
Plaintext-Dependent Decryption:

A Formal Security Treatment of SSH-CTR⋆

Kenneth G. Paterson⋆⋆ and Gaven J. Watson⋆ ⋆ ⋆

Information Security Group,
Royal Holloway, University of London,

Egham, Surrey, TW20 0EX, U.K.
kenny.paterson@rhul.ac.uk, g.watson@rhul.ac.uk

Abstract. This paper presents a formal security analysis of SSH in counter mode in a security model
that accurately captures the capabilities of real-world attackers, as well as security-relevant features
of the SSH specifications and the OpenSSH implementation of SSH. Under reasonable assumptions on
the block cipher and MAC algorithms used to construct the SSH Binary Packet Protocol (BPP), we are
able to show that the SSH BPP meets a strong and appropriate notion of security: indistinguishability
under buffered, stateful chosen-ciphertext attacks. This result helps to bridge the gap between the
existing security analysis of the SSH BPP by Bellare et al. and the recently discovered attacks against
the SSH BPP by Albrecht et al. which partially invalidate that analysis.

Keywords: SSH; counter mode; security proof

1 Introduction

SSH is one of the most widely used secure network protocols. Originally designed as a replacement
for insecure remote login procedures which sent information in plaintext, it has since become a
general purpose tool for securing Internet traffic. The current version of SSH, SSHv2, was designed
in 1996, and it is this version to which we refer throughout this paper. The SSHv2 protocols are
defined in a collection of RFCs [6, 17–20].

The SSH Binary Packet Protocol (BPP), as specified in [19], is the component of SSH that is
responsible for providing confidentiality and integrity services to all messages exchanged over an
SSH connection. It was subjected to a formal cryptographic security analysis using the methods of
provable security by Bellare et al. [5]. Bellare et al. introduced a stateful security model and notion
for SSH-style protocols. They also proved that several minor variants of the SSH BPP meet their
security notion, given reasonable assumptions about the cryptographic primitives. In particular,
they showed that, while the SSH BPP using CBC mode encryption with IV chaining (SSH-IPC) is
insecure, the SSH BPP using either CBC mode encryption with explicit random IVs and random
padding (SSH-$NPC), or counter mode encryption (SSH-CTR), is secure in their model.

However, the recent work of Albrecht et al. [1] has demonstrated plaintext recovery attacks
against both SSH-IPC and SSH-$NPC, despite the proof of security for SSH-$NPC in [5]. The
attacks in [1] exploit several features that are intrinsic to the SSH specification and to imple-
mentations, but that are not captured in the security model of [5]: firstly, the decryption process
depends on the packet length field, which itself forms part of the plaintext data; secondly, data
can be delivered to the decrypting party in a byte-by-byte manner by an attacker, allowing the
attacker to observe the behaviour of the decrypting party after each byte is received; and, thirdly,
the attacker can distinguish various kinds of decryption failure (most importantly, the attacker
can tell exactly when a MAC fails to verify). As a consequence of these attacks, versions 5.2 and

⋆ This research was supported in part by the European Commission under contract ICT-2007-216676 (ECRYPT-II).
A short version of this paper is to appear in the proceedings of Eurocrypt 2010. This is the full version.

⋆⋆ This author supported by an EPSRC Leadership Fellowship, EP/H005455/1.
⋆ ⋆ ⋆ This author supported by an EPSRC Industrial CASE studentship sponsored by BT Research Laboratories.

higher of OpenSSH, the leading implementation of SSH, now negotiate the selection of counter
mode in preference to CBC mode. This follows the recommendation of the CPNI vulnerability
announcement [10]. OpenSSH versions 5.2 and higher also include specific counter-measures for
CBC mode to frustrate the CBC-specific attacks of [1].

No attacks are known against the SSH BPP using counter mode, and the security model and
proof for the relevant scheme SSH-CTR provided in [5] does rule out many classes of attack. Yet
it is evident, in view of the attacks in [1], that the current formal security analysis of SSH-CTR in
[5] is inadequate. In particular, the current analysis of SSH-CTR does not take into account the
plaintext-dependent nature of the decryption process, nor the ability of the attacker to interact in
a byte-by-byte manner with the decryption process. Indeed, the length field which turns out to be
so critical to breaking SSH in [1] is ignored in the security analysis of [5], while it is assumed in [5]
that ciphertexts are processed in an atomic fashion. Moreover, while the model of [5] does include
errors arising from cryptographic processing, it does not do so in a way that accurately reflects the
reality of SSH implementations such as OpenSSH – in the model of [5], any error condition leads
to an identical error message, while in reality, the error type and the timing of the error can both
leak to the adversary. This additional information was also exploited in the attacks of [1].

1.1 Our contribution

This paper aims to bridge the gap between the current security analysis of the SSH-CTR in
[5] on the one hand, and the reality of the SSH specifications in the RFCs and the OpenSSH
implementation of the SSH BPP using counter mode on the other. We develop a security model
for the SSH BPP that extends the stateful model introduced in [5] and that is driven by our
desire to more closely align the security model with the SSH specifications and the OpenSSH
implementation. We focus on the OpenSSH implementation in preference to any of the many
other SSH implementations available because of its widespread use [16]. A novel aspect of our
security model is its ability to allow the attacker to interact with the decryption oracle in a byte-
by-byte fashion, with ciphertext bytes being buffered until they can be processed. Novel aspects of
our description of the SSH BPP using counter mode include its provision for plaintext-dependent
decryption, and accurate modeling of all the error events that arise during decryption in the
OpenSSH implementation of the SSH BPP in counter mode. We prove that the SSH BPP using
counter mode is secure in our model, under standard assumptions concerning the cryptographic
components used in the construction. This requires significant reworking of the security analysis
for counter mode in [5] to take account of the new features of our model and our description of
the SSH BPP. Our analysis is sufficient to show that the SSH BPP using counter mode is immune
to the type of attacks reported in [1].

While our analysis is quite specific to the SSH BPP in counter mode, we believe that the
modeling and proof techniques developed here should be much more widely applicable: all rea-
sonably complex secure communication protocols involve handling of error and other management
messages, and many such protocols allow for the adversary to interact with the decryption process
in a fine-grained manner (rather than in a “ciphertext-atomic” manner). More generally, we hope
that our practice-driven, provable security analysis of the SSH BPP will serve as an example to
show that provable security techniques have an important role to play in analyzing protocols that
are used in the real world, whilst taking into account low-level, code-oriented behaviours of the
cryptographic elements of the protocols. Proofs in models of this type extend the scope of the
provable security paradigm to new levels of realism, offering security guarantees that are much
more meaningful in practice.

1.2 Related Work

The way in which decryption operates in SSH is related to a branch of cryptography called online
encryption, as studied in [8, 3, 2, 11–14]. These papers all investigate blockwise adaptive attackers
against the encryption process rather than against the decryption process, so that the attacker
chooses plaintext blocks in an adaptive manner, seeing the corresponding ciphertext blocks one-
by-one as the chosen plaintext blocks are encrypted. This approach is motivated by cryptographic
applications for small devices such as smart cards which cannot store a whole ciphertext in internal
buffers and which must therefore output ciphertext blocks as the buffer fills. As we will see, while
the encryption process used in the SSH BPP could in principle be on-line, in practice (e.g. in
the OpenSSH implementation) it is not. On the other hand, the adversary can interact with the
decryption process in a block-by-block (or even byte-by-byte) manner, and, as the attacks of [1]
show, can gain significant advantage by doing so. So while the online encryption literature appears
to be related to our work, the link is superficial and the work is not directly applicable to the case
of SSH.

1.3 Paper Organisation

We begin by giving a description of the SSH Binary Packet Protocol in Section 2, using this to
identify the key features required in our modeling of the SSH BPP and its security. In Section 3
we define the building blocks that we use to define the SSH BPP’s Encode-then-Encrypt&MAC
encryption scheme. Section 4 gives the definitions of our new security models. Section 5 contains
our proof of security for SSH using counter mode encryption. Section 6 presents our conclusions.

2 SSH Binary Packet Protocol

The SSH Binary Packet Protocol (BPP) is defined in RFC 4253 [19]. The SSH BPP provides
both confidentiality and integrity of messages sent over an SSH connection using an encode-then-
encrypt&MAC construction. A message is first encoded by prepending a 4 byte packet length field
and 1 byte padding length field and appending a minimum of 4 bytes of random padding. The
packet length field specifies the total length of the encoded message excluding the packet length
field itself. This encoded message is then encrypted. There are various algorithms supported for
encryption, but here, in the light of the attacks in [1], we only consider stateful counter mode
encryption, as specified for SSH in RFC 4344 [6]. Since the SSH BPP is specified in a blockwise
manner, SSH still appends padding even when using counter mode encryption. The final ciphertext
is the concatenation of the encoded-then-encrypted message and a MAC value. The MAC value
is computed over the concatenation of a 32-bit packet sequence number and the encoded (but not
encrypted) message. The sequence number is not sent over the channel but is maintained separately
by both communicating parties. Figure 1 illustrates the SSH BPP.

2.1 Modeling the SSH BPP and its Security

We now give a high-level description of the main features of our model for the SSH BPP and
its security, explaining how these arise from features of the SSH BPP specification and specific
implementations.

As with the model of [5], our model for the SSH BPP is a stateful one, reflecting the protocol’s
use of per-packet sequence numbers. We also wish to give the adversary access to encryption and
decryption oracles in a left-or-right indistinguishability game. We next discuss how these oracles
should be defined, with further details to follow in the sections ahead.

It can be seen from the above description that the encryption process used by SSH could be
performed in an online manner (in the sense introduced in Section 1.2). However, this would at

> 4 bytes

Packet
Length

Padding
Length

Sequence
Number

Payload Padding

ENCRYPT

MAC

Ciphertext
Message

MAC tag

Ciphertext Packet

4 bytes 4 bytes 1 byte

Fig. 1. SSH BPP packet format and cryptographic processing

least require the packet length to be fixed in advance of the first block being encrypted. In practice,
the encryption is not done in an online manner. For example, in OpenSSH, the MAC on the whole
plaintext is calculated prior to any encryption being performed, with the entire plaintext being
buffered before this operation is carried out (see the function packet_send2_wrapped in the file
packet.c of the OpenSSH source code).

At this point, our model begins to significantly diverge from the model of [5].
When decrypting a ciphertext, the receiver should first decrypt the first block received and

retrieve the packet length field in order to determine how much more data must be received before
the MAC tag is obtained. According to RFC 4253 [19]:

“Implementations SHOULD decrypt the length after receiving the first 8 (or cipher block
size, whichever is larger) bytes of a packet.”

