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ABSTRACT
A peer-to-peer database management system(P2PDBMS) is
a collection of autonomous data sources, called peers. In this
system each peer augments a conventional database man-
agement system with an inter-operability layer (i.e. map-
pings/policies) for sharing data and services. Peers exchange
data in a pair-wise fashion on-the-fly in response to a query
without any centralized control. Generally, the communi-
cation link between two peers is insecure and peers create
a temporary session while exchanging data. When peers
exchange highly confidential data between them over an in-
secure communication network, such as the Internet, the
data might be trapped and disclosed by the intruders. In a
P2PDBMS there is no centralized control for data exchange,
hence we cannot assume any central third party security in-
frastructure (e.g. PKI) to protect confidential data. So far,
there is currently no available/existing security protocol for
secured data exchange in P2PDBMS. In this paper we pro-
pose three models for secure data exchange in P2PDBMSs
and the corresponding security protocols. The proposed pro-
tocol allows the peers to compute their secret session keys
dynamically during data exchange based on the policies be-
tween them. Our proposed protocol is robust against the
man-in-the middle attack, the masquerade attack, and the
reply attack.

Keywords
P2PDBMS Security Model, Secure Data Exchange, Pairing-
based cryptography, Authentication

1. INTRODUCTION
A peer-to-peer database management systems(P2PDBMS)
is a collection of autonomous data sources, called peers,
where each peer augments a conventional database manage-

ment system with an inter-operability layer (i.e. mappings)
for sharing data and services. The local databases on peers
are called peer databases. In a P2PDBMS, each peer chooses
its own database schema and maintains data independently.
Although peer databases are created independently, data in
one peer may semantically relate with data in another peer.
Therefore, each peer specifies pair-wise mappings with other
peers to share and exchange related data.

Contrary to the traditional data integration systems where
a global mediated schema is required for data exchange, in
P2PDBMS, semantic relationships exist between peers, or
among a small set of peers, for exchanging data. The data
are accessed globally by any peer by traversing the network
of peers. In the last few years, significant progress has been
made in research on various issues related to P2PDBMSs,
such as peer data exchange settings [1], data integration
models [3], mediation methods [4], coordination mecha-
nisms [5, 6], and mappings [7] among the peer databases.

There is an increasing interest in the creation of peer-to-peer
database management systems, which includes establishing
and maintaining mappings between peers, processing queries
using appropriate propagation techniques, and exchanging
data between peers. While there is a rich body of research
concerning frameworks and mapping issues among peers, the
aspect of sharing data between trusted or acquainted peers
in a secured way is given less attention. In many collabora-
tive data sharing efforts, particularly in biological and health
sciences, confidential data between sources are exchanged for
sharing and coordinating information with each other. Gen-
erally, in collaborative data sharing, independent researchers
or groups with different goals, schemas, and data agree to
share data with one another. Each group independently cu-
rates, revises, and extends this shared data. At some point
sources need to exchange data which may be confidential
(e.g. new research results on genes in a biological system;
patients’ personal information to a health information net-
work) by establishing a temporary data exchange session. In
a peer-to-peer system, we cannot assume a fixed secure chan-
nel for data exchange between each pair of peers since peers
are dynamic and may leave the network anytime, or acquain-
tances between peers are temporary. Moreover, it would be
highly expensive and not feasible to maintain a secure link



Figure 1: An example model of a peer to peer database
management system

for each pair of peers. When data are exchanged through
an unsecured link between acquainted peers, data are no
longer secured despite the assumption that each source pro-
tects its own data from malicious tampering and accessing
by external intruders.

The following example illustrates the needs to use a pairing-
based dynamic security policy for exchanging confidential
data between peers. This scenario relates to a ’health infor-
mation network’, where different parties (e.g. family physi-
cians; walk-in clinics; hospitals; medical laboratories; phar-
macists, and other stakeholders) are willing to share data
about patients’ treatments, medications, and test results
over an insecure network such as the internet.

Example 1. Consider the scenario of a P2PDBMS in
Figure 1. The figure illustrates a collaborative ’health in-
formation network’. In the system, family doctors (FDDB),
hospitals (HDB), medical laboratories (LABDB), pharma-
cists (PHDB), and other stakeholders (e.g. medical research
cells (RDB)) are willing to exchange or coordinate infor-
mation about patients’ treatments, medications, test results,
and diseases. In the system, data in a database of a peer
may need to be exchanged with other related peers accord-
ing to established policies between them. For example, fam-
ily doctors may want to keep track of patients’ medications
for some specific diseases. Therefore, family doctors should
have a link with the pharmacist database (PHDB) and any
patient in PHDB diagnosed with a disease that is of inter-
est to family doctors may need to be exchanged with FDDB.
Moreover, family doctors may be interested in collecting test
results of their patients from laboratories and the medica-
tions that their patients take while staying at hospitals. The
links from HDB and PHDB to RDB show that research cell
database (RDB) is interested in information about certain
diseases for research purposes. The links between peers in
the figure are formally a set of mappings or mapping con-
straints. For example, m12 represents mappings from peer
P1 to P2.

Note that the acquaintances between peers are established

with predefined policies and trust relationships without hav-
ing a centralized security policy. The existing conventional
public key Infrastructure (PKI) is not suitable to apply
in P2PDBMS since a centralized-trusted control system is
needed for the PKI. Recent progress of Elliptic Curve Cryp-
tography (ECC) shows that it is feasible to implement ECC.
Studies have shown that ECC consumes considerably less
resources than conventional public key cryptography (PKC)
for a given security level [10, 11, 12].

However, in order to effectively use ECC, it is necessary
to authenticate the public keys; otherwise, the network will
be vulnerable to man-in-the-middle attacks. Public key au-
thentication requires a Public Key Infrastructure to issue
and revoke certificates and it requires users to store, ex-
change, and verify these certificates [13].

Identity-Based Cryptography (IBC) [14] is a type of public-
key cryptography where a single piece of information that
uniquely identifies a user (e.g. IP or email address) can be
used both to exchange keys and to encrypt data. The no-
tion of IBC presented in [14], has only become truly practical
with the advent of Pairing-Based Cryptography (PBC) [16,
15]. In most circumstances the points on an elliptic curve
form a simple cyclic group. Therefore, it is suitable to im-
plement pairing-based cryptography on such elliptic curves.

In order to achieve secured data exchange in a P2PDBMS
dynamic network, this paper presents a protocol based on
Identity Based Encryption (IBE) and pairing-based cryptog-
raphy. Using pairing-based and IBE properties, each peer
in the network generates a dynamic secret session key based
on the attributes mentioned in the query and the predefined
data exchange policy. In this protocol, peers authenticate
each other in a pair-wise fashion without a centralized au-
thentication policy.

In brief, our protocol has the following properties:

(1) flexible message-oriented secure data exchange between
peers (2) exchange of data between peers without any third
party certificates (3) communication between peers could
be as simple as a single TCP connection (4) both parties
(i.e. source and target) authenticate each other during data
exchange.

