 − 2−n−(n

2). These probabilities values are very close
to 1, such that false alarms when applying this distinguisher is of negligible
probability.
Unfortunately, the results strongly make use of the ANF ceofficients of the
global function, especially the “high-weight” coefficients, that is to say those of
monomials of degree n and n− 1.
The correspondance formulas between values and ANF coefficients are recalled
in section 2. If one examines them carefully, they stress that, given u ∈ Fn

2 , the
ANF coefficient au only depends on the values f(x), where x � u. We can say
in a certain manner that some ANF coefficients can be computed from a sample
of the list of values of f . But, as this “sample” is reduced enough for coeffi-
cients of monomial of very low degree, it grows as the degree of the targetted
monomial does. And finally, the computation of the degree-n monomial coeffi-
cient requires the complete list of values. Besides, the following combinatorial
argument prooves that there cannot exist any trick to get rid of this feature.

Assume that there exist a “sampling” subset S such that the degree-
n monomial coefficient of f , say c, can be computed from the (sam-
pled list of) values f(x), x ∈ S. On the other hand, we still always
have

c =
∑
x∈Fn

2

f(x)

Now choose any x0 /∈ S and flip the corresponding value of f . Then
c is itself flipped and the degree of the function is flipped from n
to some integer ≤ n − 1, or conversely. It follows as an evidence
that the degree f cannot be computed from any sampling subset, a
contradiction.
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The complexity of all our work seems to be basically lower bounded by the
(pre-)computation of the ANF form of the scheme. This is well-known to be
feasible in O(n2n) (by a recursive form of the Mobius transform, similar to
fast Discrete Fourier Transform). It turns to be obviously irrelevant since it is
greater than the complexity O(2n) of computing the whole dictionnary of the
function. In any case, it cannot compete with the most significant results of the
quoted references propose distinguishers, which complexities vary from O(2n/2)
to O(23n/4), depending on the number of rounds and the model of adversary.
Nevertheless, at this point we have not investigated yet the possibility that some
relation between the n degree-(n− 1) coefficients altogether could be exhibited
using an appropriate sampling subset of the values of f . This could be a way
for further research. Another direction to investigate comes from examining
the partial degrees with respect to some subset of variables (e.g. “left” or
“right” subset for a Feistel scheme), to distinguish Feistel or SP schemes from
random functions. For example, in the case of Feistel schemes, the partial
function w.r.t. “left” variables deals with monomials which degree is at most
n/2, and the complexity to retrieve the ANF coefficients is O(n2n/2). The latter
complexity is significantly lower than O(n2n), and has same order of magnitude
as literature’s complexities.
Finally, we believe that the same kind of degree-distinguishing can be made
efficient if we deal with unbalanced Feistel schemes, as in [4].
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A Proof of the results on boolean functions

A.1 Proof of lemma 1

(i) follows from the Mobius inversion applied to u = (1, . . . , 1). (ii) is an easy
consequence of (i), since the summation contains wt(f) terms equal to 1 and
2n −wt(f) terms equal to 0. (iii) follows - again elementarily - from (ii) (recall
that n > 1 by assumption), but, of course, its converse may not be true.

14



A.2 Proof of proposition 2

The proof relies on the use the Fourier and Walsh transform. First recall that
the Fourier transform f̂ of a n-variable scalar boolean function f is defined by

∀v ∈ Fn
2 f̂(v) =

∑
x∈Fn

2

f(x)(−1)x.v

where the computation is performed over the ring of integers, and that we have
the Fourier inversion formula:

∀x ∈ Fn
2 , f(x) = 2−n

∑
v∈Fn

2

f̂(v)(−1)x.v

The Walsh transform f̃ of a scalar boolean function f is defined as the Fourier
transform of the sign function (−1)f .

∀v ∈ Fn
2 f̃(v) = (̂−1)f (v) =

∑
x∈Fn

2

(−1)f(x)+x.v.

The following lemma is straightforward, and we skip its proof.

Lemma 8 The scalar boolean function f is balanced if and only if f̃(0) = 0.

Now let us come to the proof of proposition 2.
(i) ⇒ (ii). Let λ = (λ1, . . . , λt) ∈ Ft

2 − {0}. We have

λ̃.f(0) =
∑
x∈Fn

2

(−1)λ.f(x) =
∑
y∈Ft

2

(#f−1(y)) (−1)λ.y

= 2n−t
∑
y∈Ft

2

(−1)λ.y = 0,

as desired.
(ii) ⇒ (i). Define g : Ft

2 → Z, by y 7→ #f−1(y). Let us compute the Fourier
transform of g. For λ 6= 0, we have by assumption λ.f is balanced, then by
lemma 8 λ̃.f(0) = 0, and hence

ĝ(λ) =
∑
y∈Ft

2

(#f−1(y)) (−1)λ.y =
∑
x∈Fn

2

(−1)λ.f(x) = λ̃.f(0) = 0.