Thus we may expect that an SSH implementation will enter into a wait state, awaiting further data,
unless sufficient data has already arrived to complete the packet. Informally speaking, this renders
the entire decryption process plaintext-dependent, in the sense that the number of ciphertext bytes
required before the decryption process can complete (possibly with an error message because of
a MAC verification failure) is determined by the initial bytes of the plaintext. Moreover, because
SSH is implemented over TCP, the attacker can deliver as few or as many bytes of ciphertext at
a time as he wishes to the decrypting party. These facts are exploited in the attacks against the
SSH BPP in CBC mode in [1]. Thus our security analysis for the SSH BPP needs to consider the
length field and how its processing affects security, as well as allowing the adversary to deliver data
to the decryption oracle in a byte-by-byte manner in the security model. However, it should be
noted that the plaintext message is not made available to the adversary in a byte-by-byte manner
as it is decrypted. Instead, in implementations, the plaintext is buffered until sufficient data has
arrived that the MAC can be checked. Our model, therefore, needs to allow byte-by-byte delivery
of ciphertext data, but also to include a buffered decryption process.

In fact, the situation is more complicated than this because implementations of SSH also follow
the advice in RFC 4253 [19] to perform sanity checking of the length field as soon as it is obtained
from the first block of ciphertext:

“. . . implementations SHOULD check that the packet length is reasonable in order for the
implementation to avoid denial of service and/or buffer overflow attacks.”

What is “reasonable” is not defined in the RFCs, and specific implementations adopt various prac-
tices. Version 5.2 of OpenSSH implements a particular set of checks, and tries to tear down the
SSH connection with an error message in the event that these checks fail. This error condition is
generally quite easy to distinguish from a MAC failure in an attack because an SSH implementa-
tion can be made to pass through a wait state before the MAC failure. The distinguishability of

these different error conditions is used in the attacks against OpenSSH in CBC mode in [1]. So a
security model for the SSH BPP should include errors arising from length checking as well as from
MAC failures, and should report these errors in such a way that they can be distinguished by the
adversary. Additional errors may arise after MAC checking, because of a failure of the decoding
algorithm applied to the recovered, encoded message. Again, the model should reflect this possi-
bility. To comply with the SSH specifications, all of these errors should be “fatal”, leading to the
destruction of the SSH connection. However, note that an adversary may be able to prevent such
error messages from reaching the peer of party initiating the tear-down. We handle this aspect
by having separate states for the encryption and decryption oracles in our model, and with an
error arising during decryption leading to the loss of the decryption oracle, but not the encryption
oracle, and vice-versa.

It is notable that SSH attempts to hide the packet length field by encrypting it. However, a
simple extension of the attacks in [1] shows that this is futile: an attacker who can detect the
start of a new packet simply needs to flip a bit somewhere in the ciphertext after the length field
and wait for a MAC failure. Simple arithmetic involving the number of ciphertext bytes delivered
before the MAC failure is seen then tells the attacker what the content of the packet length field
was. Of course, the cost of this attack is to lose the SSH connection. However, it shows that the
length field cannot be hidden from an active attacker. For this reason, we will insist that, in our
left-or-right indistinguishability game, all pairs of messages submitted to the encryption oracle
should have the same length when encoded, so that they cannot be trivially distinguished using
the above attack.

3 Definitions

3.1 Notation

First let us begin by defining some notation. For a string x, let |x| denote the length of x in bytes,
and let x[i] denote the i-th block of x, where, throughout, blocks consist of L bytes. Let x[1. . .n]
denote the concatenation of the blocks x[1], x[2], . . ., x[n] of x and let x‖y denote the concatenation
of strings x and y. Let ε denote the empty string. Let 〈i〉t denote the t-byte binary representation
of integer i, where 0 ≤ i < 28t.

3.2 Building Blocks

Based on the discussion in the previous section, we now define the primitives which form the
building blocks in our description of the SSH BBP’s encode-then-encrypt&MAC construction.
These building blocks are an encoding scheme EC, an encryption scheme (we consider only counter
mode encryption) and a message authentication scheme MA.

Encoding Scheme: The encoding scheme EC = (enc, dec) used in SSH consists of an encoding al-
gorithm enc and a decoding algorithm dec. The encoding algorithm enc is stateful and randomised,
takes as input a message m and outputs two messages (me, mt). Here as in [5], me denotes the
encoded message which will be used by any future encryption process and mt denotes the en-
coded message which will be used by a MAC tagging algorithm. As required by the SSH BPP,
the encoding algorithm prepends some length information about the message and appends some
padding.

The decoding algorithm dec is stateful and deterministic. It takes as input the full encoded
message me = me[1. . .n], strips off all length fields and outputs the decoded message m. However, if
it is unable to parse the message correctly an error message ⊥P is output. Note that our definition
of dec is slightly different to that in [5] which had two outputs m and mt. Note also that dec will

Algorithm enc(m)
if ste =⊥ then

return (⊥,⊥)
end if

if SNe ≥ 232 or |m| ≥ 232 − 5 then

ste ←⊥
return (⊥,⊥)

else

PL← L− ((|m|+ 5) mod L)
if PL < 4 then

PL← PL + L
end if

PD
r
← {0, 1}8·PL

LF ← (1 + |m|+ PL)
me ← 〈LF 〉4‖〈PL〉1‖m‖PD
mt ← SNe‖me

SNe ← SNe + 1
return (me, mt)

end if

Algorithm dec(me)
if std =⊥ then

return ⊥
end if

if SNd ≥ 232 then

std ←⊥
return ⊥

else

Attempt to parse me as:
〈LF 〉4‖〈PL〉1‖m‖PD where
PL ≥ 4, |PD| = PL and |m| ≥ 0.
if parsing fails then

std ←⊥
return ⊥P

else

SNd ← SNd + 1
return m

end if

end if

Fig. 2. Encoding Scheme for SSH

only be called during the decryption process for SSH if both length checking and MAC checking
have not returned errors. For correctness of the encoding scheme, we require that for any m with
enc(m) = (me, mt) 6= (⊥,⊥), we have dec(me) 6=⊥P .

The specific encoding scheme used by the SSH BPP specification is shown in Figure 2. Here, L
denotes the block-size in bytes of the block cipher in use (or the default value of 8 if a stream cipher
such as ARCFOUR is being used), LF denotes the length field, PL denotes the padding length
and PD denotes the padding bytes. The padding bytes are assumed to be random in our security
analysis, though our security results also hold for any distribution on the padding bytes (including
fixed bytes). We test that the message m submitted for encoding contains at most 232 − 6 bytes,
so that the length of the encoded message can be recorded in the 4-byte length field. Each of the
two algorithms enc, dec maintains a separate state of the form (st, SN), initially set to (ε, 0). In
each case, the first component st maintains the status of the algorithm, i.e. if the algorithm is in
an error state or not. This is used to model the effect of an SSH connection tear-down when an
error occurs. The second component SN denotes a 32-bit sequence number. Note that RFC 4344
[6] states that when the sequence number SN wraps around, new keys must be negotiated. For
simplicity in our analysis, we model this by forcing ste (or std) to ⊥ when SNe (or SNd) reaches
232. In our full model of the SSH BPP, this has the effect of removing the adversary’s access to the
encryption or decryption oracle. This ensures that each value of SNe or SNd is used only once,
and is equivalent to enforcing rekeying when the relevant sequence number wraps around. Note
that in [5], the equivalent state consists of a single value which is “over-loaded” to carry both
the algorithm status and sequence number. For concreteness, Figure 2 shows the specific parsing
steps carried out by OpenSSH during decoding. Here, it is verified that the padding length field
has a value greater than 4 and that the decoded message m has length zero or greater; other
implementations may perform different checks here.

Encryption Scheme: The construction of SSH that we consider uses counter mode encryption
of a block cipher, and is called SSH-CTR in [5]. When we come to formally analyze the security of
SSH-CTR, we will regard the block cipher as being a pseudorandom function family rather than
as a pseudorandom permutation family. This allows us to directly use some of the results from [4].
Our definition for a pseudorandom function family can be found in Appendix A.1.

Counter mode encryption CTR[F] = (K-CTR, E-CTR,D-CTR) consists of three algorithms,
detailed in Appendix A.1. The key generation algorithm K-CTR outputs a random k-bit key Ke for

the underlying pseudorandom function family F , therefore specifying a function FKe having l-bit
inputs and L-byte outputs. Note that in practice we have l = 8L since all block ciphers have equal
input and output size. The key generation algorithm also outputs a random l-bit initial counter
ctr, which is used to initialise counters in both the encryption and decryption algorithms. Because
of the encoding algorithm used in encryption and the length checking used during decryption (see
Section 3.3), we can assume that the encryption and decryption algorithms E-CTR, D-CTR both
take as input a sequence of plaintext or ciphertext bytes which can be split into a sequence of
L-byte blocks.

We also define the scheme CTREC [F] to be a combination of counter mode encryption and the
encoding/decoding scheme from Figure 2, with the detailed algorithms for this scheme appearing
in Appendix A.1. This construction is not used in SSH, but is needed as a step in our security
analysis in Section 5. The scheme CTREC [F] features a buffered decryption algorithm: it takes as
input a string c of any length which is added to a buffer cbuff and then used as required. This
reflects the way that buffered decryption occurs in our overall model for SSH-CTR.

Message Authentication Scheme: A message authentication scheme (MAC)MA = (Kt, T ,V)
consists of three algorithms. The key generation algorithm Kt returns a key Kt. The tag algorithm
T , which may be stateful and randomised, takes as input the key Kt and an encoded message
mt and returns a tag τ . The verification algorithm V, which is deterministic and stateless, takes
as input the key Kt and an encoded message mt and a candidate tag τ ′ and outputs a bit. For
any key Kt, message mt and internal state of TKt , we require that VKt(mt, TKt(mt)) = 1. Security
notions for MACs can be found in Appendix A.2.

3.3 Encode-then-Encrypt&MAC

With the above components defined, we are now ready to define SSH-CTR. Note that our version
is significantly different from that considered in [5] because of the new features that we discussed
in Section 2.1.