Organization of the paper: The next section introduces
the primitives of cryptography that is necessary to describe
our proposed protocol. Section 3 describes how the secure
data exchange policy/mapping is established between two
peers and the threats that can occur when peers exchange
their data in an unsecured channel. In Section 4, the pa-
per presents our cryptography solution and describes the
proposed protocol for exchanging data between peers. In
section 5 we discuss issues of cryptographic implementation
and prevention of different attacks in our secure data ex-
change protocol. Section 6 describes related work, and fi-
nally Section 7 concludes and points out avenues for further
research.

2. CRYPTOGRAPHIC PRIMITIVES
In this section, we describe some basic cryptographic prim-
itives and mathematical properties which are useful to un-



derstand our proposed protocol.

2.1 Elliptic curves
Elliptic curves are considered interesting primarily as an al-
ternative group structure. In regard to implementation of
common cryptographic protocols, certain advantages come
with the elliptic curve families, E(Fq) : y2 = x3 + Ax + B
[20]. The main advantage is that much smaller keys can be
used, as there is no known polynomial-time algorithm for
the discrete logarithm (DL) problem for the great majority
of such curves. Given a point P on a curve E defined over
a finite field Fq, where q = pm, and p is a large prime, the
problem is to determine “a” for given “aP”. In most cir-
cumstances the points on such a curve form a simple cyclic
group.

At the foundation of many cryptosystems is a hard mathe-
matical problem that is computationally infeasible to solve.
The DL problem is the basis for the security of many cryp-
tosystems, including the elliptic curve cryptosystem. More
specifically, the ECC relies upon the difficulty of the elliptic
curve discrete logarithm problem (ECDLP) [21].

2.2 Bilinear maps
Let G1 be an additive group and G2 be a multiplicative
group of the same prime order q. Let P be an arbitrary
generator of G1. Note that aP denotes P added to itself a
times. Assume that the discrete logarithm (DL) problem is
hard in both G1 and G2. We can think of G1 as a group of
points on an elliptic curve over Fq, and G2 as a subgroup of
the multiplicative group of a finite field Fqk for some k ∈ Z∗

q ,
where Z∗

q = {ξ|1 ≤ ξ ≤ q−1}. A mapping e : G1×G1 → G2,
satisfying the following properties, is called a cryptographic
bilinear map.

• Bilinearity: e(aP, bQ) = e(P,Q)ab for all P,Q ∈ G1

and a, b ∈ Z∗
q . This can be restated in the following

way. For P,Q,R ∈ G1, e(P + Q,R) = e(P,R)e(Q,R)
and e(P,Q+R) = e(P,Q)e(P,R).

• Non-degeneracy: If P is a generator ofG1, then e(P, P )
is a generator of G2. In other words, e(P, P ) 6= 1.

• Computable: A mapping is efficiently computable if
e(P,Q) can be computed in polynomial-time for all
P,Q ∈ G1.

Modified Weil Pairing [15] and Tate Pairing [16] are exam-
ples of cryptographic bilinear maps.

2.3 Diffie-Hellman problems
In this section, we recall the properties of Diffie-Hellman [17]
gap families. Before defining the Diffie Hellman gap families,
we assume the following:

• P is a point on an elliptic curve E given by Y 2 =
X3 + αX + β mod T where T is a prime number.

• < P > is a subgroup of E generated by P .

• | < P > | = q.

• a, b ∈ Z∗
q

The group G1 represents the group of points on the elliptic
curve E. Using the group G1, we can define the follow-
ing hard cryptographic problems applicable to our proposed
protocol.

• Computational Diffie-Hellman (CDH) Problem: Given
a triple (P, aP, bP ) ∈ G1 for a, b ∈ Z∗

q , find the element
abP ∈ E.

• Decision Diffie-Hellman (DDH) problem: Given a
quadruple (P, aP, bP, cP ) ∈ G1 for a, b, c ∈ Z∗

q , decide
whether c = ab mod q or not.

• Gap Diffie-Hellman (GDH) Problem: A class of prob-
lems where the CDH problem is hard but DDH prob-
lem is easy.

• Bilinear Diffie-Hellman (BDH) Problem: Given a
quadruple (P, aP, bP, cP ) ∈ G1 for some a, b, c ∈ Z∗

q ,

compute e(P, P )abc.

Groups where the CDH problem is hard but DDH prob-
lem is easy are called GAP Diffie-Hellman (GDH ) groups.
Details about GDH groups can be found in [15, 17].

3. SECURE DATA EXCHANGE SETTINGS
In this section first we introduce the concept of data ex-
change settings in a P2PDBMS. We then discuss different
security threats that may occur while two peers exchange
data through an insecure channel.

Attributes are symbols taken from a given finite set U =
{A1, · · · , Aq} called the universe. Each attribute Aj is asso-
ciated with a finite set of values called the domain of Aj and
is denoted by dom(Aj). Suppose X = {A1, A2, · · · , Ak} ⊆
U , with the elements Ai(1 ≤ i ≤ k) taken in the order
shown, then dom(X) ⊆ dom(A1)×dom(A2)×· · ·×dom(Ak).
A non-empty subset of U is called a relation schema R. A
database schema is a finite collection R = (R1, · · · , Rm) of
relation schemas.

The authors in [1] introduced a setting of data exchange
between peers. In a data exchange setting, one peer is a
source peer (data provider), an “authoritative” or “trusted”
peer that can contribute new data, while the other peer,
called the target peer (data receiver) accepts data from the
source. The ultimate goal of a data exchange setting is to
exchange data from a source to a target according to the
mappings between the source and the target. Let S be a
schema at a peer Pi and T be a schema at another peer Pj .
If mappings are specified from S to T , then S is called a
source schema and T is called a target schema. Generally,
in data exchange settings mappings are constituted by a set
of assertions of the forms

Σst = qS → qT

where qS and qT are two formulas, respectively over the
source schema S, and over the target schema T . Intuitively,



an assertion qS → qT specifies that the concept represented
by the formula qS over the source schema corresponds to
the concept in the target schema represented by the formula
qT . The assertions are basically tuple-generating dependen-
cies [2]. An example of assertions can be specified as logical
expressions of the form:

∀x[∃wφ(x,w)→ ∃zψ(x,z)]

where the left hand side (LHS) of the implication, φ, is a
conjunction of relation atoms over the schema of S and the
right hand side (RHS) of the implication, ψ, is a conjunc-
tion of relation atoms over the schema T . The mapping
expresses a constraint about the appearance of a tuple in
the instance satisfying the constraint of the RHS, given a
particular combination of tuples satisfying the constraint of
the LHS.

Basically, mappings perform structural relationship of data
between source and target as well as data to be exchanged
from source to target. Through the mappings, a source also
exports part of its schema accessible to the target. The
following is a simple example of a data exchange setting.