On the other hand, ĝ(0) =
∑

y∈Ft
2
#f−1(y) = #Fn

2 = 2n. It follows, by Fourier
inversion formula, that

∀y ∈ Ft
2, #f−1(y) = g(y) = 2−t

∑
λ∈Ft

2

ĝ(λ)(−1)λ.y = 2n−t,

as desired.

A.3 Proof of proposition 4

We actually proof that,

∀1 ≤ i1 < · · · < ir ≤ t, with 1 ≤ r ≤ min(t, n− 1),
the support of fi1 . . . fir (x) = 1 has cardinality 2n−r. (16)
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It will give the expected conclusion applying (ii) of lemma 1, noting that r ≤
min(t, n− 1) de facto implies 2n−r is even.
We would like to propose two different proofs. Both use combinatorial argu-
ments. The first one is much simpler mainly exploit the vectorial structure of the
function f . The second one is more tricky, it only considers the scalar compo-
nents f1, . . . , ft by themselves, and makes a nice use of inclusion-exclusion-like
argument (what motivated us to propose it as well).

First proof

Fix 1 ≤ i1 < · · · < ir ≤ t, with 1 ≤ r ≤ min(t, n − 1). Consider the “subfunc-
tion” f∗ : Fn

2 → Fr
2, x 7→ (fi1(x), . . . fir (x)): it is itself balanced, as it is easy to

see appyling criterion (2) of proposition 2.
Now, an element x ∈ Fn

2 satisfies [fi1 . . . fir
](x) = 1 if, and only if fi1(x) = · · · =

fir (x) = 1, that is, if f∗(x) is the “all one” vector (1, . . . , 1) ∈ Fr
2. Hence the

support of fi1 . . . fir is f∗ −1((1, . . . , 1) and, since f∗ is balanced, contains 2n−r

elements.

Second proof

The basic point of the proof is the following

Lemma 9 (i) Basic version: let g and h two n-variable scalar boolean func-
tions. Then

wt(f ⊕ g) = wt(f) + wt(g)− 2wt(fg)

(ii) Iterative version: let g1, . . . , gs be s n-variable scalar boolean functions.
Then

wt(g1 ⊕ . . .⊕ gs) =
∑

1≤k≤s

wt(gk)− 2
∑

1≤k1<k2≤s

wt(gk1gk2)

+4
∑

1≤k1<k2<k3≤s

wt(gk1gk2gk3)

· · ·+ (−2)s−1wt(g1 . . . gs)

Proof (i) It is clear by a inclusion-exclusion principle that

Supp(f ⊕ g) = (Supp(f) ∪ Supp(g))− (Supp(f) ∩ Supp(g))
= (Supp(f) ∪ Supp(g))− Supp(fg)

from which conclusion follows immediately. (ii) follows recursively from (i). 2

Now, assume that condition (ii) holds in proposition 4. We proove (16) by
strong induction on r.
The result holds for r = 1 because of condition (ii). Assume that the result
holds up to r−1, that is every product of s ≤ r−1 fi’s has weight 2n−s. Apply
lemma 9(ii) with gk = fik

and s = r:
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wt(fi1 ⊕ . . .⊕ fir ) =
∑

1≤k≤r

wt(fik
)− 2

∑
1≤k1<k2≤r

wt(fik1
fik2

)

+4
∑

1≤k1<k2<k3≤r

wt(fik1
fik2

fik3
)

+ · · ·+ (−2)r−1wt(fi1 . . . fir )

Using induction hypothesis, we get:

2n−1 =
(

r

1

)
2n−1 − 2

(
r

2

)
2n−2 +

(
r

3

)
(−2)22n−2

+ · · ·+
(

r

r − 1

)
(−2)r−22n−r+1

+(−2)r−1wt(fi1 . . . fir
)

such that,

2n−1(1−
(

r

1

)
+

(
r

2

)
−

(
r

3

)
+ · · ·+ (−1)r−1

(
r

r − 1

)
) = (−2)r−1wt(fi1 . . . fir )

which gives the desired
wt(fi1 . . . fir ) = 2n−r

since 1−
(
r
1

)
+

(
r
2

)
−

(
r
3

)
+ · · ·+ (−1)r−1

(
r

r−1

)
+ (−1)r = 0.

Since s ≤ r ≤ min(t, n− 1) < n, 2n−r is a even integer and we conclude in the
same way as in the first proof.

Remark

It is easy, using same kind of tricks, to deal with the case where f is a bijection,
and r = n: the support of f1 . . . fn is reduced to a single point, precisely the
element f−1(1, . . . , 1).
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