Our construction of SSH-CTR is an Encode-then-Encrypt&MAC construction with plaintext-
dependent decryption. We define SSH-CTR = (K-SSH-CTR, E-SSH-CTR,D-SSH-CTR) in Figure
3. This makes use of the encoding scheme EC described in Section 3.2, the encryption scheme
CTR[F] and a message authentication schemeMA, where the length of the MAC tag is maclen. It
also makes use of a length checking algorithm len that we discuss below. Note that this construction
is stateful. The encryption state arises from the counter mode state ctre combined with the state
(ste, SNe) of the algorithm enc. The decryption state arises from the counter mode state ctrd, the
state (std, SNd) of the algorithm dec, and the ciphertext buffer cbuff. We will refer to the scheme
SSH-CTR[F] whenever we wish to highlight the scheme’s reliance on a particular function family
F in the encryption component.

The key generation algorithm K-SSH-CTR selects keys for counter mode encryption and the
MAC algorithm uniformly at random from the relevant key-spaces. This represents a significant
abstraction from reality in our description of SSH-CTR, since in practice these keys and the initial
counter value ctr are derived in a pseudorandom manner from the keying material established
during SSH’s key exchange protocol. The decryption algorithm D-SSH-CTR is considerably more
complex than one might expect. This complexity is required to accurately model all the features
of the SSH specification and the OpenSSH implementation. D-SSH-CTR operates in 3 distinct
stages.

In Stage 1, a sequence of ciphertext bytes c of arbitrary length is received and appended to the
ciphertext buffer cbuff.

In Stage 2 of D-SSH-CTR, once sufficient bytes have arrived to process the first block of
ciphertext, the packet length field is extracted, and length checking is performed by making a call

Algorithm K-SSH-CTR(k)
Ke

r
← Ke(k)

Kt
r
← Kt(k)

ctr
r
← {0, 1}l

return Ke, Kt

Algorithm E-SSH-CTRKe,Kt(m)
if ste =⊥ then

return ⊥
end if

(me, mt)← enc(m)
if me =⊥ then

ste ←⊥
return ⊥

else

c← E-CTRKe(me)
τ ← TKt(mt)
return c‖τ

end if

Algorithm len(m) (|m| = L)
Parse m as 〈LF 〉4‖R
if LF ≤ 5 or LF ≥ 218 then

return ⊥L

else if LF + 4 mod L 6= 0 then

return ⊥L

else

return LF
end if

Algorithm D-SSH-CTRKe,Kt(c)
if std =⊥ then

return ⊥
end if

{Stage 1}
cbuff← cbuff‖c
{Stage 2}
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A (where |c̃| = L)
me[1]← D-CTRKe(c̃)
LF ← len(me[1])
if LF =⊥L then

std ←⊥
return ⊥L

else

need = 4 + LF + maclen

end if

end if

{Stage 3}
if |cbuff| ≥ L then

if |cbuff| ≥ need then

Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ | = need,
and |τ | = maclen

me[2. . .n]← D-CTRKe(c̄[2. . .n])
me ← me[1]‖me[2. . .n]
mt ← SNd‖me

v ← VKt(mt, τ)
if v = 0 then

std ←⊥
return ⊥A

else

m← dec(me)
me ← ε, cbuff← B
return m

end if

end if

end if

Fig. 3. SSH-CTR, SSH using counter mode encryption

to the function len. This accords with our discussion in Section 2.1. The function len is shown
as part of Figure 3. It takes as input a single block of plaintext, and returns either the content
of the length field (as an integer) or a failure symbol ⊥L. The exact details of length checking,
and how to behave if length checking fails, is implementation-specific and not specified in the
RFCs. Figure 3 shows the exact checks carried out by OpenSSH version 5.2 in counter mode; our
subsequent analysis still holds so long as the algorithm at a minimum checks that the total number
of encrypted bytes (i.e. excluding the MAC tag) indicated by the length field is a multiple of the
block-size L, and fails if this is not the case. For further discussion, see Appendix A.1. Note that
when length checking fails in OpenSSH version 5.2 in counter mode, an error message is sent and
the SSH connection is torn down. We model this by outputting a length error ⊥L and setting the
state std to ⊥. Because the first action of D-SSH-CTR is to simply return ⊥ if std is already equal
to ⊥, our description of SSH-CTR models the subsequent connection tear-down seen in OpenSSH.
If the length checks pass, then D-SSH-CTR proceeds to use the returned value of LF to determine
the value of need, which is the number of additional ciphertext bytes that are needed before the
entire ciphertext (including MAC tag) is adjudged to have arrived. This makes the decryption

algorithm plaintext-dependent. However, it is not fully online, since no further output is produced
by D-SSH-CTR until the complete ciphertext has arrived and its MAC has been checked.

In Stage 3 of D-SSH-CTR, ciphertext bytes that have been buffered in cbuff during Stage
1 are processed. Note that our model allows the recipient to receive more data than he expects;
this data is denoted by B in Stage 3. This data is assumed to be the start of the next ciphertext
message and so we reinitialise cbuff with this data at the end of Stage 3. Once the buffer contains
sufficient data (as determined by the variable need), the decryption algorithm uses counter mode
to obtain the encoded plaintext me and the message mt to be verified by the MAC algorithm (this
consists of me with the sequence number prepended). The MAC tag is then checked, and, if it
verifies successfully, the encoded plaintext me is passed to the dec algorithm (as defined in Figure
2). Notice that three types of error can arise during this stage: a failure of the MAC verification,
resulting in output ⊥A, a failure of parsing during decoding, resulting in output ⊥P , or a wrap-
around of the sequence number SNd during decoding, resulting in output ⊥. When any of these
errors arises, the state std of the decryption algorithm is set as ⊥. This state is checked at the
start of every oracle query and if it equals ⊥, then an error message ⊥ is returned. In this way,
our description of SSH-CTR models the subsequent connection tear-down seen in OpenSSH.

This description of SSH-CTR faithfully models the behaviour of OpenSSH in counter mode,
in the sense of having buffered, plaintext-dependent decryption, and with errors arising at exactly
the same points during decryption and based on the same failure conditions that are tested in
OpenSSH. There are other ways in which to implement SSH and still be RFC-compliant. For
example, the full decoding of the message, and hence parsing checks, could be performed before
the MAC verification, as is the case in the construction of SSH-CTR given in [5]. However, it is
not hard to derive distinguishing attacks against SSH-CTR when the OpenSSH parsing checks are
carried out before MAC verification and the parsing and MAC failure errors are distinguishable
(which they are not in [5]).

4 Security Models

4.1 Chosen Plaintext Security

We begin by extending the usual left-or-right (LOR) indistinguishability game for a CPA adversary
from [4] to handle stateful encryption and leakage of length information. This extension is only
needed at intermediate steps in our security analysis, while we are primarily interested in the
security of the SSH BPP under chosen ciphertext attacks. For this reason, we content ourselves
with chosen plaintext security definitions that are tied to the particular schemes SSH-CTR[F] and
CTREC [F] that we need to analyze.

In the usual LOR-CPA model the adversary is given access to a left-or-right encryption oracle
E(LR(·, ·, b)), where b ∈ {0, 1}. This oracle takes as input two messages m0 and m1. If b = 0 it
outputs the encryption of m0 and if b = 1 it outputs the encryption of m1. It is the adversary’s
challenge to determine the bit b. The advantage of such an adversary is defined in the usual way.
Our extension of the LOR-CPA model makes it stateful and incorporates leakage of a length field.
To achieve the former, we incorporate explicit sequence numbers in the model. To achieve the
latter, we provide the adversary with access to a length revealing oracle L(·) whose operation
is specific to the particular scheme under study. For the schemes SSH-CTR[F] and CTREC [F],
the oracle takes as input a block c which is treated as the first block of a new message; the oracle
decrypts this block to retrieve the length field and performs the required length checking functions,
and then outputs either the length field LF or the symbol ⊥L signifying an invalid length field. We
require that L(·) maintains its own view of any internal state of the underlying encryption scheme,
according to the queries it receives. For the schemes we consider, this is done by increasing a
counter value ctrl by a number that is determined by the length field, and increasing a sequence

number SNl by 1, each time the oracle is called; at the start of the security game, ctrl and SNl are
set to the corresponding values held at the encryption oracle. The detailed operation of the length
oracle associated with the schemes SSH-CTR[F] and CTREC [F] can be found in Appendix A.2.
We name our new model LOR-LLSF-CPA, where “LLSF” stands for “length leaking stateful”.

In [5], decryption queries are defined to be either “in-sync” or “out-of-sync” with respect to
the sequence number at the encryption oracle. We introduce a similar concept for length oracle
queries in our next definition:

Definition 1. [LOR-LLSF-CPA]
Consider the stateful encryption scheme SE = (K, E ,D) with an associated length oracle L(·). Let
b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the oracles EK(LR(·, ·, b)) and L(·)
The game played is as follows:

Explor-llsf-cpa-b
E,A (k)

K
r
← K(k)

b′ ← AEK(LR(·,·,b)),L(·)

return b′

For all queries (m0, m1) to EK(LR(·, ·, b)), we require that |enc(m0)| = |enc(m1)|. In this model
the adversary has the possibility of making three different types of query to L. Let SNe denote the
sequence numbers at the encryption oracle and let SNl denote the sequence numbers at the length
oracle.

– A query c to L when the length oracle has sequence number SNl is said to be in-sync if c
is equal to the first block of ciphertext output by the encryption oracle when it had sequence
number SNe = SNl.

– A query c to L when the length oracle has sequence number SNl is said to be an out-of-sync
current state query if c is not equal to the first block of ciphertext output by the encryption
oracle when it had sequence number SNe = SNl.

– A query to L when the length oracle has sequence number SNl is said to be an out-of-sync
future state query if SNl > SNe, where SNe is the sequence number used by the encryption
oracle when responding to its most recent query.

We require that the response to any further length oracle queries following the first out-of-sync
query is ⊥.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-llsf-cpa
SE,A (k) = Pr[Explor-llsf-cpa-1

SE,A (k) = 1]− Pr[Explor-llsf-cpa-0
SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-llsf-cpa
SE

(k, t, qe, µe, ql) = max
A
{Advlor-llsf-cpa

SE,A (k)}

for any integers t, qe, µe, ql. The maximum is over all adversaries A with time complexity t, making
at most qe queries to the encryption oracle, totalling at most µe bits in each of the left and right
inputs, and ql queries to the length revealing oracle.