Example 2. Consider a family physician database
(FDB) with the schema S consisting of two relations
R1(OHIP, Name, Address, Illness, DOB) and R2(OHIP,
TestName, Result, Date). Also consider a database in a re-
search cell database (RDB) with the schema T consisting of
a relation R3(OHIP, Name, Illness, DOB, TestName, Re-
sult). Assume that a mapping is established between S and
T as follows:

∀ohip,name,illness,dob,testname,result∃name,addressR1(ohip,-
name, address, illness, dob), R2(ohip, testname,-

result, date)→ R3(ohip, illness, dob, testname, result)

The mapping expresses that patient data (ohip,
name, illness, dob, testname, result) are exchanged
from FDB to RDB by a query request q from
RDB. It also shows that FDB shares the attributes
{Ohip, Illness,DOB, TestName,Result} with RDB. Al-
though, the attributes are shared for RDB they also contain
some confidential attributes e.g. {Ohip,DOB}. Hence,
during data exchange the data of the confidential attributes
should not be exposed to others by any means. We can
say that these attributes are more confidential compared
to the attributes {TestName,Result}, since the values of
these attributes do not have any meaning unless one knows
corresponding ohip and date of birth. Note that only the
source knows which attributes are confidential attributes
among the shared attributes. The administrator of the
source is responsible to distinguish shared and confidential
attributes. Note that in this paper we only consider the
schema-level mappings between a source and a target. We
assume that when the mappings are created only the source
and the corresponding target know the structural relationship
between their schemas (i.e., correspondences between the
attributes and relations). The structural relationship is not
known to other peers.

We now formally define shared attributes, confidential at-
tributes, Non-confidential attributes, and private attributes.

Definition 1 (Shared attributes). Consider two
peers Pi and Pj in a P2PDBMS. Let S be a schema with
a set of attributes Us in Pi and T be a schema with a set
of attributes Ut in Pj. Assume a mapping Σst = qS → qT
between Pi and Pj. Let att(Σst) denote the set of attributes
exposed by Pi using the mapping Σst. Therefore, the shared
attributes, denoted by SA, is SA ⊆ Us = att(Σst).

Definition 2 (Confidential attributes).
Consider the mapping Σst = qS → qT between two
peers Pi and Pj. Let SA be the set of shared attributes.
Therefore, the confidential attributes, denoted by CA, are
CA ⊆ SA.

Definition 3 (Non-confidential attributes).
Consider the mapping Σst = qS → qT between two peers Pi
and Pj. Let SA be the set of shared attributes and CA be the
set of confidential attributes. Hence, the non-confidential
attributes, denoted by NCA, are SA− CA.

Definition 4 (Private attributes). Considering
the mapping Σst = qS → qT between two peers Pi and
Pj, where SA is the set of shared attributes, the private
attributes, denoted by PA, is Us − SA.

Example 3. Consider the example 2. Based on
the mappings, we see that the shared attributes are
{Ohip, Illness,DOB, TestName,Result}, the confidential
attributes are {Ohip,DOB}, and the non-confidential at-
tributes are {Illness, TestName,Result}. Note that admin-
istrators of the peers define the attributes that are confiden-
tial implicitly during the creation of mappings.

We now describe a scenario to justify the need of a proto-
col that secures confidential information of shared attributes
during exchange of data in an unsecured channel.

Assume that a user at RDB submits the following query q.
SELECT ohip, name, dob, illness, result
FROM R3

WHERE testname=“whitebloodcount”
Since RDB is connected with FDB, the query is forwarded
to RDB after transformation [9, 8] with respect to the
schema of FDB. Suppose the transformed query for FDB is
as follows:
SELECT ohip, name, dob, illness, result
FROM R1, R2

WHERE (R1.ohip=R2.ohip) and (test-
name=“whitebloodcount”)
When the query is received by FDB it realizes that the
target is requesting some confidential data, for example
{ohip, dob}. It is now the responsibility of FDB to provide
the requested data in a secured way because FDB is the
“trusted” or “authoritative” source according the data
exchange setting. We observe that there are several security



Figure 2: Illustration of man-in-the-middle attack in
P2PDBMS.

threats that can occur during data exchange from a source
to a target.

In the next subsection we discuss these threats.

3.1 Security threats for data exchange in
P2PDBMSs

Man-in-the middle attack (MITM): In MITM, intrud-
ers can make independent connections with the source and
the target and relay messages between them, making them
believe that they are exchanging data directly with each
other over a private connection (e.g TCP connection). In
fact, the entire data exchange session is controlled by the
intruders. Once the TCP connection is intercepted, the in-
truder acts as a proxy. Thus the intruder becomes another
node on the communication channel and is able to read, in-
sert, and modify the data in the intercepted communication.
The scenario is shown in Figure 2.

Masquerade attack: In this attack, a malicious peer may
pretend to be a valid target of a source by stealing the iden-
tity of the real target. Thus, a malicious peer may gain
access to the data of the source. The easiest point of entry
for a masquerade peer is provided by a weak authentica-
tion between the source and the target. Once the malicious
node passes the authentication process, it may be autho-
rized by the source as a target to access its data. Similarly,
a malicious node may falsely act as a source for a target.
Therefore, a malicious node may be able to tamper with
both exchanged data and the mappings.

Replay attack: A replay attack is an active network attack
in which a valid data transmission is maliciously or fraud-
ulently repeated or delayed. Suppose Alice is a target who
wants to authenticate her identity to a source, Bob. For
valid identification of Alice, Bob requests her password as a
proof of identity, which Alice provides to Bob (possibly af-
ter some transformation using a hash function). Meanwhile,
an intruder, Eve, is eavesdropping on the conversation and
is recording the password. After the verification phase is
over, Eve connects to Bob as Alice. Now, if Bob asks Alice
for proof of identity, Eve sends Alice’s password that was
recorded in the verification phase.

3.2 Our contribution
In a P2PDBMS, a peer may act as a source and/or a
target. For secure data exchange, source and target peers
are responsible for generating the secret session key for a
specific data exchange session. For exchanging data from
a source peer Pi to a target peer Pj , source-to-target data

exchange mappings are constituted. Thus if the target Pj
requests data from the source Pi by a query then the source
provides data to the target depending on the query request.
In order to provide data for the query request on-the-fly
a security mechanism is needed between the source Pi
and the target Pj . Since there is no pre-existing security
mechanism between peers, there may be an attack on the
data exchange session (see Section 3.1). Based on different
trust relationships between a source and a target we define
three secured data exchange models. The models are as
follows:

Model 1: In this model the source and the target fully
trust each other and the target peer explicitly knows which
are the confidential and non-confidential attributes that are
defined by the source through the mapping. This model
is applicable if the source and the target mutually agree
about which attributes are used to generate the session key
for a query request. Hence when the target requests data
through a query the source can identify which attributes
are used to compute the session key for data exchange.

Model 2: In this model the source and the target fully
trust each other but the target peer is not aware of the
confidential and non-confidential attributes defined by the
source. This model is particularly designed to make the
source, the only authoritative peer to initiate the process
for generating the session key in response to the query
received from the target. Hence, when a source receives a
query from a target the source alone dynamically selects the
confidential and non-confidential attributes for generating
the session key. However, the target is later informed about
the attributes that are used to generate the session key by
the source through some exchange of messages. In Section
4.3, we describe the process how the target is informed the
confidential and non-confidential attributes that are used
to generate the session key.

Model 3: In this model the source and the target may
not fully trust each other and a target is unaware of the
confidential and non-confidential attributes. This model is
explicitly designed to prevent a situation when there could
be some sort of social engineering of the exchanged data from
the target as well as from the source. In order to prevent
social engineering, a source has to consider some private
parameters from the target and the target has to consider
some private parameters from the source during exchange of
data. Theses parameters are generated dynamically without
any previous agrement. Hence, if the source or the target
performs a social engineering attack during data exchange
it is identified. The query result is enciphered by the source
in such a way that only the valid target can decipher the
query result. The target deciphers the query result by using
some defined operations with its private parameters.

In this paper, we propose three secure data exchange mod-
els in a data exchange setting and the corresponding secu-
rity protocols. Our proposed protocols are based on the one
way cryptographic hash function and the cryptographic hard
properties of IBE and pairing over elliptic curves. In the pro-



Figure 3: Security Architecture for P2PDBMS.

tocols when two peers want to exchange data, each of them
generates its secret session key using the shared attributes
between them. Peers generate session key on-the-fly for data
exchange based on the requested query. Once the genera-
tion of the secret session key is complete, one peer sends a
challenge to the other peer for its authentication; the other
peer then sends a corresponding response as the answer to
the challenge. If the challenge and response match with then
the peers begin the data exchange by encrypting the data
with their respective secret session key. This process is illus-
trated in Figure 3. In the proposed protocol, no malicious
peer can take part in the communication as they are not
authenticated among the peers and cannot self-generate the
secret session key. Hence a man-in-the middle, masquerade,
and reply attacks are prevented. In addition, the proposed
protocols do not require other trusted third-party central-
ized control services for authenticated transactions between
source and target. Peers generate their secret session key on-
the-fly as well as authenticate each other. In the following
section, we describe our protocols.

4. DESCRIPTION OF THE PROPOSED
PROTOCOL

In this section, we describe the methods to generate secure
session keys and how data is securely exchanged between
the peers considering the above models. At first we describe
the parameters that are used to generate the session key and
message authentication code; later we describe the security
mechanisms of our proposed models.

4.1 Parameters for the proposed models
In order to generate a secret session key and the message au-
thentication code for data exchange in three models, differ-
ent parameters are required. The parameters are discussed
as follows.

System parameters: System parameters (e.g. group, bi-
linear map, hash function) are used for generating a secret
session key for data exchange between peers. Depending
on the mutual agreement between peers, system parameters
may be fixed for each data exchange session or they may be
changed for each session. Depending on the situation the
system parameters may be private or public.

Session parameters: Session parameters (e.g. dynami-
cally generated id of peers, random number in Z∗

q , random
numbers) are used for a specific data exchange session in
order to generate the secret session key. These parameters

are dynamic for each session of data exchange. Depending
on the situation the session parameters may be private or
public.

Private secret parameters: Private parameters (e.g. dy-
namically generated random number in Z∗

q that are based
on the private attributes of the peers) are defined and only
known to the peer itself.

4.2 Parameters for Model 1
Assume a source peer Pi with schema S and a target peer
Pj with schema T . Also assume that based on the data
exchange policy between Pi and Pj the shared attributes
are classified as follows:

Confidential attributes (CA) = {CA1, CA2, · · · , CAm}
Non-confidential attributes (NCA) =
{NCA1, NCA2, · · · , NCAp}

The purpose of the security protocol is to ensure secure
data exchange when Pj requests data from Pi through a
query Q that contains confidential attributes as well as non-
confidential attributes. Assume a query Qt at any instance
time t is requested from Pj to Pi.

In order to request data from Pi, peer Pj generates the fol-
lowing system and session parameters.

System parameters:

• G1, an additive group of prime order q.

• H1 : {0, 1}∗ → G1, a collision resistant crypto-
graphic hash function which maps from arbitrary-
length strings to an element in G1.

Session parameters:

• A dynamically generated id of peer Pj , IDPj =
H1(P γj ) ∈ G1, where γ is a random number.

• A random number Rj−SESSION which is used for gen-
erating the authentication and verification codes for
the target Pj .

After generating the parameters <
G1, H1, IDPj , Rj−SESSION >, peer Pj sends the pa-
rameters with the query Qt to Pi. When Pi receives the
parameters and the query, Pi identifies the confidential
and non-confidential attributes. Assume Pi identifies the
following confidential and non-confidential attributes from
the query Qt:

Confidential attributes in Qt, denoted by
CAQt={QCA1, QCA2, · · · , QCAm′} ⊆ CA
Non-confidential attributes in Qt, denoted by NCAQt =
{QNCA1, QNCA2, · · · , QNCAp′} ⊆ NCA



When Pi receives the parameters from Pj , it also generates
system and session parameters for computing a secret ses-
sion key for the authentication of Pj and for encryption of
the query result, QRt . The generated parameters are given
below. System parameters:

• H2 : {0, 1}∗ → Z∗
q , a collision resistant crypto-

graphic hash function which maps from arbitrary-
length strings to elements in Z∗

q .

• H3 : {0, 1}∗ → {0, 1}λ, a collision resistant crypto-
graphic hash function mapping from arbitrary-length
strings to λ -bit fixed length strings.

Session parameters:

• An ID IDPi = H1(P ζi ) ∈ G1, where ζ is a random
number.

• A random number Ri−SESSION which is used for gen-
erating the authentication and verification codes for
the source Pi.

Depending on the confidential and non-confidential at-
tributes, the source Pi and the target Pj generates their
secret session key KSi and KSj , and authentication code
Aut0 and Aut1, respectively. Let SESSIONKEYAttribute be
the set of confidential and non-confidential attributes that
are used to generate a session key. Therefore, in Model 1,
SESSIONKEYAttribute =CAQt ∪ NCAQt . To generate a
session key and an authentication code, source and target
use their own parameters and the parameters received from
each other. The generation and the purpose of the session
keys and authentication codes for Model 1 and Model 2 are
discussed in Section 4.4.

4.3 Parameters for Model 2
In this model the source peer Pi selects shared attributes
from its schema S depending on the query Qt requested by
the target peer Pj at time t. The target Pj is not aware
of the confidential and non-confidential attributes which are
used for generating the session keys KSi . Source Pi deter-
mines the confidential and non-confidential attributes after
receiving the query from target Pj .

In addition to the parameters of the Model 1, the target Pj
and the source Pi generate the following session parameters:

Session parameters:

• Target Pj and source Pi generate random num-
bers Rj−ATTRIBUTE and Ri−ATTRIBUTE , respec-
tively, that are used for computing the authentication
codes of the attributes.

In every session, Pi randomly selects confidential and non-
confidential attributes from the query Qt for computing a
secret session key. The procedure of selecting the confiden-
tial and non-confidential attributes is presented below.

4.3.1 Attributes selection in Model 2

After receiving Qt from Pj , Pi randomly selects one
confidential attribute QCA1 ∈ CAQt and another
non-confidential attribute QNCA1 ∈ NCAQt . In
addition, Pi generates attribute authentication codes
SAttrAut1 = H3(QCA1||Ri−ATTRIBUTE) and SAttrAut2 =
H3(QNCA1||Ri−ATTRIBUTE) and sends them to Pj . The
selection of the attributes that are used to generate the ses-
sion key by the source Pi is discussed as follows.

Source Pi sends the system parameters <
H2, H3 > including the session parameters
< IDPi , Ri−ATTRIBUTE , Ri−SESSION > and
< SAttrAut1 , SAttrAut2 > to the target Pj . Target Pj
computes authentication codes of its shared attributes
SAQ, where SAQ ⊆ Us = att(Σst).