4.2 Chosen Ciphertext Security

Now we consider chosen ciphertext attackers1. We introduce a new security notion for left-or-right
indistinguishability against chosen-ciphertext attackers for buffered, stateful decryption (LOR-
BSF-CCA). In this model, which extends the IND-SFCCA model of [5], the adversary is given

1 Note that an online encryption scheme cannot be CCA secure [8]. Despite the underlying encryption scheme we
consider being online, the combined encryption scheme we consider is not online. We therefore do not need to be
concerned about the trivial attack raised in [8].

access to an encryption oracle and to a buffered decryption oracle. The model applies for any
encryption scheme in which the decryption oracle maintains a buffer of as-yet-unprocessed cipher-
text bytes cbuff and in which encryption and decryption states include sequence numbers which
are incremented after each successful operation. For reasons explained in Section 2.1, we need to
limit the attacker’s queries to the encryption oracle to pairs of messages (m0, m1) having the same
length when encoded.

Definition 2. [LOR-BSF-CCA]
Consider the symmetric encryption scheme SE = (K, E ,D) with buffered, stateful decryption. Let
b ∈ {0, 1} and k ∈ N. Let A be an attacker that has access to the oracles EK(LR(·, ·, b)) and DK(·).
The game played is as follows:

Explor-bsf-cca-b
SE,A (k)

K
r
← K(k)

b′ ← AEK(LR(·,·,b)),DK(·)(k)
return b′

We require that for all queries (m0, m1) to EK(LR(·, ·, b)), |enc(m0)| = |enc(m1)|. In this model the
adversary has the possibility of making three different types of decryption query. Let SNe denote
the sequence numbers at the encryption oracle and let SNd denote the sequence numbers at the
decryption oracle. Recall that, since the adversary can deliver ciphertexts in a byte-wise fashion to
the decryption oracle, the same value of SNd may be involved in processing a sequence of ciphertext
queries.

– The sequence of decryption queries corresponding to the sequence number SNd is said to be
in-sync if, after input of the final query in the sequence, the ciphertext buffer cbuff has as a
prefix the output from the encryption oracle for sequence number SNe = SNd. The response
from an in-sync query is not returned to the adversary.

– The sequence of decryption queries corresponding to the sequence number SNd is said to be an
out-of-sync current state query if, after input of the final query in the sequence, the ciphertext
buffer cbuff does not have the output from the encryption oracle for sequence number SNe =
SNd as a prefix.

– The sequence of decryption queries corresponding to the sequence number SNd is said to be an
out-of-sync future state query if SNd > SNe, where SNe is the sequence number used by the
encryption oracle when responding to its most recent query.

The response to any further decryption queries following an out-of-sync query is the ⊥ symbol.

The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-bsf-cca
SE,A (k) = Pr[Explor-bsf-cca-1

SE,A (k) = 1]− Pr[Explor-bsf-cca-0
SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-bsf-cca
SE

(k, t, qe, µe, qd, µd) = max
A
{Advlor-bsf-cca

SE,A (k)}

for any integers t, qe, µe, qd, µd. The maximum is over all adversaries A with time complexity t,
making at most qe queries to the encryption oracle, totalling at most µe bits in each of the left and
right inputs, and at most qd series of queries to the decryption oracle, totalling at most µd bits.

In the model above, the response from an in-sync decryption query is not returned to the
adversary. This is required in order to prevent the obvious and trivial attack in which the adversary
simply queries the decryption oracle with the output from the encryption oracle. We include in-sync

decryption queries in order to permit the adversary to observe the system’s behaviour in encrypting
messages of its choice and to let the adversary advance the sequence numbers maintained at the
encryption and decryption oracles to values of its choice. We make the restriction that only one
out-of-sync query is allowed for the same reason that this restriction is made in [5]: if the first out-
of-sync query does not decrypt successfully, the decryption oracle enters a halting state anyway,
while if it does, then our security analysis will show that the adversary has broken the strong
unforgeability of the MAC scheme. Our security model and analysis can be extended to handle
multiple out-of-sync decryption queries.

The specific decryption oracle that we consider when analyzing the security of SSH-CTR op-
erates exactly as the decryption algorithm D-SSH-CTR in Section 3.3: the oracle takes as input
an arbitrary number of bytes which is then added to cbuff; the decryption process uses the first
plaintext block to determine how many bytes of ciphertext are needed to complete the packet; and
the decryption process involves length checking, MAC checking, and decoding, with each of these
steps potentially outputting a distinct error message. Also note that for SSH-CTR, the decryption
oracle acts as a “bomb” oracle: when an error of any type occurs this oracle simply outputs ⊥
in response to any further query. This models an attempt by the decrypting party to initiate an
SSH connection tear-down. However, note that our model for SSH-CTR has separate states for
encryption and decryption, so that the encryption oracle is not “lost” if the decryption oracle is.
This allows us to model an adversary that outputs the relevant error messages. This description of
SSH-CTR in the context of the LOR-BSF-CCA model is sufficiently rich to give the attacker all
the capabilities exploited in the attacks of Albrecht et al. [1]. Thus, if we can prove SSH-CTR to
be secure in the LOR-BSF-CCA sense, then attacks of the kind developed in [1] will be prevented.

4.3 Integrity of Ciphertexts

We next extend the INT-SFCTXT model from [5] to include buffered decryption. We call our new
model “integrity of ciphertexts for buffered, stateful decryption” or INT-BSF-CTXT. The model
again applies for any encryption scheme in which the decryption oracle maintains a buffer of as-
yet-unprocessed ciphertext bytes cbuff and in which encryption and decryption states include
sequence numbers which are incremented after each successful operation.

Definition 3. [INT-BSF-CTXT]
Consider the symmetric encryption scheme SE = (K, E ,D) with buffered, stateful decryption, and
let k ∈ N. Let A be an attacker that has access to the oracles EK(·) and DK(·). In this game
the adversary again has the possibility of making three different types of decryption query: in-
sync, out-of-sync current state and out-of-sync future state. These are defined exactly as in the
LOR-BSF-CCA security game above. The response to any further decryption queries following an
out-of-sync query is the ⊥ symbol. The game played is as follows:

Expint-bsf-ctxt
SE,A (k)

K
r
← K(k)

if AEK(·),DK(·)(k) makes an out-of-sync sequence of queries to the decryption oracle DK(·)
such that:

– there is an output from the decryption oracle; and
– the output is not a member of the set {⊥L,⊥A,⊥P ,⊥}.

then return 1
else return 0

The attacker’s advantage is defined to be:

Advint-bsf-ctxt
SE,A (k) = Pr[Expint-bsf-ctxt

SE,A (k) = 1].

The advantage function of the scheme is defined to be

Advint-bsf-ctxt
SE

(k, t, qe, µe, qd, µd) = max
A
{Advint-bsf-ctxt

SE,A (k)}

for any integers t, qe, µe, qd, µd. The maximum is over all A with time complexity t, each making at
most qe queries to the encryption oracle, totalling at most µe bits, and at most qd series of queries
to the decryption oracle, totalling at most µd bits.

Again, the specific decryption oracle that we consider when analyzing the security of SSH-CTR
operates exactly as the decryption algorithm D-SSH-CTR in Section 3.3.

4.4 Security of Message Authentication Schemes

Finally, we define two security notions for MACs. We will use the LOR-DCPA notion from [5],
for distinct plaintext privacy of message authentication schemes. We will also use the standard
SUF-CMA model for strong unforgeability of MACs. The formal definitions for these notions can
be found in Appendix A.2.

5 Security Analysis

We will now present our main result, Theorem 1. This theorem provides a concrete security guar-
antee for the scheme SSH-CTR[F] in terms of security properties of the pseudorandom function
family F and MAC scheme MA used in its construction. The structure of our proof follows that
in [5], but with significant modifications being needed to handle the new features of our security
model and adversary. Our proof is valid no matter what length checks are performed by the encod-
ing scheme, so long as the minimal length check described previously is included. Our proof is also
valid (and in fact can be tightened slightly) if the random padding bytes in the encoding scheme
are replaced by fixed bytes. It is also valid no matter what specific parsing checks are carried out,
provided that the encoding scheme is correct. With the exception of our main result, the proofs
can all be found in Appendix B.

Theorem 1. Let SSH-CTR[F] be the combined encryption scheme for the encoding scheme EC,
counter mode encryption CTR[F] and a message authentication scheme MA. Then SSH-CTR[F]
is LOR-BSF-CCA secure if F is a pseudorandom function family, if T (the tagging algorithm
from MA) is a pseudorandom function family, and if MA is SUF-CMA secure. Concretely, for
qe, qd ≤ 232, µe ≤ 8L2l − 8qe(8 + L) and any t, k, µd, we have:

Advlor-bsf-cca

SSH-CTR[F](k, t, qe, µe, qd, µd)

≤ 2Advsuf-cma
MA

(k, t, qt, µt, qv, µv) + 2Advprf
F (k, t′, qF) + 4Advprf

T
(k, t′′, qt)

where qt = qe, µt ≤ µe + 8(L + 12)qe, qv = qd, µv ≤ µd + 32qd, qF ≤ ql + µe/8L + qe(1 + 8/L),
t′ = O(t) and t′′ = O(t).

Proof of Theorem 1: This follows from Theorem 2 and Lemmas 1, 2, 3, 4 and 5. �

The following is an extension of a result of Bellare and Namprempre [7]; here we consider
buffered, stateful decryption and include in our model potential errors arising from length checking,
MAC failures and parsing failures.

Theorem 2. Let SSH-CTR[F] be the combined encryption scheme for the encoding scheme EC,
counter mode encryption CTR[F] and a message authentication scheme MA. Then SSH-CTR[F]

is LOR-BSF-CCA secure if it is both INT-BSF-CTXT and LOR-LLSF-CPA secure. Concretely,
for any k, t, qe, µe, qd, µd, we have:

Advlor-bsf-cca

SSH-CTR[F](k, t, qe, µe, qd, µd)

≤ 2Advint-bsf-ctxt

SSH-CTR[F](k, t, qe, µe, qd, µd) + Advlor-llsf-cpa

SSH-CTR[F](k, t, qe, µe, ql)

where ql = qd.

Lemma 1. Let SSH-CTR[F] be the combined encryption scheme for the encoding scheme EC,
counter mode encryption CTR[F] and a message authentication scheme MA. Then SSH-CTR[F]
is INT-BSF-CTXT secure if MA is SUF-CMA secure. More concretely, for qe, qd ≤ 232 and any
k, t, µe, µd, we have:

Advint-bsf-ctxt

SSH-CTR[F](k, t, qe, µe, qd, µd) ≤ Advsuf-cma
MA

(k, t, qt, µt, qv, µv)

where qt = qe, µt ≤ µe + 8(L + 12)qe, qv = qd, and µv ≤ µd + 32qd.