Let, the shared attributes of the target be SAQ = {QCA1,-
QCA2, ..., QCAr, QNCA1, QNCA2, QNCAt}. Target Pj
computes authentication codes of its shared attributes as
follows:
TAttrAut1 = H3(QCA1||Rj−ATTRIBUTE ||Ri−ATTRIBUTE);
TAttrAut2 =H3(QCA2||Rj−ATTRIBUTE ||Ri−ATTRIBUTE); · · · ;
TAttrAutr = H3(QCAr||Rj−ATTRIBUTE ||Ri−ATTRIBUTE);
TAttrAutr+1 =H3(QNCA1||-
Rj−ATTRIBUTE ||Ri−ATTRIBUTE);
TAttrAutr+2 = H3(QNCA2||-
Rj−ATTRIBUTE ||Ri−ATTRIBUTE); · · · ;
TAttrAutr+t = H3(QNCAt||-
Rj−ATTRIBUTE ||Ri−ATTRIBUTE).
Target Pj also computes verification codes of its shared
attributes as follows:

TAttrV er1 = H3(QCA1||Ri−ATTRIBUTE);
TAttrV er2 = H3(QCA2||Ri−ATTRIBUTE); · · · ;
TAttrV err = H3(QCAr||Ri−ATTRIBUTE);
TAttrV err+1 = H3(QNCA1||Ri−ATTRIBUTE);
TAttrV err+2 = H3(QNCA2||Ri−ATTRIBUTE); · · · ;
TAttrV err+t = H3(QNCAt||Ri−ATTRIBUTE).

Target Pj defines a matched attributes set denoted as
MatchAttr and initializes it with null. MatchAttr is used
to collect the authentication codes of the attributes that
are matched between the source and the target. Also,
target Pj defines an un-matched attributes set denoted as
UnMatchAttr and initializes the set with all of the verifi-
cation codes. Target Pj compares < SAttrAut1 , SAttrAut2 >
with the verification codes. If < SAttrAut1 > or
< SAttrAut2 > matches with a verification code then the cor-
responding share attribute QCA1 or QNCA1 is collected,
and a new attribute authentication code NEWTAut1 =
H3(QCA1||Ri−ATTRIBUTE ||Rj−ATTRIBUTE) or
NEWTAut2 = H3(QNCA1||Ri−ATTRIBUTE ||Rj−ATTRIBUTE)
is computed. If < SAttrAut1 > and < SAttrAut2 > both
match with verification codes then the corresponding
share attributes QCA1 and QNCA1 are collected as
well as NEWTAut1 and NEWTAut2 are computed. Fi-
nally, MatchAttr = {NEWTAut1} or MatchAttr =
{NEWTAut2} or MatchAttr = {NEWTAut1 , NEWTAut2}.
Procedure attributes finding describes the formation of
MatchAttr and UnMatchAttr which we present below.



PROCEDURE attributes finding (Parameters: {au-
thentication code},{verification code})
\ { }, represents the empty set.
\ TEMPMatchAttr is used to collect the verification codes.
\ TEMPV erAttr is used to collect the shared attributes.

STEP 1. MatchAttr := {}; TEMPMatchAttr := {}
and TEMPV erAttr := {}

STEP 2. UnMatchAttr := {TAttrV er1 , TAttrV er2 , ...,
TAttrV err ,TAttrV err+1 , TAttrV err+2 , ..., TAttrV err+t}

STEP 3. Compare < SAttrAut1 > in UnMatchAttr
3.a. IF < SAttrAut1 > matches in UnMatchAttr

THEN
3.a.1. TEMPMatchAttr := {SAttrAut1}
3.a.2. UnMatchAttr :=

UnMatchAttr − TEMPMatchAttr

STEP 4. Compare < SAttrAut2 > in UnMatchAttr
4.a. IF < SAttrAut2 > matches in UnMatchAttr

THEN
4.a.1. TEMPMatchAttr :=

TEMPMatchAttr∪{SAttrAut2}
4.a.2. UnMatchAttr :=

UnMatchAttr − TEMPMatchAttr

STEP 5. IF TEMPMatchAttr 6= {} THEN
5.a. TEMPV erAttr := {SHAREDATTR}; where

“SHAREDATTR” is the share attribute of the
corresponding verification code of
TEMPMatchAttr

5.b. MatchAttr := MatchAttr∪
{H3(ElementTempV erAttr
||Rj−ATTRIBUTE ||Ri−ATTRIBUTE)};

where “ElmentTempV erAttr” is the elements
of TEMPV erAttr

Target Pj sends session parameters < MatchAttr,-
UnMatchAttr,Rj−ATTRIBUTE > to the source Pi.

Source Pi checks MatchAttr; if MatchAttr is empty
then source realizes that < QCA1, QNCA1 > are not
available to the target Pj . If MatchAttr is not empty then
source computes new verification codes NEWSV er1 -
= H3(QCA1||Ri−ATTRIBUTE ||Rj−ATTRIBUTE)
and NEWSV er2 = H3(QCA1||Ri−ATTRIBUTE-
||Rj−ATTRIBUTE); and compares NEWSV er1 and
NEWSV er2 with the elements of MatchAttr. If NEWSV er1

and/orNEWSV er2 matches with the elements ofMatchAttr
then < QCA1 > and/or < QNCA1 > are collected by Pi
in its temporary random attributes set STempRandATTR.
Thus, STempRandATTR = {QCA1}, or {QNCA1}, or
{QCA1, QNCA1}

Source Pi generates verification codes of its confidential at-
tributes CAQt and non-confidential attributes NCAQt as
follows:

SCAttrV er1 = H3(QCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE);
SCAttrV er2 = H3(QCA2||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE); · · · ;

SCAttrV erm = H3(QCAm||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE);
SNCAttrV er1 = H3(QNCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE);
SNCAttrV er2 = H3(QNCA2||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE); · · · ;
SNCAttrV erp = H3(QNCAp||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE).

Source Pi compares it’s verification codes {SCAttrV eri | ∀i,
i = 1 · · ·m}; and {SNCAttrV erj | ∀j, j = 1 · · · p}; with the
elements of UnMatchAttr, which is received from target Pj .
Further, Pi separates the verification codes that are matched
with the elements of UnMatchAttr and makes a list. Source
Pi collects the confidential and the non-confidential at-
tributes corresponding to the verification codes that are
in the separated list; and keeps the confidential and the
non-confidential attributes in Pi’s temporary random at-
tributes set STempRandATTR. Assume that Pi keeps
the matched attributes {QCA1, QCA2, QCA3, QCA4,-
QNCA1, QNCA2, QNCA3, QNCA4} in STempRandATTR.
Furthermore, Pi randomly collects some attributes from
STempRandATTR that are used for generating the ses-
sion key for the current session. Let the set of
the attributes randomly collected from STempRandATTR
by Pi, denoted SESSIONKEYAttribute , and the car-
dinality of the set SESSIONKEYAttribute , denoted `;
hence ` = |SESSIONKEYAttribute |. Assume Pi
uses SESSIONKEYAttribute ={QCA1, QCA3, QNCA1,-
QNCA4} for generating the session key KSi , thus, in this
case ` = |SESSIONKEYAttribute | = 4

Source Pi generates authentication codes of the attributes of
the set SESSIONKEYAttribute , denoted SSESSIONAttrAutk

,
where k = 1, 2, · · · , `, as follows and sends to the target Pj .