Now recall the definition of the scheme CTREC [F] that combines the encoding scheme and
counter mode encryption from Section 3.2 (for the details of the scheme, see Appendix A.1).

Lemma 2. Let SSH-CTR[F] be the combined encryption scheme for the encoding scheme EC,
counter mode encryption CTR[F] and a message authentication scheme MA. Then SSH-CTR[F]
is LOR-LLSF-CPA secure if CTREC [F] is LOR-LLSF-CPA secure andMA is LOR-DCPA secure.
More concretely, for qe, ql ≤ 232 and any k, t, µe, we have:

Advlor-llsf-cpa

SSH-CTR[F](k, t, qe, µe, ql)

≤ Advlor-llsf-cpa

CTREC [F]
(k, t′, qe, µe, ql) + 2Advlor-dcpa

MA
(k, t′′, qt, µt)

where qt = qe, t′ = O(t), t′′ = O(t), and µt ≤ µe + 16(L + 12)qe.

Lemma 3. Suppose F is a pseudorandom function family with input length l bits and output length
L bytes. Let R = Randl→L be the set of all functions mapping l-bit strings to L-byte strings. Then
for any k, t, qe, µe, ql, we have:

Advlor-llsf-cpa

CTREC [F]
(k, t, qe, µe, ql) ≤ 2Advprf

F (k, t′, qF) + Advlor-llsf-cpa

CTREC [R]
(k, t, qe, µe, ql)

where qF ≤ ql + µe/8L + qe(40 + 8(3 + L))/8L and t′ = O(t).

Lemma 4. For any k, t, ql, qe and µe ≤ 8L2l − 8qe(8 + L) we have:

Advlor-llsf-cpa

CTREC [R]
(k, t, qe, µe, ql) = 0.

Lemma 5. Let MA be a message authentication scheme. Then MA is LOR-DCPA secure if T ,
the tagging algorithm fromMA, is a pseudorandom function family. More concretely, for any k, t
and qt, we have:

Advlor-dcpa
MA

(k, t, qt, µt) ≤ 2Advprf
T

(k, t′, qt)

where t′ = O(t).

6 Conclusion

We have extended the security model of Bellare et al. [5] to develop a model suited to analyzing
the SSH BPP. We gave a description of SSH-CTR that is closely linked to the specification of SSH
in the RFCs and the OpenSSH implementation of SSH. We then proved the security of SSH-CTR
in the extended model. Our approach is sufficiently powerful to incorporate the attacks of Albrecht
et al. [1]. This helps to close the gap that exists between the formal security analysis of SSH and
the way in which SSH should be (and is in practice) implemented.

Our approach can be seen as an attempt to expand the scope of provable security to incorporate
the fine details of cryptographic implementations. We grant the attacker a much wider and more
realistic set of ways of interacting with the SSH protocol than in the previous analysis of [5]. We
believe that our approach captures more of the cryptographically relevant features of the SSH
BPP, including plaintext-dependent, byte-wise decryption and detailed modeling of the errors that
can arise during cryptographic processing in the SSH BPP.

One drawback of our approach is that, while we have tried to be as general as possible in our
modeling of SSH, our security results are now specific to one implementation of the SSH RFCs,
namely OpenSSH. This seems to us to be an inevitable consequence of making the model and the
security analysis more realistic. We leave it as an interesting open question as to whether similar
analyses can be carried out for other network protocols. A prime example would be SSL/TLS,
where the current security analysis of [15] is not stateful and does not model errors or padding,
whilst attacks exploiting such features of real SSL/TLS implementations were reported in [9]. Our
general approach appears to open up a rich new seam of research within provable security.

References

1. M.R. Albrecht, K.G. Paterson and G.J. Watson. Plaintext recovery attacks against SSH. In IEEE Symposium
on Security and Privacy, pages 16–26. IEEE Computer Society, 2009.

2. G.V. Bard. A challenging but feasible blockwise-adaptive chosen-plaintext attack on SSL. In M. Malek,
E. Fernández-Medina and J. Hernando, eds., SECRYPT, pages 99–109. INSTICC Press, 2006.

3. G.V. Bard. Blockwise-adaptive chosen-plaintext attack and online modes of encryption. In S.D. Galbraith, ed.,
IMA Int. Conf., volume 4887 of Lecture Notes in Computer Science, pages 129–151. Springer, 2007.

4. M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A concrete security treatment of symmetric encryption. In
Proceedings of 38th Annual Symposium on Foundations of Computer Science (FOCS ’97), pages 394–403. IEEE,
1997.

5. M. Bellare, T. Kohno, and C. Namprempre. Breaking and provably repairing the SSH authenticated encryption
scheme: A case study of the encode-then-encrypt-and-MAC paradigm. ACM Transactions on Information and
Systems Security, 7(2):206–241, 2004.

6. M. Bellare, T. Kohno, and C. Namprempre. The Secure Shell (SSH) Transport Layer Encryption Modes. RFC
4344, January 2006. http://www.ietf.org/rfc/rfc4344.txt.

7. M. Bellare and C Namprempre. Authenticated encryption: Relations among notions and analysis of the generic
composition paradigm. In T. Okamoto, ed., Asiacrypt 2000, volume 1976 of Lecture Notes in Computer Science,
pages 531–545. Springer, 2000.

8. A. Boldyreva and N. Taesombut. Online encryption schemes: New security notions and constructions. In
T. Okamoto, ed., CT-RSA, volume 2964 of Lecture Notes in Computer Science, pages 1–14. Springer, 2004.

9. B. Canvel, A.P. Hiltgen, S. Vaudenay, and M. Vuagnoux. Password interception in a SSL/TLS channel. In
D. Boneh, ed., CRYPTO 2003, volume 2729 of Lecture Notes in Computer Science, pages 583–599, 2003.

10. CPNI Vulnerability Advisory. Plaintext recovery attack against SSH, 14/11/2008 (revised 17/11/2008). http:
//www.cpni.gov.uk/Docs/Vulnerability_Advisory_SSH.txt

11. P.-A. Fouque, A. Joux, G. Martinet and F. Valette. Authenticated on-line encryption. In M. Matsui and
R.J. Zuccherato, eds., SAC, volume 3006 of Lecture Notes in Computer Science, pages 145–159. Springer, 2003.

12. P.-A. Fouque, A. Joux and G. Poupard. Blockwise adversarial model for on-line ciphers and symmetric encryption
schemes. In H. Handschuh and M.A. Hasan, eds., SAC, volume 3357 of Lecture Notes in Computer Science,
pages 212–226. Springer, 2004.

13. P.-A. Fouque, G. Martinet and G. Poupard. Practical symmetric on-line encryption. In T. Johansson, ed., FSE,
volume 2887 of Lecture Notes in Computer Science, pages 362–375. Springer, 2003.

14. A. Joux, G. Martinet and F. Valette. Blockwise-adaptive attackers: Revisiting the (in)security of some provably
secure encryption models: CBC, GEM, IACBC. In M. Yung, ed., CRYPTO 2002, volume 2442 of Lecture Notes
in Computer Science, pages 17–30. Springer, 2002.

15. H. Krawczyk. The order of encryption and authentication for protecting communications (or: How secure is
SSL?). In J. Kilian, ed., CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 310-331,
2001.

16. SSH usage profiling, http://www.openssh.org/usage/index.html.
17. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Protocol Architecture. RFC 4251, January 2006. http:

//www.ietf.org/rfc/rfc4251.txt.
18. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Authentication Protocol. RFC 4252, January 2006. http:

//www.ietf.org/rfc/rfc4252.txt.
19. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Transport Layer Protocol. RFC 4253, January 2006.

http://www.ietf.org/rfc/rfc4253.txt.
20. T. Ylonen and C. Lonvick. The Secure Shell (SSH) Connection Protocol. RFC 4254, January 2006. http:

//www.ietf.org/rfc/rfc4254.txt.

A Further Definitions

A.1 Building Block Definitions

Length Checking for OpenSSH: The definition of algorithm len in Figure 3 showed the
specific length checks used in OpenSSH version 5.2 (and more recent versions) in counter mode
as an example of the kind of checks that may be performed. As can be seen from that figure,
OpenSSH version 5.2 in counter mode performs two length checks: a packet length check which
verifies that the length field is at least 5 and less than 218 and a block length check which verifies
that the amount of data that is expected to be received is a multiple of the block size. If either of
these checks fails the session is terminated in exactly the same way, to ensure uniform reporting of
errors arising from length checks. This uniformity in checking was adopted as an initial response
to the attacks of Albrecht et al. [1]; the previous versions of OpenSSH allowed the different error
conditions to be distinguished. OpenSSH version 5.2 in CBC mode uses additional countermeasures
in order to make length errors and MAC verification errors indistinguishable, thus preventing the
attacks of [1]. This means that the length checking carried out by OpenSSH version 5.2 is different
for CBC mode and counter mode. Here, we consider only counter mode.

Pseudorandom Function Family: We give a definition for a pseudorandom function family.
Note that our definition requires all functions to have l-bit inputs and L-byte outputs. This is
non-standard, but fits with our use of an l-bit counter for counter mode and an L-byte block-size.

Definition 4. [Pseudorandom Function (prf) Family] Let F = {FK : K ∈ K} and FK :
{0, 1}l → {0, 1}8L. Here l, L, the function family F and its key-space K depend on a security
parameter k. Let Randl→L be the set of all functions mapping l-bit strings to L-byte strings. Let
b ∈ {0, 1}. Let D be a distinguisher with access to an oracle for the function fb(·) as defined in the
following experiment:

Expprf-b
F,D (k)

f0
r
← Randl→L; K

r
← K, f1 ← FK

b′ ← Dfb(·)

return b′

The advantage of D is defined as:

Advprf
F,D(k) = Pr[Expprf-1

F,D (k) = 1]− Pr[Expprf-0
F,D (k) = 1].

The advantage function of the function family F is defined as follows. For any integers k, t, qF

Advprf
F (k, t, qF) = max

D
{Advprf

F,D(k)}

where the maximum is over all D with time complexity t, each making at most qF queries to the
oracle.

Algorithm K-CTRK(k)
Ke

r
← Ke(k)

ctr
r
← {0, 1}l

return Ke, ctr

Algorithm E-CTRK(m)
Parse m as m[1]m[2]. . .m[n],
where |m[i]| = L, ∀i
for i = 1 to n do

c[i] = FK(ctre + i)⊕mi

end for

ctre ← ctre + n
return c[1]. . .c[n]

Algorithm D-CTRK(c)
Parse c as c[1]c[2]. . .c[n],
where |c[i]| = L, ∀i
for i = 1 to n do

m[i] = FK(ctrd + i)⊕ ci

end for

ctrd ← ctrd + n
return m[1]. . .m[n]

Fig. 4. Counter mode encryption

Counter Mode Encryption: We define the algorithms associated with counter mode encryption,
CTR[F] in Figure 4. Here F is assumed to be a function family with key-space Ke(k), l-bit inputs
and L-byte outputs. The key generation algorithm K-CTREC

K (k) generates the encryption key
Ke and initial counter value ctr; the counter values ctre and ctrd are (implicitly) assumed to be
initialised to this value.

Counter Mode Encryption and Encoding Scheme Combined: We give the algorithms for
the scheme CTREC [F] in Figure 5. This is essentially the same as the full scheme SSH-CTR[F] with
the omission of MAC tags. The key generation algorithm K-CTREC

K (k) generates the encryption
Ke and initial counter value ctr for counter mode encryption.

A.2 Security Definitions

Distinct Chosen Plaintext Attacks:

Definition 5. [LOR-DCPA]
Consider the message authentication scheme MA = (Kt, T ,V). Let b ∈ {0, 1} and k ∈ N. Let A
be an attacker that has access to the oracle TKt(LR(·, ·, b)) The game played is as follows:

Explor-dcpa-b
MA,A (k)

Kt
r
← Kt(k)

b′ ← ATKt
(LR(·,·,b))

return b′

Here, it is required that all “left” messages in A’s queries be distinct and that all “right” messages
in A’s queries be distinct. The attacker wins when b′ = b, and its advantage is defined to be:

Advlor-dcpa
MA,A (k) = Pr[Explor-dcpa-1

MA,A (k) = 1]− Pr[Explor-dcpa-0
MA,A (k) = 1].

The advantage function of the scheme is defined to be

Advlor-dcpa
MA

(k, t, qt, µt) = max
A
{Advlor-dcpa

MA,A (k)}

for any integers t, qt, µt. The maximum is over all adversaries A with time complexity t, making
at most qt queries to the tag oracle, totalling at most µt bits.

Strong Unforgeability:

Definition 6. [SUF-CMA]
Consider the message authentication scheme MA = (Kt, T ,V). Let b ∈ {0, 1} and k ∈ N. Let F
be a forger that has access to the oracle TKt(·) The game played is as follows:

Expsuf-cma
MA,F (k)

Kt
r
← Kt(k)

if FTK(·),VK(·,·) makes a query (m, τ) to VK(·, ·) such that
- VK(m, τ) returns 1, and
- τ was a never a response from TK(·) for a query m,

then return 1 else return 0

The forger’s advantage is defined to be:

Advsuf-cma
MA,F (k) = Pr[Expsuf-cma

MA,F (k) = 1].

The advantage function of the scheme is defined to be

Advsuf-cma
MA

(k, t, qt, µt, qv, µv) = max
F
{Advsuf-cma

MA,F (k)}

for any integers t, qt, µt, qv, µv. The maximum is over all forgers F with time complexity t, making
at most qt queries to the tag oracle, totalling at most µt bits and making at most qv queries to the
verification oracle, totalling at most µv bits.

Length Oracle for Counter Mode Encryption: In Figure 6 we define the length oracle
associated to the schemes SSH-CTR[F] and CTREC [F]. This oracle maintains its own state, defined

Algorithm K-CTREC
K (k)

Ke
r
← Ke(k)

ctr
r
← {0, 1}l

return Ke, ctr

Algorithm E-CTREC
Ke

(m)
if ste =⊥ then

return ⊥
end if

(me, mt)← enc(m)
if me =⊥ then

ste ←⊥
return ⊥

else

c← E-CTRKe(me)
return c

end if

Algorithm len(m) (|m| = L)
Parse m as 〈LF 〉4‖R
if LF ≤ 5 or LF ≥ 218 then

return ⊥L

else if LF + 4 mod L 6= 0 then

return ⊥L

else

return LF
end if

Algorithm D-CTREC
Ke

(c)
if std =⊥ then

return ⊥
end if

{Stage 1}
cbuff← cbuff‖c
{Stage 2}
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A, (|c̃| = L)
me[1]← D-CTRKe(c̃)
LF ← len(me[1])
if LF =⊥L then

std ←⊥
return ⊥L

end if

end if

need = 4 + LF
{Stage 3}
if |cbuff| ≥ L then

if |cbuff| ≥ need then

Parse cbuff as c̄[1. . .n]‖B,
where |c̄[1. . .n]| = need

me[2. . .n]← D-CTRKe(c̄[2. . .n])
me ← me[1]‖me[2. . .n]
m← dec(me)
me ← ε, cbuff← B
return m

end if

end if

Fig. 5. CTREC [F]: Counter mode and encoding scheme combined

Algorithm L(c) (|c| = L)
if stl =⊥ then

return ⊥
end if

m← FKe(ctrl)⊕ c
LF ← len(m)
if LF =⊥L then

stl ←⊥
return ⊥L

else

ctrl ← ctrl + ((LF + 4)/L)
SNl ← SNl + 1
return LF

end if

Fig. 6. Length oracle for counter mode encryption

by a triple (stl, SNl, ctrl), initialised to (ε, 0, ctre) where ctre denotes the counter value held by
the encryption oracle at the start of the LOR-LLSF-CPA security game. In order to update the
counter value, the algorithm uses the length field to determine how many more blocks should be
in the ciphertext, adding (LF + 4)/L to the counter. Notice how we rely on the minimal length
checking carried out by algorithm len here.

B Proofs

Proof of Theorem 2: Let A be an adversary attacking SSH-CTR[F] in the LOR-BSF-CCA
sense. We use this adversary to construct two new adversaries B, I using their oracles to provide
simulations of A’s oracles, such that:

– B attacks SSH-CTR[F] in the LOR-LLSF-CPA sense.
– I attacks SSH-CTR[F] in the INT-BSF-CTXT sense.

The constructions of these adversaries can be found in Figure 7. In B’s construction, B runs A
using its own encryption oracle to provide simulations of A’s encryption oracle and using its length
oracle to provide simulations of A’s decryption oracle, responding with ⊥A if the decryption query
was out-of-sync. Note that B makes at most one out-of-sync query to its length oracle, so is a
valid LOR-LLSF-CPA adversary. In I’s construction, I runs A using its own oracles to provide
simulations of A’s oracles.

Now let us consider the event E that A makes an out-of-sync sequence of decryption oracle
queries for which the output of the decryption oracle is not an element of {⊥A,⊥L,⊥P ,⊥}. We
call such a sequence a valid out-of-sync sequence.

First let us consider what happens when event E occurs. Notice that since the environment
I provides for A is indistinguishable from that in A’s real security game, if A submits a valid
out-of-sync sequence of decryption queries, then I will have created a valid ciphertext forgery in
its security game. The following therefore holds:

Pr[A wins ∧ E] ≤ Pr[E] = Pr[I wins] ≤ Advint-bsf-ctxt
SSH-CTR[F].

Now let us consider what happens when E does not occur. Notice that B’s simulation of A’s
environment is correct so long as event E does not occur. Thus, provided E does not occur, if A
is able to guess b correctly then so does B. The following therefore holds:

Pr[A wins ∧ ¬E] ≤ Pr[B wins] ≤
1

2
Adv

lor-llsf-cpa
SSH-CTR[F] +

1

2
.

Adversary BE-SSH-CTRKe,Kt
(LR(·,·,b)),L(·)

cbuff← ε; std ← ε
Run A
if A makes an encryption query m0, m1 then

Respond with E-SSH-CTRKe,Kt(LR(m0, m1, b))
to A

end if

if A makes a decryption query c then

if std =⊥ then

Respond with ⊥ to A
end if

cbuff← cbuff‖c
if LF = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A, where |c̃| = L
LF ← L(c̃)
if LF =⊥L then

std ←⊥
Respond with ⊥L to A

else

need = 4 + LF + maclen

end if

end if

if |cbuff| ≥ L then

if |cbuff| ≥ need then

if the query was in-sync then

LF ← ε
Parse cbuff as A‖B, where |A| = need

cbuff← B
else

std ←⊥
Respond with ⊥A to A

end if

end if

end if

end if

Until A halts and returns a guess b′

return b′

Adversary IE-SSH-CTRKe,Kt
(·),D-SSH-CTRKe,Kt

(·)(k)
b

r
← {0, 1}

Run A
if A makes an encryption query (m0, m1) then

Respond with E-SSH-CTRKe,Kt(mb)
end if

if A makes an decryption query c then

Respond with D-SSH-CTRKe,Kt(c)
end if

Fig. 7. Adversaries for proof of Theorem 2

Now we complete the proof:

Advlor-bsf-cca
SSH-CTR[F] = 2 Pr[A wins]− 1

= 2 Pr[A wins ∧ E] + 2 Pr[A wins ∧ ¬E]− 1

≤ 2Advint-bsf-ctxt
SSH-CTR[F] + Adv

lor-llsf-cpa
SSH-CTR[F].

�

Proof of Lemma 1: Consider an adversary I attacking SSH-CTR[F] in the INT-BSF-CTXT
sense. We will use this adversary to construct a new adversary F which will attack MA in the
SUF-CMA sense. The construction of F is shown in Figure 8. We assume that F ’s algorithms enc

and dec maintain sequence numbers SNe, SNd for encryption and decryption.
It is evident that the simulation provided to I by F is correct. Suppose I wins the INT-BSF-

CTXT game by making an out-of-sync sequence of decryption queries that does not result in an
output in the set {⊥L,⊥A,⊥P ,⊥}. Then the corresponding ciphertext c̄[1. . .n]‖τ processed by F ’s
simulation of the decryption oracle was not output by F ’s simulation of the encryption oracle.
Moreover, in this case, F makes a certain query (mt, τ) to its verification oracle for which v = 1
during its simulation of decryption. We claim that this query ensures that F wins its forgery game.