SSESSIONAttrAut1
= H3(QCA1||Ri−ATTRIBUTE ||-

Rj−ATTRIBUTE ||0);
SSESSIONAttrAut2

= H3(QCA3||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);
SSESSIONAttrAut3

= H3(QNCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);
SSESSIONAttrAut4

= H3(QNCA4||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);
After receiving {SSESSIONAttrAuti

| ∀i, i = 1 · · · `} from
source Pi, target Pj generates the following verification
codes as follows:
TSESSIONAttrV er1

= H3(QCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);
TSESSIONAttrV er2

= H3(QCA2||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0); · · · ;
TSESSIONAttrV err

= H3(QCAr||-
Rj−ATTRIBUTE ||Ri−ATTRIBUTE ||0);
TSESSIONAttrV err+1

= H3(QNCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);
TSESSIONAttrV err+2

= H3(QNCA2||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0); · · · ;
TSESSIONAttrV err+t

= H3(QNCAt||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||0);



Target Pj collects ` number of verification codes
from {TSESSIONAttrV eri

| ∀i, i = 1 · · · (r + t)},
where the set of the collected verification
codes, denoted TSESSION−COLLECTAttV er , is
TSESSION−COLLECTAttV er ={TSESSIONAttrV er

j′
| ∀j,

j = 1 · · · `}={SSESSIONAttrAuti
| ∀i, i = 1 · · · `}. Finally,

target Pj collects the shared attributes corresponding to
the verification codes of the set TSESSION−COLLECTAttV er

that are used to generate the session key KSj for the target
Pj . Thus the shared attributes corresponding to the ver-
ification codes of the set TSESSION−COLLECTAttV er ,
denoted SESSIONKEYAttribute−J , and
SESSIONKEYAttribute−J ={QCA1, QCA3, QNCA1,-
QNCA4}=SESSIONKEYAttribute .

Target Pj further generates the following authentication
codes of the shared attribute set SESSIONKEYAttribute−J

for cross authentication checking of the attributes set
SESSIONKEYAttribute with the source Pi.

TSESSIONAttrAut1
= H3(QCA1||Ri−ATTRIBUTE ||-

Rj−ATTRIBUTE ||1);
TSESSIONAttrAut2

= H3(QCA3||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);
TSESSIONAttrAut3

= H3(QNCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);
TSESSIONAttrAut4

= H3(QNCA4||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);

Target sends {TSESSIONAttrAuti
| ∀i, i = 1 · · · `} to

the source Pi. After receiving {TSESSIONAttrAuti
| ∀i,

i = 1 · · · `} from target Pj , source Pi generates the following
verification codes:

SSESSIONAttrV er1
= H3(QCA1||Ri−ATTRIBUTE ||-

Rj−ATTRIBUTE ||1);
SSESSIONAttrV er2

= H3(QCA3||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);
SSESSIONAttrV er3

= H3(QNCA1||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);
SSESSIONAttrV er4

= H3(QNCA4||Ri−ATTRIBUTE ||-
Rj−ATTRIBUTE ||1);

Finally, source Pi compares {SSESSIONAttrV eri
| ∀i, i =

1 · · · `} with {TSESSIONAttrAuti
| ∀i, i = 1 · · · `}; if

{SSESSIONAttrV eri
| ∀i, i = 1 · · · `} = {TSESSIONAttrAuti

|
∀i, i = 1 · · · `}, then session key KSi is gener-
ated by using the confidential and non-confidential at-
tributes SESSIONKEYAttribute ={QCA1, QCA3, QNCA1,-
QNCA4}.

In the next section we discuss the generation of session key
and authentication code for Model 1 and Model 2.

4.4 Generation of secret session key and au-
thentication code for Model 1 and Model
2

The source Pi computes a secret element in Z∗
q , called shared

secret parameter, denoted by σ, that is based on the session
key attribute set SESSIONKEYAttribute , as follows.

σ = H2(SESSIONKEYAttribute) ∈ Z∗
q

This shared secret parameter σ is used as a shared secret
session key KSi (i.e KSi = σ ) for exchanging data between
the source Pi and the target Pj .

Source Pi also generates authentication code Aut0 as follows:

Aut0 = H3(KSi ||IDPi ||IDPj ||Ri−SESSION ||0)

where Ri−SESSION is a random number generated by the
source Pi to distinguish every session from others so that
replay attacks cannot take place on the communication.

Finally, source Pi sends the system parameters
< H2, H3 > including the session parameters
< IDPi , Ri−SESSION , Aut0 > to the target Pj .

After receiving the system parameters as well as session
parameters form the source Pi, target Pj generates a session
key KSj as follows:

σ = H2(SESSIONKEYAttribute) ∈ Z∗
q

KSj = σ

Therefore, KSj = KSi

Verification code V er0 is computed by the target Pj as fol-
lows:

V er0 = H3(KSj ||IDPi ||IDPj ||Ri−SESSION ||0)

The verification code V er0 is computed to verify the authen-
tication code Aut0 of Pi.

Target Pj compares V er0 with Aut0; if (V er0 = Aut0) then
target generates another authentication code Aut1 as fol-
lows:

Aut1 =
H3(KSj ||IDPi ||IDPj ||Rj−SESSION ||Ri−SESSION ||1)

Finally, Pj sends < Aut1 > to source Pi. Upon receiving
< Aut1 > from target Pj , source Pi generates another veri-
fication code V er1 as follows, and compares it with Aut1.

V er1 =
H3(KSi ||IDPi ||IDPj ||Rj−SESSION ||Ri−SESSION ||1)

If V er1 matches with Aut1 , i.e (V er1 = Aut1) then source
Pi sends the data of the query result QRt after encrypting it
with the session key KSi .



We use “0” and “1” in the generation of Aut0 and Aut1 for
distinguishing the computation (session keys and authen-
tication codes) as well as communication (authentication
codes) between source Pi and target Pj . Pi uses “0” for com-
puting the authentication code (Aut0) and for sending to Pj .
Hence, the source performs both computation and commu-
nication by using “0”; on the other hand, “0” is used only
for verification purpose by the target. Therefore, the target
performs computation only with “0”. The target uses “1” in
computing the authentication code (Aut1) and for sending
to the source. Hence, the target performs both computation
and communication by using “1”; on the other hand, “1” is
used only for verification purposes by the source. Hence, the
source performs only computation with “1”.

4.5 Secure authenticated data exchange in
Model 1 and Model 2

After authentication between the source and the target,
source Pi generates a message authentication code, de-
noted by MACMESSAGE of the query result QRt , which
is computed as MACMESSAGE = H3(QRt ). The source
also encrypts QRt with its secret session key KSi , denoted
by CIPHERQR

t
, which is computed as CIPHERQR

t
=

EKSi
(QRt ), where EKSi

means encryption using the session
key KSi . Finally, Pi sends the following packet to Pj .

< IDPi , CIPHERQR
t
,MACMESSAGE , IDPj >

After receiving the packet, Pj decrypts CIPHERQR
t

with

the session key KSj denoted as DKSj
(CIPHERQR

t
) and

generates the verification message authentication code, de-
noted by V ERMESSAGE , which is computed as follows:

V ERMESSAGE = H3(DKSj
(CIPHERQR

t
))

Finally, Pj compares V ERMESSAGE with MACMESSAGE .
If V ERMESSAGE = MACMESSAGE then the data is ac-
cepted.

The whole process is illustrated in Figure 4 and described
in the following steps.

The step-by-step procedure of the proposed proto-
col goes as follows:
Key generation and message authentication code of the
query result for Model 1 and Model 2 is described in the
following steps. Attribute selection steps for Model 2 are
not included within these steps.

STEP 1: A query Qt is generated at the target Pj .
STEP 2: Target Pj determines group G1, hash function H1

and performs the following steps:
2.a: Generates an ID IDPj .
2.b: Sends < G1, H1, Qt, IDPj , Rj−SESSION >

to the source Pi.
STEP 3: Source Pi executes the query Qt on its local

database and performs the following steps:
3.a: Determines cryptographic hash functions

H2 and H3.

Figure 4: Illustration of Key Agreement and Secure Message
Communication for P2PDBMS.

3.b: Generates an ID IDPi , a random number
Ri−SESSION .

**** *: (For Model 2: Assume SESSIONKEYAttribute

is already collected)
3.c: Generates secret session key KSi ,

authentication code Aut0.
3.d: Sends < H2, H3, IDPi , Ri−SESSION , Aut0 >

to the target Pj .
STEP 4: Target Pj generates secret session key KSj ,

verification code V er0.
4.a: Generates random Rj−SESSION .
4.b: Compares V er0 with Aut0

if V er0 = Aut0 then
generates Aut1.

4.c: Sends < Aut1 > to the source Pi.
STEP 5: Source Pi generates verification code V er1.

5.a: Compares V er1 with Aut1
if V er1 = Aut1 then

generates message authentication code
MACMESSAGE .

5.b: Encrypts query result QRt , with session
key KSi denoted as CIPHERQR

t
.

5.c: Sends < IDPi , CIPHERQR
t
,MACMESSAGE ,

IDPj > to the target Pj .
STEP 6: Target decrypts CIPHERQR

t
with session key KSj ;

generates verification message authentication code
V ERMESSAGE ; compares
V ERMESSAGE with MACMESSAGE .

if V ERMESSAGE = MACMESSAGE then
data has been exchanged successfully.

4.6 Parameters for Model 3
In identity-based crypto there is generally a private key gen-
erator (PKG) which entities use in order to obtain their pri-
vate keys. This is a trusted authority (like a CA in a PKI). In
our proposed protocol there is no PKG but still our protocol



works properly. In this proposed security protocol, respon-
sibilities of a PKG is mutually performed by the source and
the target.

In this model the target Pj requests the source Pi to send
query result QRt ∈ {0, 1}n−l0 in such a way that no one
can access QRt without having the private attributes of the
target. Therefore, at the beginning source Pi verifies target’s
query request. To this end the source and the target do the
same sequence of tasks as in Model 2 to select the session
key attribute set SESSIONKEYAttribute ={QCA1, QCA3,-
QNCA1, QNCA4}.

Source Pi computes σ as discussed in Section 4.4 and an
identification authentication code AutIDi as follows.

AutIDi = H3(σ||IDPi ||IDPj ||Ri−SESSION ||noncei||0);

where noncei is a random number.

Source Pi sends < AutIDi , noncei > to the target Pj . Af-
ter receiving < AutIDi , noncei > from the source, target
Pj computes σ similar to the source, generates verification
code denoted V erIDj as follows and compares V erIDj with
AutIDi .

V erIDj = H3(σ||IDPi ||IDPj ||Ri−SESSION ||noncei||0);

If V erIDj = AutIDi then target Pj generates randomly
a private secret parameter denoted β from the target’s
private attribute PjPvtAttr , generates an identity authenti-
cation code AutIDj , and public key PjPUB−Key as follows:

β = H2(PjPvtAttr ) ∈ Z∗
q

PjPUB−Key = βIDPi ; where IDPi ∈ G1, identity of the
source Pi.

AutIDj =
H3(σ||IDPi ||IDPj ||Ri−SESSION ||PjPUB−Key ||noncei||noncej ||1)

where noncej is a random number.

Target Pj sends < PjPUB−Key , AutIDj , noncej > to the
source Pi. After receiving < PjPUB−Key , AutIDj , noncej >
form the target Pj , source Pi generates an identity verifica-
tion code V erIDi as follows and compares with < AutIDj .

V erIDi =
H3(σ||IDPi ||IDPj ||Ri−SESSION ||PjPUB−Key ||noncei||noncej ||1);

If V erIDi = AutIDj then source Pi generates the following
parameters in addition to the parameters of the Model 1 and
Model 2.

System parameters:

• G2, a multiplicative group of the same prime order q
as the order of the additive group G1.

• ẽ : G1 ×G1 → G2 is the bilinear map .

• H4, a cryptographic collision resistant hash function
defined as H4 : {0, 1}n−l0 × {0, 1}l0 → Z∗

q , where Z∗
q -

= {µ|1 ≤ µ ≤ q − 1}, integer n and l0, 0 < l0 < n.

• H4, a cryptographic collision resistant hash function
defined as H5 : G1 ×G2 ×G1 → {0, 1}n, where n > 0.

4.6.1 Secure data exchange in the Model 3

Assume source Pi has at least one private attribute and it is
denoted PiPvtAttr . Pi generates private secret parameters
ω and Pi−PV T based on the private attribute PiPvtAttr . Pi
also generates a public parameter Pij−PUB as follows:

ω = H2(PiPvtAttr) ∈ Z∗
q

Pi−PV T = ωIDPi ;

Pij−PUB = ωIDPj ; where IDPj ∈ G1, identity of the target
Pj .

Pi again generates another private secret parameter s
based on the query result QRt ∈ {0, 1}n−l0 ; and generates a
random number ℵ, where ℵ ∈ {0, 1}l0 .

s = H4(QRt ,ℵ) ∈ Z∗
q

Encryption and authentication code generation of the
query result QRt ∈ {0, 1}n−l0 by the source:

To encipher the query result QRt , source Pi generates the
parameters Υ ∈ G2 and Ω ∈ G1 as follows:

Υ = ẽ(Pi−PV T , IDPj )s

= ẽ(ωIDPi , IDPj )s;

[s and Pi−PV T are the private parameters of the source Pi]

Ω = sPjPUB−Key

The source encrypts the query result QRt , denoted
Cipher{QRt }, and computed as follows:

Cipher{QRt } =< Γ,∆ >; where Γ = sIDPi ;
∆ = (QRt ||ℵ)⊕H5(Γ,Υ,Ω); and it is simplified as:
Ciph{QRt } =< Γ,∆ >

=< Γ,
((
QRt ||ℵ

)
⊕H5

(
Γ,Υ,Ω

))
>

=<
(
sIDPi

)
,
((
QRt ||ℵ

)
⊕

H5

(
sIDPi , ẽ(Pi−PV T , IDPj )s, sPjPUB−Key

))
>

The source computes a message authentication code
MACQR

t
of the query result QRt as follows:



MACQR
t

= H3(QRt ||s||σ||noncei||0)

Finally the source sends <
Cipher{QRt }, Pij−PUB ,MACQR

t
> with the parame-

ters < G2, ẽ, H4, H5 > to the target:

Decryption and verification code generation of the
query result QRt ∈ {0, 1}n−l0 by the target:

At first the target splits Γ from Cipher{QRt } =< Γ,∆ >

and computes ∆ ⊕ H5(Γ, Υ̃, Ω̃); where, Υ̃ and Ω̃ are
computed as follows:

Υ̃ = ẽ(Γ, Pij−PUB)
= ẽ(sIDPi , ωIDPj ); [s and ω are the private parameters

of the source Pi]
= ẽ(IDPi , IDPj )sω

= ẽ(ωIDPi , IDPj )s

= ẽ(Pi−PV T , IDPj )s

= Υ

The target computes Ω̃ as follows:

Ω̃ = βΓ; [β is the private parameter for the target Pj ]
= βsIDPi ; [s is a private parameter for the source Pi]
= sβIDPi ;
= sPjPUB−Key

= Ω

Finally, target evaluates the the following expression:

∆⊕H5(Γ, Υ̃, Ω̃)

=
(

(QRt ||ℵ)⊕H5(Γ,Υ,Ω)
)
⊕H5(Γ, Υ̃, Ω̃)

= (QRt ||ℵ)⊕H5(Γ,Υ,Ω)⊕H5(Γ,Υ,Ω)
= (QRt ||ℵ)

Target splits QRt and ℵ from (QRt ||ℵ); and computes a pa-
rameter ∂ from QRt ; where, ∂ is used for generating the
verification code V ERQR

t
of QRt as follows:

∂ = H4(QRt ,ℵ) ∈ Z∗
q

V ERQR
t

= H3(QRt ||∂||σ||noncei||0)

if (V ERQR
t

= MACQR
t

) then target generates another au-

thentication code MACj−QR
t

as follows and sends to the
source:

MACj−QR
t

= H3(QRt ||∂||σ||noncei||noncej ||1)

Upon receiving < MACj−QR
t
> from the target Pj , source

Pi generates another verification code MACi−QR
t

as follows,

and compares it with MACj−QR
t

.

MACi−QR
t

= H3(QRt ||s||σ||noncei||noncej ||1)

If MACi−QR
t

matches with MACj−QR
t

, (i.e MACi−QR
t

=

MACj−QR
t

) then the data has been exchanged successfully.

5. SECURITY ANALYSIS
In this section we discuss one cryptographic implementation
of the proposed protocols and the mechanism for preventing
different attacks.

5.1 Cryptographic implementation
The bilinear map ẽ can be the Tate pairing with some of
the modifications and performance improvements described
in [18] and the elliptic curve E can be y2 = x3 + x. The
aforementioned group order q is a large 160-bit prime based
on another 512-bit prime p = 2qr − 1 (for some r large
enough to make p be the correct size) such bit-length con-
figurations of p and q provide a level of security comparable
to RSA cryptography with a key size of 1024 bits [19]. Then
G1 is a cyclic subgroup of the additive group of points on
the elliptic curve E over the finite field Fp, while G2 is a
cyclic subgroup of the multiplicative group associated with
the finite field F ∗

p2 .

If an intruder node captures public messages containing sen-
sitive information AUT0, and /or AUT1, and/or MACQR

t

and/or MACj−QR
t

, still intruder cannot compute any secret

key. This is because the key generation is a pairing function
operation over an elliptic curve with a secret point. Thus, an
outsider node can not be authenticated as it is not capable
of generating shared keys.

5.2 Prevention of attacks
Masquerade attack: In our proposed protocol, peers au-
thenticate each other before exchanging data. Furthermore,
in every session of data exchange between peers, parameters
(session/system) are generated dynamically. The session
parameters < Ri−SESSION , Aut0, Aut1, Rj−SESSION > are
completely different in each session. Hence, by storing these
session parameters, an intruder node cannot pass the au-
thentication process. Therefore, the intruder cannot pretend
to be a valid peer in the data exchange. Thus, a masquerade
attack is not a threat to our proposed protocol.

Reply attack: In our proposed protocol, a malicious peer
cannot pass the authentication process. We use an exam-
ple to illustrate the situation. Consider a scenario with two
peers Pi as a source and Pj as a target in a P2PDBMS, and a
malicious peer Pk wants to mount a replay attack. Suppose
that Pj sends a query Qt to Pi for data exchange and the
sesssion/system parameters generated during the data ex-
change session are < G1, H1, IDPj >, < G2, ẽ, H2, H3 >, <
IDPi , Ri−SESSION , Aut0 >, and < Aut1, Rj−SESSION >.
The generation of parameters is discussed in Section 4.
Assume that when Pj sends Qt to Pi, Pk makes a copy
of Qt and the session/system parameters during the data
exchange session for replay attack. Later, Pk sends the
query Qt to the source by using the last session parame-
ters < G1, H1, IDPj > for the replay attack. After receiving
these parameters, Pi generates a new session and system pa-
rameters, and sends them to Pk. Now the random number
Ri−SESSION is newly generated by source Pi to compute a
new authentication code Aut0, denoted Autnew0 , and a new
verification code V er1, denoted V ernew1 . Note that after the



session is over Pi and Pj do not store Aut0, Aut1, V er0, and
V er1. Since V ernew1 6= Aut1, where Aut1 is the old authen-
tication code stored by Pk, Pi does not send the query result
QRt to Pk.

If Ri−SESSION is generated repeatedly by the source Pi and
all the previous session parameters are copied by Pk, still
Pk cannot decrypt the query result QRt . Because Pk cannot
compute secret session key KSi or KSj , it cannot complete
the authentication process.

If malicious peer Pk collects Cipher{QRt } then Pk can not
decipher Cipher{QRt } to find query result QRt , because Pk
can not generates Ω. Thus, our proposed protocol is robust
against replay attack.

Since our protocol is robust against reply attack, the man-
in-the middle attack will also be prevented.

6. RELATED WORK
To the best of the knowledge of the authors, our proposal
is the first work for query-based secure session key genera-
tion for secure data exchange between peers in P2PDBMS.
The only work that is close to the proposal is the work of
[22], where the authors claim secure data propagation among
multiple nodes by using pre-existing friendship relationships
among the nodes in the network. It is assumed that the
nodes are friends with each other in real life, thus they have
a pre-existing trust relationship. Furthermore, the authors
also assume that the nodes have secure keys beforehand; us-
ing these fixed security agreements regarding private keys,
nodes in the network can set up secure connections and ex-
change data. This assumption is not realistic in a peer-to-
peer database environment. Therefore, the assumption is
eliminated from our protocol which does not require any
pre-existing security agreement between the peers. The se-
curity setup is completely based on query, initiated by a
target peer.

7. CONCLUSION
In this paper, we have presented novel secure data exchange
protocols for P2PDBMS. The protocols are designed using
one way hash function and IBE with pairing-based cryp-
tography. Any two peers that need to exchange data over
an insecure medium can generate on-the-fly a secret session
key by exchanging some system and session parameters. An
important feature of the proposed protocols is that peers al-
ways generate a new session key for every new data exchange
session; therefore, every session is completely independent
with respect to the session key generation, and hence the
proposed protocol successfully prevents different attacks. To
the best of our knowledge, this is the first security protocol
in the literature for secure data exchange between dynamic
peers in a P2PDBMS.
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