Adversary FTKt
(·),VKt

(·)

Ke
r
← Ke; ste ← ε; std ← ε; me ← ε

Run I
if I makes an encryption query m then

if ste =⊥ then

Respond with ⊥ to I
end if

(me, mt)← enc(m)
if me =⊥ then

ste ←⊥
Respond with ⊥ to I

end if

τ ← TKt(mt)
c← E-CTRKe(me)
Respond with c‖τ to I

end if

if I makes a decryption query c then

if std =⊥ then

Respond with ⊥ to I
end if

cbuff← cbuff‖c
if me = ε and |cbuff| ≥ L then

Parse cbuff as c̃‖A, where |c̃| = L
me[1]← D-CTRKe(c̃)
LF ← len(me[1])
if LF =⊥L then

std ←⊥
Respond with ⊥L to I

end if

need = 4 + LF + maclen

end if

if |cbuff| ≥ L then

if |cbuff| ≥ need then

Parse cbuff as c̄[1. . .n]‖τ‖B,
where |c̄[1. . .n]‖τ | = need and |τ | = maclen

me[2. . .n]← D-CTRKe(c̄[2. . .n])
me ← me[1]‖me[2. . .n]
mt ← SNd‖me

v ← VKt(mt, τ)
m← dec(me)
if (v = 1 and the sequence of queries in cbuff was in-sync) then

cbuff← B
me ← ε

else if (v = 1 and the sequence of queries in cbuff was out-of-sync) then

if m =⊥P then

std ←⊥
end if

Respond with m to I
else

std ←⊥
Respond with ⊥A to I

end if

end if

end if

end if

Fig. 8. Adversary for proof of Lemma 1

To justify this claim, we need to show that either this query is on a message that F did not query
to its tagging oracle TKt(mt) when preparing its responses to encryption queries, or that it is a new
MAC tag on a message that F queried previously to TKt(mt). Now, there are two cases, depending

Experiment ExpHx

Ke
r
← Ke; Kt

r
← Kt; ctr

r
← {0, 1}l

st0 ← ε; st1 ← ε; st2 ← ε
SN0 ← 0; SN1 ← 0; SN1 ← 0
Run S
if S makes a length oracle query c then

Respond with L(c) to S
end if

if S makes an E-SSH-CTR query (m0, m1) then

(me,0, mt,0, st0, SN0)← enc
∗(m0, st0, SN0)

(me,1, mt,1, st1, SN1)← enc
∗(m1, st1, SN1)

(m′
e,1, m

′
t,1, st2, SN2)← enc

∗(m1, st2, SN2)
switch (x):

case x = 0: σ ← E-CTRKe(me,1); τ ← TKt(mt,1)
case x = 1: σ ← E-CTRKe(me,1); τ ← TKt(m

′
t,1)

case x = 2: σ ← E-CTRKe(me,0); τ ← TKt(m
′
t,1)

case x = 3: σ ← E-CTRKe(me,0); τ ← TKt(mt,0)
Respond with σ‖τ to S

end if

Until S halts and returns a bit b′

return b′

Fig. 9. Experiment ExpHx used in the proof of Lemma 2

on whether I’s sequence of queries (as represented by the contents of cbuff) is current state or
future state.

In the former case, since the query is out-of-sync, we know that c̄[1. . .n]‖τ was not output by
the encryption oracle for the same value of the sequence number, SNd. It is then easy to see that
either the plaintext me differs from that encrypted, or the MAC tag τ differs from that output by
the encryption oracle for the value SNd. But that value SNd was only used in one query to the
encryption oracle, and hence only used in making a single query to TKt(mt) (here we use the fact
that qe ≤ 232). Hence τ is either a valid MAC tag on a new message mt = SNd‖me, or a new MAC
tag on the existing message mt.

In the latter case, since the query is future state, we can deduce that the value SNd used in
constructing the message mt = SNd‖me has never been used in handling an encryption oracle
query, and hence no message of the form mt = SNd‖me has been queried by F to TKt(mt) (here
we use the fact that qd ≤ 232). Then τ is a valid MAC tag on a new message mt.

Notice that in this analysis, F is still successful in winning its game even if I’s out-of-sync
decryption query results in an output m =⊥P . So F ’s success probability is at least as great as
that of I. In the simulation, F makes at most qe queries to its tagging oracle and at most qd queries
to its verification oracle. Also, a routine calculation shows that the total numbers of bits in F ’s
queries are tightly related to those in I’s, as in the statement of the lemma. �

Proof of Lemma 2: In the following proof, we let enc
∗(·, ·, ·) denote the encoding algorithm

enc(·) having some state (st, SN) as part of its input and having the new state returned as output.
We let S denote an LOR-LLSF-CPA adversary that has oracle access to the encryption oracle
E-SSH-CTRKe,Kt(LR(·, ·, b)), b ∈ {0, 1} and length oracle L(·). In Figure 9 we define experiments
ExpHx for x ∈ {0, 1, 2, 3}. Notice that in the experiments (me,1, mt,1) and (m′

e,1, m
′
t,1) will be

identical except possibly in the random bytes used for padding.
Let Px = Pr[ExpHx = 1], for x ∈ {0, 1, 2, 3}. By the definition of Adv

lor-llsf-cpa
SSH-CTR[F],S(k), we have

Adv
lor−llsf−cpa

SSH-CTR[F],S(k) = P0 − P3 = (P0 − P1) + (P1 − P2) + (P2 − P3).

We proceed by estimating the terms Pi − Pi+1, i = 0, 1, 2.
Given S, we construct three new adversaries A0, A1 and A2, using their oracles to provide

simulations of S’s oracles, as shown in Figure 10. Both A0 and A2 will attack MA in the LOR-

Adversary A0
TK(LR(·,·,b))

Ke
r
← Ke; st1 ← ε; st2 ← ε; stl ← ε

SN1 ← 0; SN2 ← 0; SNl ← 0; stl ← ε
ctre

r
← {0, 1}l; ctrl ← ctre

Run S
if S makes an encryption query (m0, m1) then

(me,1, mt,1, st1, SN1)← enc
∗(m1, st1, SN1)

(m′
e,1, m

′
t,1, st2, SN2)← enc

∗(m1, st2, SN2)
Parse me,1 as me,1[1]‖me,1[2]‖. . .‖me,1[n]
for i = 1 to n do

σ[i]← me,1[i]⊕ FKe(ctre + i)
end for

τ ← TK(LR(m′
t,1, mt,1, b))

ctre ← ctre + n
Respond with σ[1]‖σ[2]‖. . .‖σ[n]‖τ to S

end if

if S makes a length oracle query c then

if stl =⊥ then

Respond with ⊥ to S
end if

m← FKe(ctrl)⊕ c
LF ← len(m)
if LF 6=⊥L then

ctrl ← ctrl + ((LF + 4)/L)
SNl ← SNl + 1

end if

if the query c is out-of-sync then

stl ←⊥
end if

Respond with LF to S
end if

Until S halts and outputs b′

return b′

Adversary A2
TK(LR(·,·,b))

Ke
r
← Ke; st0 ← ε; st2 ← ε; stl ← ε

SN0 ← 0; SN2 ← 0; SNl ← 0; stl ← ε
ctre

r
← {0, 1}l; ctrl ← ctre

Run S
if S makes an encryption query (m0, m1) then

(me,0, mt,0, st0, SN0)← enc
∗(m1, st0, SN0)

(m′
e,1, m

′
t,1, st2, SN2)← enc

∗(m1, st2, SN2)
Parse me,0 as me,0[1]‖me,0[2]‖. . .‖me,0[n]
for i = 1 to n do

σ[i]← me,0[i]⊕ FKe(ctre + i)
end for

τ ← TK(LR(mt,0, m
′
t,1, b))

ctre ← ctre + n
Respond with σ[1]‖σ[2]‖. . .‖σ[n]‖τ to S

end if

if S makes a length oracle query c then

if stl =⊥ then

Respond with ⊥ to S
end if

m← FKe(ctrl)⊕ c
LF ← len(m)
if LF 6=⊥L then

ctrl ← ctrl + ((LF + 4)/L)
SNl ← SNl + 1

end if

if the query c is out-of-sync then

stl ←⊥
end if

Respond with LF to S
end if

Until S halts and outputs b′

return b′

Adversary A1
E-CTREC

Kc
(LR(·,·,b)),L(·)

Kt
r
← Kt; st2 ← ε; SN2 ← 0

Run S
if S makes an length oracle query c then

Respond with L(c) to S
end if

if S makes an encryption query (m0, m1) then

(m′
e,1, m

′
t,1, st2, SN2)← enc

∗(m1, st2, SN2)
σ ← E-CTREC

Ke
(LR(m0, m1, b)); τ ← TKt(m

′
t,1)

Respond with σ‖τ to S
end if

Until S halts and outputs b′

return b′

Fig. 10. Adversaries used in the proof of Lemma 2

DCPA sense, while A1 will attack CTREC [F] in the LOR-LLSF-CPA sense. We will show that the
following equalities hold:

P0 − P1 = Adv
lor-dcpa
MA,A0

(k),

P1 − P2 = Adv
lor-llsf-cpa

CTREC [F],A1
(k),

P2 − P3 = Adv
lor-dcpa
MA,A2

(k).

Let us begin by proving the first equality. In the construction of A0, the adversary maintains
counter ctrl and sequence number SNl for handling length oracle queries, and two sets of states

for handling encryption queries. In the construction, if the hidden bit b equals 0 then A0 runs S in
the environment provided by ExpH1, while if b = 1, then A0 runs S in the environment provided
by ExpH0. On the other hand, it is clear that, because of the use of distinct sequence numbers
in constructing the messages mt,1, m

′
t,1 when handling encryption queries, and the limitation that

qe ≤ 232, A0 is a valid LOR-DCPA adversary, outputting 1 whenever S does. Putting all of this
together, we see that

Adv
lor-dcpa
MA,A0

(k) = Pr[Exp
lor-dcpa-1
MA,A0

(k) = 1]− Pr[Exp
lor-dcpa-0
MA,A0

(k) = 1]

= Pr[ExpH0 = 1]− Pr[ExpH1 = 1]
= P0 − P1.

Next, we prove the second equality. In A1’s construction, if the hidden bit b equals 0 then A1

runs S in the environment provided by ExpH2, while if b = 1, then A1 runs S in the environment
provided by ExpH1. On the other hand, it is clear that A1 is a valid LOR-LLSF-CPA adversary
against the combined scheme CTREC [F], outputting 1 whenever S does. Combining these facts,
we have:

Adv
lor-llsf-cpa

CTREC [F],A1
(k) = Pr[Exp

lor-llsf-cpa-1

CTREC [F],A1
(k) = 1]− Pr[Exp

lor-llsf-cpa-0

CTREC [F],A1
(k) = 1]

= Pr[ExpH1 = 1]− Pr[ExpH2 = 1]
= P1 − P2.

The third and final equality follows using a simulation similar to the first. For completeness, we
give full details. In the construction of A2 counter ctrl and sequence number SNl are maintained
for handling length oracle queries, and two sets of state for handling encryption queries. In the
construction, if the hidden bit b equals 0 then A2 runs S in the environment provided by ExpH3,
while if b = 1, then A2 runs S in the environment provided by ExpH2. On the other hand, it is
clear that, because of the use of distinct sequence numbers in constructing the messages mt,0, m

′
t,1

when handling encryption queries, and the limitation that qe ≤ 232, A2 is a valid LOR-DCPA
adversary, outputting 1 whenever S does. Putting all of this together, we see that

Adv
lor-dcpa
MA,A2

(k) = Pr[Exp
lor-dcpa-1
MA,A2

(k) = 1]− Pr[Exp
lor-dcpa-0
MA,A2

(k) = 1]

= Pr[ExpH2 = 1]− Pr[ExpH3 = 1]
= P2 − P3.

The lemma follows by accounting for the resources used by adversaries A0, A1 and A2 in terms
of those used by S.

�

Proof of Lemma 3: Assume that A attacks the scheme CTREC [F] in the LOR-LLSF-CPA sense.
Let CTREC [R] denote the same scheme but with F , the prf family, replaced by R, the set of random
functions mapping l-bit strings to L-byte strings. We build a distinguisher D against the prf family
as follows: D, with oracle access to a function f drawn from either F or R, runs A and sees whether
A breaks the scheme. If so it guesses that f was drawn from the prf family F , otherwise it guesses
that f was drawn from the set of all functions R = Randl→L. D simulates A’s oracles E-CTREC [F]
and L by making queries to f . The construction is shown in Figure 11.

We now examine the advantage of D. When f is drawn from F , then D runs A in an envi-
ronment where A plays against the scheme CTREC [F], while when f is drawn from R, then D
runs A in an environment where A plays against the scheme CTREC [R]. Moreover, by a stan-

dard argument A correctly guesses b′ = b with probability either 1
2(1 + Adv

lor-llsf-cpa

CTREC [F],A
(k)) or

Algorithm Df

b
r
← {0, 1}

ste ← ε; ctre
r
← {0, 1}l; ctrl ← ctre; SNl ← 0;

stl ← ε
Run A
if A makes an encryption query (m0, m1) then

if ste =⊥ then

Respond with ⊥ to A
end if

(me,b, mt,b)← enc(mb)
if me,b =⊥ then

ste →⊥
Respond with ⊥ to A

end if

Parse me,b as me,b[1]me,b[2]. . .me,b[n]
for i = 1 to n do

c[i]← me,b[i]⊕ f(ctre + i)
end for

ctre ← ctre + n
Respond with c[1]c[2]. . .c[n] to A

end if

if A makes a length oracle query c then

if stl =⊥ then

Respond with ⊥ to A
end if

m← f(ctrl)⊕ c
LF ← len(m)
if LF 6=⊥L then

ctrl ← ctrl + ((LF + 4)/L)
SNl ← SNl + 1

end if

if query c is out-of-sync then

stl ←⊥
end if

Respond with LF to S
end if

Until A halts and outputs b′

if b′ = b then

return 1
else

return 0
end if

Fig. 11. Distinguisher used in the proof of Lemma 3

1
2(1 + Adv

lor-llsf-cpa

CTREC [R],A
(k)), depending on the environment supplied by D. It then follows that:

Adv
prf
F,D(k) = Pr[guess f ← F |f ← F]− Pr[guess f ← F |f ← R]

= Pr[b′ = b|f ← F]− Pr[b′ = b|f ← R]

= 1
2(1 + Adv

lor-llsf-cpa

CTREC [F],A
(k))− 1

2(1 + Adv
lor-llsf-cpa

CTREC [R],A
(k))

= 1
2(Adv

lor-llsf-cpa

CTREC [F],A
(k)−Adv

lor-llsf-cpa

CTREC [R],A
(k)).

The result then follows after rearranging the above expression and accounting for the number of
queries made to f in D’s simulation. �

Proof of Lemma 4: First we argue that the L oracle provides the adversary with no new
information. We remove the abstraction of the length revealing oracle, and consider what operation
the oracle is performing. The length oracle acts as a partial decryption oracle for the first block.

The function f is queried with the current counter value ctrl. The output of f(ctrl) is then xored
with a ciphertext block to obtain the plaintext block from which the length field can be read.

We must consider three different situations: when an adversary makes an in-sync query, a
current state out-of-sync query or a future state out-of-sync query. Recall that we only allow an
adversary to make one out-of-sync query.

First consider the situation that an adversary A queries L with an in-sync query, i.e. the first
block output by the encryption oracle for the same sequence number. The adversary already knows
the output since it knows the length of the encoded messages sent to the encryption oracle. The
adversary therefore gains no new information from this type of query.

Next consider the situation that an adversaryA queries L with a current state out-of-sync query,
i.e. before being queried, L and the encryption oracle have the same counter value ctrl = ctre but
the input to L is different to the first block of output from the encryption oracle. Let (m0, m1) be
A’s encryption oracle query with corresponding ciphertext output cb = E-CTREC

K (mb). Let c be
A’s length oracle query, such that c 6= cb[1]. The length oracle must first decrypt c to obtain the
plaintext block m = c ⊕ f(ctrl) from which the length field can be obtained and checked. Based
on the response from the length oracle the adversary can determine partial knowledge of m. If
the length field LF is returned the adversary then knows the first 4 bytes of m. Otherwise if ⊥L

was returned the adversary may still be able to determine some information about the length field
based on the specific length checks performed. We know that c = m⊕ f(ctrl), and this allows the
adversary to deduce information about the first 4 bytes of f(ctrl). Due to f being a truly random
function this partial knowledge of f(ctrl) does not allow the adversary to determine any further
bits of f(ctrl), nor any information about f(ctr′) for any value ctr′ 6= ctrl. Thus the adversary
gains no information about the encrypted message other than what can be deduced from its partial
knowledge of f(ctrl). But it is clear from the decryption equation enc(mb)[1] = cb[1]⊕ f(ctrl) that
the information that the adversary obtains concerning the encrypted message will be confined to
the first four bytes of enc(mb). Since the first four bytes of enc(mb) contains the packet length field
and this is identical for both m0 and m1 and is already known to the adversary (since it can be
determined based on the lengths of the query (m0, m1)), the adversary gains no new information
from this type of query.

Finally consider the situation that an adversary A queries L with a future state out-of-sync
query, i.e. the L oracle has a more advanced counter value than the encryption oracle. Let the
value of the counter held at the L oracle at the start of the L query be ctrl. The adversary makes
a query c to L. Since an adversary is only allowed one out-of-sync query this implies that the next
encryption oracle query must start with the same counter value ctrl = ctre. Again, the adversary
gains partial information about m = c ⊕ f(ctrl) (information about the length field, i.e. the first
four bytes of m), he can again use this to determine partial information about f(ctrl). Due to f
being a truly random function this partial knowledge of f(ctrl) does not allow the adversary to
determine any further bits of f(ctrl), nor any information about f(ctr′) for any value ctr′ 6= ctrl.
Next the adversary makes the encryption query (m0, m1) with corresponding ciphertext output
cb. Since this encryption query will commence with the same counter value as in the length oracle
query c, the adversary can again use his partial knowledge of f(ctrl) and knowledge of cb[1], to
determine partial information about enc(mb)[1] = cb[1]⊕ f(ctrl). The partial information that the
adversary obtains is again confined to the first four bytes of enc(mb). Since the first four bytes of
enc(mb) contains the packet length field and this is identical for both m0 and m1 and is already
known to the adversary (since it can be determined based on the lengths of the query (m0, m1)),
the adversary gains no new information from this type of query.

We must also consider the extreme case where the maximum number of bits have been queried
to the encryption oracle. We restrict µe ≤ 8L2l − 8qe(8 + L). This ensures that the counter ctre

cannot wrap around, taking into account the possibility that each query may be expanded by up
to 8 + L bytes due to encoding. Assume that the maximum number of bits have been queried to

the encryption oracle and that all corresponding in-sync length oracle queries have been made.
This implies that the next length oracle query will be a future state out-of-sync query. We now
have two scenarios which we must consider: firstly that all possible counters have been queried and
secondly that not all possible counters have been queried due to smaller expansion from encoding.
In the first case the next length oracle query will be handled using a value ctrl that has wrapped
around and is therefore equal to the counter value that was used at the start of the first encryption
oracle query. By a similar argument to that above, the adversary will gain only part of f(ctrl) and
has prior knowledge of any other data obtained due to observing the length of the corresponding
encrypted messages. In the second case the next length oracle query will operate using a counter
value ctrl that was never and will never be queried to the encryption oracle. Again the adversary
will only be able to deduce 4 bytes of f(ctrl) and since there are no related ciphertexts there is no
further plaintext that can be deduced. The adversary therefore gains no new information in either
scenario.

By the argument above we know that adversary A gains no information from his access to the
L oracle. Therefore the probability that an adversary wins the LOR-LLSF-CPA game is equal to
the probability that an adversary wins the LOR-CPA game. It is then easy to see that the following
equation holds:

Adv
lor-llsf-cpa

CTREC [R]
= Adv

lor-cpa
CTR[R].

It therefore remains to prove that:
Adv

lor-cpa
CTR[R] = 0.

The rest of the proof then proceeds as in the proof of Lemma 12 in [4], noting that our notation
is slightly different from that in [4] because our functions are assumed to have L-byte outputs. �

Proof of Lemma 5: We wish to show that if MA is not secure, then T , the tagging algorithm
from MA, is not a good prf family. Assume that A attacks MA in the LOR-DCPA sense with
advantage greater than Adv

lor-dcpa
MA

. We build a distinguisher D using A with advantage better

than Adv
prf
T

, contradicting the assumed security of T as a prf family.
D runs A and sees whether A breaks the scheme. If so it guesses that the tagging function was

drawn from the prf family T , otherwise it guesses that it was drawn from the set of all random
functions with the same input and output size as T . D simulates A’s tagging oracle queries by
making queries to its oracle.

The rest of this proof is easy to construct and we omit the details. �

