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Abstract. This paper describes a method for constructing Barreto-
Naehrig curves that are pairing-friendly and have the embedding de-
gree 12 having fixed coefficients, by using just primality tests without
the complex multiplication method. Moreover, this paper discusses their
twists. Specifically, this paper explains that the number of points on el-
liptic curves y2 = x3± 16 and y2 = x3± 2 over Fp(z) is given by one of 6
polynomials in z, n0(z), · · · , n5(z), classified by the value of z mod 12 for
a prime p(z) = 36z4 +36z3 +24z2 +6z+1 with z an integer. The polyno-
mial n5(z) represents the number of points on BN curves. For example,
elliptic curve y2 = x3 + 2 over Fp(z) always becomes a BN curve for any
integer z with z ≡ 2, 11 (mod 12). Then, to construct a pairing-friendly
elliptic curve, it is enough to find an integer z of appropriate size such
that p(z) and n5(z) are primes.

Keywords: Pairing-friendly elliptic curve, Barreto-Naehrig curve, twist,
Gauss’ theorem, Euler’s conjecture.

1 Introduction

Pairings that are bilinear mappings have achieved many cryptographic protocols
called pairing-based cryptosystems (PBCs) such as ID based key agreement [26],
ID based encryption [6], ID based signature [16], ring signature [31], certificate-
less public key encryption [1], keyword search encryption [5], efficient broadcast
encryption [8], and aggregate signature [7]. Pairings are generally defined on
(hyper-)elliptic curves, and elliptic curves suitable for pairing are called pairing-
friendly elliptic curves. Thus, constructing pairing-friendly curves is one of the
most important issues in PBCs. Let E be an elliptic curve defined over a finite
field Fq, and let r be a prime factor of #E(Fq). Then, the conditions in which E
is pairing-friendly are when 1) r is a large enough prime, 2) the smallest positive
integer k satisfying r | (qk − 1) satisfies 2 ≤ k ≤ 24, and 3) ρ = log q/ log r is
closed to 1. Such k’s are called the embedding degree of E with respect to r.

For pairing-friendly supersingular elliptic curves, the maximal embedding
degree becomes 4, 6, 2 if characteristics of Fq are 2, 3, p ≥ 5, respectively [23].
Then one has to construct an ordinary (non-supersingular) elliptic curve if one
needs an elliptic curve that has the embedding degree > 6.
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Pairing-friendly ordinary elliptic curves over prime field Fp were first con-
structed by Miyaji, Nakabayashi, and Tanaka [24], and elliptic curves constructed
by this method are called MNT curves. Since then, some other methods for
constructing pairing-friendly ordinary elliptic curves have been developed by
some researchers (refer to Sec. 3.2). When one constructs a pairing-friendly el-
liptic curve using these methods, one also uses the complex multiplication (CM)
method, which can be computationally expensive. However, in several excep-
tional cases, including the BN method [4], the CM method just takes several
scalar multiplications on E(Fp) to check its order.

The purpose of this paper is to omit even any scalar multiplication to con-
struct a BN curve. Specifically, this paper gives BN curves and twists of them
with fixed coefficients. This paper shows that the order of elliptic curves y2 =
x3 ± 2 and y2 = x3 ± 16 over Fp(z), which are BN curves or twists of BN curves
because all have j-invariant 0, is given by one of 6 polynomials in z classified by
z mod 12, where p(z) is a prime represented as p(z) = 36z4+36z3+24z2+6z+1
with an integer z. For example, #E(Fp(z)) with E : y2 = x3 + 2 is given by
n(z) = 36z4 + 36z3 + 18z2 + 6z + 1 for any prime p(z) with z ≡ 2, 11 (mod 12),
that is, such E is a BN curve. Therefore, to construct a BN curve, it is enough
to find an integer z with z ≡ 2, 11 (mod 12) of appropriate size such that p(z)
and n(z) are primes without using the CM method. Moreover, this curve has an
obvious point (−1, 1), so one does not need to find a point for a base point for
PBCs.

2 Elliptic Curves and Pairings

This section outlines properties of elliptic curve, twist, pairing, and pairing-
friendly conditions.

2.1 Elliptic Curves

Let p ≥ 5 be a prime, and q a power of p. For an elliptic curve over the finite
field Fq

E : y2 = x3 + ax + b, a3 + 27b2 6= 0, (1)

the set of Fq-rational points on E, E(Fq), is defined as

E(Fq)={(x, y)∈Fq × Fq : y2 =x3+ax+b} ∪ {O},

where O = [0, 1, 0] in the projective coordinate is the point at infinity1. E(Fq)
is known to form an additive group with O as zero. An integer t defined as
t = q + 1 − #E(Fq) is called the trace of E(Fq). Let r be the largest prime
factor of #E(Fq). Then, the smallest integer k ≥ 1 satisfying r | (qk − 1) is
1 This paper has to use the projective coordinate to show the proposed theorem in

Sec. 5. For two projective points [X0, Y0, Z0] and [X1, Y1, Z1], [X0, Y0, Z0] is equal to
[X1, Y1, Z1] if X1 = rX0, Y1 = rY0, Z1 = rZ0 (r 6= 0) are satisfied.
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called the embedding degree of E with respect to r. The discriminant of E
is defined as ∆(E) = −16(4a3 + 27b2), and the j-invariant of E is defined as
j(E) = −483a3/∆(E). Given any j0 ∈ F ∗q one can construct an elliptic curve
with j-invariant j0 [27, III.1.4]. For finite fields Fq of characteristic ≥ 5, it follows
that

j(E) = 0 ⇔ E : y2 = x3 + b, b ∈ F ∗q (2)

by the definition of the j-invariant.

2.2 Twists

For two elliptic curves E and E′ over Fq, E′ is called a twist of E over Fq of
degree d if there exists an isomorphism ψd : E′ → E over Fqd and d is minimal2.
If there is the mapping ψd, d is equal to 1, 2, 3, 4, or 6 [27, X.5.4]. It is known
that

E′ is a twist of E of any degree ⇔ j(E′) = j(E). (3)

If E′ is a twist of degree 1, then #E(Fq) = #E′(Fq). However, if E′ is a twist
of E of degree d > 1, then #E(Fq) 6= #E′(Fq). #E′(Fq) is represented as Table
1 [17], where t is the trace of E.

Table 1. The order of #E′(Fq) of twists of E

degree #E′(Fq) equations f satisfies

d = 2 q + 1 + t

d = 3 q + 1− (3f − t)/2 t2 − 4q = −3f2

q + 1− (−3f − t)/2 t2 − 4q = −3f2

d = 4 q + 1 + f t2 − 4q = −f2

q + 1− f t2 − 4q = −f2

d = 6 q + 1− (−3f + t)/2 t2 − 4q = −3f2

q + 1− (3f + t)/2 t2 − 4q = −3f2

Let E be an elliptic curve of Fq, let t be the trace of E, and let E′ be a twist
of E of degree 2. Then, due to Table 1, #E′(Fq) = q + 1 + t = 2q + 2−#E(Fq).
Therefore, one has the following lemma.

Lemma 1.
Let E be an elliptic curve over Fq.
(a) If E′ is a twist of E of degree 1 then #E′(Fq) = #E(Fq).
(b) If E′ is a twist of E of degree 2 then #E′(Fq) = 2q + 2−#E(Fq).

Remark 1.
Let q be a prime power with q ≡ 1 (mod 6). Consider two elliptic curves E :
y2 = x3 + b and E′ : y2 = x3 + b/δ over Fq. Thus, there is a mapping ψ : E′ →
E, (x, y) 7→ ( 3

√
δ,
√

δy).
2 E′ is often not called the twist of E if d = 1. However, in this paper E′ with d = 1

is also called the twist.



4 M. Shirase

If δ is square and cube in Fq, then 3
√

δ,
√

δ ∈ Fq, and thus ψ is an isomorphism
over Fq. Therefore, E′ is a twist of E of degree 1 and one sees #E′(Fq) =
#E(Fq).

If δ is non-square and cube in Fq, then 3
√

δ ∈ Fq,
√

δ ∈ Fq2 \ Fq, and thus ψ
is an isomorphism over Fq2 . Therefore, E′ is a twist of E of degree 2, and one
sees #E′(Fq) = 2q + 2−#E(Fq) due to Lemma 1.

Let Eb be denoted by the elliptic curve Eb : y2 = x3 + b for any b.

Remark 2.
Elliptic curve Eb′ is a twist of another elliptic curve Eb for any non-zero b and
b′ due to Eqs. (2) and (3).

2.3 Pairing

Let r a prime, let G1 and G2 be additive groups of order r, and let G3 be
a multiplicative group of order r. Then, a mapping e : G1 × G2 → G3 is a
bilinear pairing if it satisfies the following properties: bilinearity (i.e. e(aP, bQ) =
e(P, Q)ab is satisfied for any P ∈ G1, Q ∈ G2 and any integers a and b), and
non-degeneracy (i.e. there are P and Q such that e(P, Q) 6= 1).

The Ate pairing [17] this paper targets is a pairing defined on ordinary elliptic
curves that is suitable for fast implementation. Moreover, improved variants
of Ate pairing have been developed, such as optimized Ate pairing [22], R-ate
pairing [19], and Xate pairing [25].

When an ordinary elliptic curve E over Fp defining Ate pairing has the
embedding degree 12, and E has a twist E′ of degree 6 with the mapping
ψ6 : E′ → E over Fp2 (not over Fp) (An instance of such a curve E is a BN curve
[4] described in Sec. 3.3), Ate pairing E(Fp)[r]×E′(Fp2)[r] → F ∗p12 is defined as

e(P, Q) = ft,Q′(P )(q
k−1)/r ∈ F ∗p12 , where Q′ = ψ(Q) and ft,Q′ is a function the

devisor of which satisfies (ft,Q′) = t(Q′)− (tQ′)− (t− 1)(O).

2.4 Pairing-Friendly Elliptic Curve

Elliptic curves suitable for constructing pairing are called pairing-friendly elliptic
curves. Let E be an elliptic curve over Fq, and let r be the largest prime factor
of #E(Fq). Then, the conditions in which E is pairing-friendly are as follows
[14].

Condition 1 (Pairing-friendly conditions).
(c1) The prime r is large enough. (#E(Fq) = r is best.)
(c2) The embedding degree k is proper. (That k satisfies 2 ≤ k ≤ 24 is best.)
(c3) A value ρ = log q/ log r is closed to 1. (ρ = 1 is best.)

3 Current Methods for Constructing Elliptic Curves

This section briefly outlines the CM method that constructs an elliptic curve
that has a desirable order and current methods for constructing pairing-friendly
elliptic curves.
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3.1 CM Method

The CM method [2] is an algorithm for constructing an elliptic curve E over Fp

that has a desirable order n from the prime p, the trace t = p + 1 − n, and a
square-free integer D satisfying

DV 2 = 4p− t2. (4)

The CM method consists of three steps: (a) computing the j-invariant, (b) de-
ciding coefficients, and (c) checking the order.

Computing the j-invariant step computes j0 from input (p, t,D) such that
j0 becomes the j-invariant of an elliptic curve that has an order n over Fp. In
deciding coefficients step, coefficients of an elliptic curve that has the j-invariant
equal to j0 are generated due to a method of [27, III.1.4], say E. As described
in Sec. 2.2, although E is always a twist of the elliptic curve the order of which
is n, the order of E is not always equal to that of the curve. Thus, one needs
to check the order. When doing this, a point (O 6=)G ∈ E(Fp) is picked up, and
nG is computed. If nG is equal to O, that means E has order n, then the CM
method returns E. If not, E has a different order from n and one has to return
to step (b).

Step (a) is the main part of CM method and costs much more than parts
(b) and (c). It is known that the CM method returns j-invariant 0 when D = 3.
Therefore, if the case of D = 3 is considered, as is the case for BN curves, then
the main part (a) of the CM method is skipped3.

3.2 Current Methods for Constructing Pairing-Friendly Elliptic
Curves

Miyaji, Nakabayashi, and Tanaka first researched constructing pairing-friendly
ordinary elliptic curves and they dealt with the case of the embedding degree
k = 3, 4, 6 [24]. Curves constructed by their method are called MNT curves.
Since then, methods for constructing pairing-friendly ordinary elliptic curves
have been developed by some researchers, for example, Cocks and Pinch [10],
Barreto et al. [3], Brezing and Weng [9], Dupont et al. [12], Galbraith et al.
[15], Barreto and Naehrig [4], Freeman [13], Freeman et al. [14], and Tanaka and
Nakamula [29, 30].

These methods usually discussed how to find a prime p, a trace t, and a
square-free integer D satisfying Eq. (4) and Condition 1 in Sec. 2.4. After one
finds such p, t, and D, then one usually uses the CM method, which can be
computationally expensive, to construct a pairing-friendly elliptic curve (refer
to Sec. 3.1). In several cases, such as Barreto and Naehrig’s work [4], one does
not need the main step (a) of the CM method described in Sec. 3.1.

3 Also, computing j-invariant step can be skipped in the case of D = 1.
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3.3 BN Curves

Barreto and Naehrig developed a method for constructing pairing-friendly ellip-
tic curves with k = 12 and ρ ≈ 1 [4]. Such curves are most suitable for 128-bit
security, which is expected to become standard security in the near future [21],
corresponding to 3,072-bit RSA and 256-bit elliptic curve cryptosystems (ECCs).

Let t(Z), n(Z), and p(Z) be the following polynomials in Z,

t(Z) = 6Z2 + 1,
n(Z) = 36Z4 + 36Z3 + 18Z2 + 6Z + 1,
p(Z) = n(Z) + t(Z)− 1

= 36Z4 + 36Z3 + 24Z2 + 6Z + 1.





(5)

Then, p(Z) and t(Z) satisfy

4p(Z)− t(Z)2 = 3 · (6Z2 + 4Z + 1)2. (6)

Therefore, one selects an integer z so that both p(z) and n(z) become primes,
and one has D = 3 at Eq. (4). Then, the CM method returns the j-invariant 0
from inputs p(z), t(z), and D = 3 described in Sec. 3.1, and thus one does not
need the main step (a) of the CM method. Therefore, the BN method is one of
the most efficient methods for constructing pairing-friendly elliptic curves. To
construct a pairing-friendly elliptic curve with the embedding degree 12 using
BN method, first find an integer z of appropriate size so that p(z) and n(z)
are primes using primality tests. Next, choose b( 6= 0) at random. Then, for the
elliptic curve Eb : y2 = x3 + b over Fp(z), the order #E(Fq) is equal to n(z) with
a probability of 1/6. Then, one carries out steps (b) and (c) of the CM method
to check the order described at Sec. 3.1.

It was observed by Devegili et al. [11] that, in practice, when p satisfies
some equivalence conditions then E3 is the BN curve. Performing the scalar
multiplication step in this case is not necessary.

In this paper, primes given by p(z) for some integer z are called BN primes.
We show that the number of points on E±2 and E±16 over BN prime fields are
given by one of six polynomials in z. Whenever z satisfies particular congruence
conditions, the number of points is n(z) and these elliptic curves are BN curves.

4 Mathematic Preliminaries

This section introduces a theorem that explains the number of points on a curve
u3 +v3 +1 = 0 and theorems about quadratic and cubic residues, to which Sec. 5
refers.

Theorem 1 (Gauss’ Theorem).
Let p be a prime with p ≡ 1 (mod 3), and let Mp be the number of projective
points on the curve over Fp, C : u3 + v3 + 1 = 0. Then, there are integers A and
B so that

4p = A2 + 27B2. (7)
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A and B are unique up to changing their signs, and if we fix the sign of A so
that A ≡ 1 (mod 3), then Mp = p + 1 + A.

Proof) Refer to Silverman and Tate [28]. ¤
Next, a famous theorem about quadratic residue is explained.

Theorem 2.
Let p be an odd prime, and let ( ) be the Legendre symbol.

(a)
(−1

p

)
=

{
1 if p ≡ 1 (mod 4),
−1 if p ≡ 3 (mod 4).

(b)
(

2
p

)
=

{
1 if p ≡ ±1 (mod 8),
−1 if p ≡ ±3 (mod 8).

(c)
(

ab

p

)
=

(
a

p

)(
b

p

)
.

(d) Let p′ be a prime different from p. Then,

(
p′

p

)
=





−
(

p

p′

)
if p ≡ p′ ≡ 3 (mod 4),

(
p

p′

)
Otherwise.

Proof) Refer to Koblitz [18]. ¤
Last, the remainder of this section explains cubic residue and introduces

Euler’s conjecture4 on cubic residue.
Let p be a prime with p ≡ 1 (mod 3). Then, a primitive cubic root w ∈ F ∗p

exists. Let g be a generator of F ∗p . Then, any element f ∈ F ∗p can be represented
as f = gl for an integer 0 ≤ l ≤ p− 2. Let a symbol

( )
3

be defined as
(

f

p

)

3

= wl.

The element f is called a cubic residue module p if
(

e
p

)
3

= 1, and otherwise f

is called a cubic non-residue modulo p.

Theorem 3 (Euler’s Conjecture).
(a) Any prime p with p ≡ 1 (mod 3) can be represented as p = a3 + 3b2 for
some integers a and b. Let m = a + b and n = a − b. Then, 4p is written as
4p = (m + n)2 + 3(m− n) = (2m− n)2 + 3n2 = (2n−m)2 + 3m2, and exactly
one of m, n and m− n is a multiple of 3.
(b) For p = a2 + 3b2 the following is true.

(
2
p

)

3

= 1 ⇔ 3 | b. (8)

4 Although Euler’s conjecture is traditionally called “conjecture”, it has already been
proven.
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(
3
p

)

3

= 1 ⇔ 9 | b, or 9 | (a + b), or 9 | (a− b). (9)

(
6
p

)

3

= 1 ⇔ 9 | b, or 9 | (a + 2b), or 9 | (a− 2b). (10)

Proof) Refer to Lemmermeyer [20]. ¤

Remark 3.
Theorem 1 ensures that the representation 4p = A2 + 27B2 exists for any prime
p with p ≡ 1 (mod 3). However, it does not explain how to find such A and B.
Theorem 3 ensures that the representation p = a2 + 3b2 exists for any prime p
with p ≡ 1 (mod 3). However, it does not explain how to find such a and b.

5 Proposed Method

This section explains a method for constructing BN curves and twists of BN
curves using just primality tests without the CM method. To accomplish this,
Theorem 4 at Sec. 5.2, which describes the number of points on elliptic curves
E±2 : y2 = x3 ± 2 and E±16 : y2 = x3 ± 16 over Fp(z) for any BN prime p(z),
has to be proven.

5.1 Quadratic and Cubic Residues Module BN Primes

To determine BN curves and twists thereof it is necessary to have some knowledge
of quadratic and cubic residues modulo BN primes. Note that BN primes p(z) =
36z4 + 36z3 + 24z + 6z + 1 can be represented as

p(z) = (6z2 + 3z + 1)2 + 3z2. (11)

This representation is very important. One can set a = 6z2 + 3z + 1, b = z at
Theorem 3-(b), and this fact derives the following lemma required for the proof
of Theorem 4.

Lemma 2 (Quadratic and cubic residues modulo BN primes).
For BN primes p(z) = 36z4 + 36z3 + 24z + 6z + 1 the followings are true.

(a)
( −1

p(z)

)
=

{
1 if z is even,
−1 if z is odd.

(b)
(

2
p(z)

)
=

{
1 if z ≡ 0, 1 (mod 4),
−1 if z ≡ 2, 3 (mod 4).

(c)
(

3
p(z)

)
=

{
1 if z is even,
−1 if z is odd.

(d)
( −3

p(z)

)
= 1 for all BN primes p(z).
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(e)
( −1

p(z)

)

3

= 1 for all BN primes p(z).

(f)
(

2
p(z)

)

3

{
= 1 if z ≡ 0 (mod 3),
6= 1 if z ≡ 1, 2 (mod 3).

(g)
(

3
p(z)

)

3

{
= 1 if z ≡ 0, 1, 5 (mod 9),
6= 1 if z ≡ 2, 3, 4, 6, 7, 8 (mod 9).

(h)
(

6
p(z)

)

3

{
= 1 if z ≡ 0, 2, 4 (mod 9),
6= 1 if z ≡ 1, 3, 5, 6, 7, 8 (mod 9).

(Proof) Refer to Appendix A.1. ¤
Remark 4.
Due to Lemma 2, one sees that the quadratic and cubic residue status of some
integers modulo BN primes p(z) can be characterized by z.

5.2 Orders of E±16 and E±2

This section proves the following theorem describing orders #E±16(Fp(z)) and
#E±2(Fp(z)) over Fp(z), where p(z) = 36z4 + 36z3 + 24z2 + 6z + 1 is each BN
prime.

Theorem 4. (Proposed Theorem)
Let p(z) = 36z4 +36z3 +24z2 +6z+1 be a BN prime, and let polynomials n0(z),
n1(z), n2(z), n3(z), n4(z), and n5(z) be defined as follows.

n0(z) = 12z2(3z2 + 3z + 1), n1(z) = 36z4 + 36z3 + 18z2 + 1,

n2(z) = 3(12z4 + 12z3 + 10z2 + 2z + 1), n3(z) = 4(9z4 + 9z3 + 9z2 + 3z + 1),
n4(z) = 3(12z4 + 12z3 + 10z2 + 4z + 1), n5(z) = 36z4 + 36z3 + 18z2 + 6z + 1.

Then, the numbers of points on E±16 and E±2 are given by:

(a) #E16(Fp(z)) =





n0(z) if z ≡ 0 (mod 3),
n4(z) if z ≡ 1 (mod 3),
n2(z) if z ≡ 2 (mod 3).

(b) #E−16(Fp(z)) =





n0(z) if z ≡ 0 (mod 6),
n1(z) if z ≡ 1 (mod 6),
n2(z) if z ≡ 2 (mod 6),
n3(z) if z ≡ 3 (mod 6),
n4(z) if z ≡ 4 (mod 6),
n5(z) if z ≡ 5 (mod 6).

(c) #E2(Fp(z)) =





n0(z) if z ≡ 0, 9 (mod 12),
n1(z) if z ≡ 7, 10 (mod 12),
n2(z) if z ≡ 5, 8 (mod 12),
n3(z) if z ≡ 3, 6 (mod 12),
n4(z) if z ≡ 1, 4 (mod 12),
n5(z) if z ≡ 2, 11 (mod 12).
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(d) #E−2(Fp(z)) =





n0(z) if z ≡ 0, 3 (mod 12),
n1(z) if z ≡ 1, 10 (mod 12),
n2(z) if z ≡ 8, 11 (mod 12),
n3(z) if z ≡ 6, 9 (mod 12),
n4(z) if z ≡ 4, 7 (mod 12),
n5(z) if z ≡ 2, 5 (mod 12).

Proof) The proof is done at Sec. 5.3. ¤

Remark 5. [Relationship between Theorem 4 and BN curve]
Curves in Theorem 4 that have order n5(z) are BN curves because n5(z) is equal
to n(z) at Eq. (5), then they are pairing-friendly. Other curves in Theorem 4
are twists of BN curves the embedding degree of which is not equal to 12, then
they are not pairing-friendly. However, note that curves in Theorem 4 that have
order n1(z) that is irreducible may be used for ECCs because ECCs do not care
about the embedding degree.

Remark 6 (Obvious point).
Elliptic curves E16 and E±2 over Fp(z) have obvious points (0, 4) ∈ E16(Fp(z)),
(−1, 1) ∈ E2(Fp(z)), and (3, 5) ∈ E−2(Fp(z)), respectively. Therefore, when one
uses these curves to construct a PBC or an ECC, one does not need to find a
base point.

Remark 7 (Elliptic curves suitable for PBCs or ECCs).
Due to Theorem 4 and Remarks 5 and 6, E2 over Fp(z) with z ≡ 2, 11 (mod 12)
and E−2 over Fp(z) with z ≡ 2, 5 (mod 12) are suitable for PBCs if p(z) and
n5(z) are primes. Of course they are also suitable for ECCs. In addition, elliptic
curves E2 over Fp(z) with z ≡ 7, 10 (mod 12) and E−2 over Fp(z) with z ≡ 1, 10
(mod 12) are suitable for ECCs if p(z) and n1(z) are primes.

5.3 Proof of Theorem 4

The outline of the proof of Theorem 4 is as follows: First, polynomials which
generate A and B satisfying Eq. (7) of Theorem 1 are constructed by using
Theorem 3. Then, one can explicitly see the number of points on the curve
C : u3 + v3 + 1 = 0 due to Theorem 1. Next, #C(Fp(z)) = #E−432(Fp(z)) is
shown. Last, considering twists of E−432 derives Theorem 4.

Lemma 3.
Let p(z) = 36z4 + 36z3 + 24z2 + 6z + 1 be a BN prime, and let C be a curve
defined as C : x3 + y3 +1 = 0 as well as Theorem 1. Then, the following is true.
(a) #C(Fp) is given by:

#C(Fp) =





12z2(3z2 + 3z + 1) (= n0(z)) if z ≡ 0 (mod 3),
3(12z4 + 12z3 + 10z2 + 4z + 1) (= n4(z)) if z ≡ 1 (mod 3),
3(12z4 + 12z3 + 10z2 + 2z + 1) (= n2(z)) if z ≡ 2 (mod 3),
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where n0(z), n2(z), and n4(z) are of Theorem 4.
(b) C(Fp(z)) has 3 points at infinity.
(c) #C(Fp(z)) = #E−432(Fp(z)), that is,

#E−432(Fp) =





12z2(3z2 + 3z + 1) (= n0(z)) if z ≡ 0 (mod 3),
3(12z4 + 12z3 + 10z2 + 4z + 1) (= n4(z)) if z ≡ 1 (mod 3),
3(12z4 + 12z3 + 10z2 + 2z + 1) (= n2(z)) if z ≡ 2 (mod 3),

Proof) Refer to Appendix A.2. ¤

Lemma 4.
Let p(z) be a BN prime, let E and E′ be elliptic curves over Fp(z), and let
n0(z), · · · , n5(z) be of Theorem 4. Then, the followings are true.
(a) If E′ is a twist of E degree 1 then

#E′(Fp(z)) = #E(Fp(z)).

(b) If E′ is a twist of E degree 2 then #E′(Fp(z)) is given by

#E′(Fp(z)) =





n3(z) if #E(Fp(z)) = n0(z),
n5(z) if #E(Fp(z)) = n2(z),
n1(z) if #E(Fp(z)) = n4(z).

Proof) Refer to Appendix A.3. ¤

Now, this paper will complete proving Theorem 4.
Proof of Theorem 4-(a):
Note that the statement of Theorem 4-(a) is same as #E16(Fp(z)) = #E−432(Fp(z))
due to Lemma 3-(c). Therefore, it is enough to show #E16(Fp(z)) = #E−432(Fp(z)).
Due to Lemma 2-(d), −3 is a quadratic residue modulo any BN prime p(z). Thus,
−27 = (−3)3 is a quadratic and cubic residue modulo p(z). Due to Remark 1,
E16 : y2 = x3 − 432/(−27) is a twist of E−432 : x3 = y2 − 432 of degree 1, which
means #E16(Fp(z)) = #E−432(Fp(z)) due to Lemma 4-(a).
Proof of Theorem 4-(b):
First, consider the case where z is even. Due to Lemma 2-(a) and (e), −1 is
a quadratic and cubic residue modulo p(z). Due to Remark 1, E−16 : y2 =
x3 + 16/(−1) is a twist of E16 : y2 = x3 + 16 of degree 1. Therefore, one sees
#E−16(Fp(z)) = #E16(Fp(z)) due to Lemma 4-(a). Therefore, due to Theorem
4-(a), one sees

#E−16(Fp(z)) =




n0(z) if z ≡ 0 (mod 3) and z ≡ 0 (mod 2) (i.e. z ≡ 0 (mod 6)),
n4(z) if z ≡ 1 (mod 3) and z ≡ 0 (mod 2) (i.e. z ≡ 4 (mod 6)),
n2(z) if z ≡ 2 (mod 3) and z ≡ 0 (mod 2) (i.e. z ≡ 2 (mod 6)).

Next, consider the case where z is odd. Due to Lemma 2-(a) and (e), −1
is a quadratic non-residue and cubic residue modulo p(z). Due to Remark 1,



12 M. Shirase

E−16 : y2 = x3 + 16/(−1) is a twist of E16 : y2 = x3 + 16 of degree 2. Therefore,
due to Theorem 4-(a) and Lemma 4-(b), one sees

#E−16(Fp(z)) =




n3(z) if z ≡ 0 (mod 3) and z ≡ 1 (mod 2) (i.e. z ≡ 3 (mod 6)),
n5(z) if z ≡ 1 (mod 3) and z ≡ 1 (mod 2) (i.e. z ≡ 5 (mod 6)),
n1(z) if z ≡ 2 (mod 3) and z ≡ 1 (mod 2) (i.e. z ≡ 1 (mod 6)).

Proof of Theorem 4-(c) and (d):
For the proof, one divides set of z’s into 2 cases, z ≡ 0, 1 (mod 4) and z ≡ 2, 3
(mod 4).
Case 1: z ≡ 0, 1 (mod 4)
In this case 2 is a quadratic residue modulo p(z), and thus 23 is a quadratic
and cubic residue modulo p(z). Due to Remark 1, E2 and E−2 are twists of
E16 and E−16 of degree 1, respectively. Thus, due to Lemma 4-(a), one has
#E2(Fp(z)) = #E16(Fp(z)) and #E−2(Fp(z)) = #E−16(Fp(z)). Therefore, due to
Theorem 4-(a) and (b), one sees

#E2(Fp(z)) =




n0(z) if z ≡ 0 (mod 3) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 0, 9 (mod 12)),
n4(z) if z ≡ 1 (mod 3) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 1, 4 (mod 12)),
n2(z) if z ≡ 2 (mod 3) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 5, 8 (mod 12)),

#E−2(Fp(z)) =




n0(z) if z ≡ 0 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 0 (mod 12)),
n1(z) if z ≡ 1 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 1 (mod 12)),
n2(z) if z ≡ 2 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 8 (mod 12)),
n3(z) if z ≡ 3 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 9 (mod 12)),
n4(z) if z ≡ 4 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 4 (mod 12)),
n5(z) if z ≡ 5 (mod 6) and z ≡ 0, 1 (mod 4) (i.e. z ≡ 5 (mod 12)).

Case 2: z ≡ 2, 3 (mod 4)
In this case 2 is a quadratic non-residue modulo p(z) due to Lemma 2-(b), and
thus 23 is a quadratic non-residue and cubic residue modulo p(z). Due to Remark
1, E2 and E−2 are twists of E16 and E−16 of degree 2, respectively. Therefore,
due to Theorem 4-(a), (b) and Lemma 4-(b), one sees

#E2(Fp(z)) =




n3(z) if z ≡ 0 (mod 3) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 3, 6 (mod 12)),
n1(z) if z ≡ 1 (mod 3) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 7, 10 (mod 12)),
n5(z) if z ≡ 2 (mod 3) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 2, 11 (mod 12)),
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#E−2(Fp(z)) =




n3(z) if z ≡ 0 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 6 (mod 12)),
n4(z) if z ≡ 1 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 7 (mod 12)),
n5(z) if z ≡ 2 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 2 (mod 12)),
n0(z) if z ≡ 3 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 3 (mod 12)),
n1(z) if z ≡ 4 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 10 (mod 12)),
n2(z) if z ≡ 5 (mod 6) and z ≡ 2, 3 (mod 4) (i.e. z ≡ 11 (mod 12)).

The proof of Theorem 4 is completed. ¤

5.4 Method for Constructing BN Curves Using Theorem 4

As described in Remark 7, E2 over Fp(z) with z ≡ 2, 11 (mod 12) and E−2

over Fp(z) with z ≡ 2, 5 (mod 12) are BN curves with an obvious point. Now,
pick up E2 over Fp(z) with z ≡ 2, 11 (mod 12) as an example. To construct
a BN curve with an obvious point, one just finds an integer z such that p(z)
and n5(z) are primes. Then, one obtains a BN curve E2 over Fp(z), meaning
#E2(Fp(z)) = n5(z), the embedding degree 12, and has a point (−1, 1) due to
Theorem 4.

Example When z = 6332666225848387499 is selected at Theorem 4, both p(z)
and n5(z) become primes of 256-bit. Therefore, one sees E2 : y2 = x3 +2 is a BN
curve, that is, a pairing-friendly elliptic curve that has the embedding degree 12
with an obvious point (−1, 1).

5.5 Comparison of proposed and current methods

Consider how to construct a pairing-friendly elliptic curve with a point for a
base point of a PBC using the current and the proposed methods.

In current methods, first one find a prime p and the prime order n using
primality tests, and a square-free integer D of Eq. (4) satisfying Condition 1.
Next one uses the CM method, which consists of three steps: computing the j-
invariant that is main step, deciding coefficients, and checking the order, from p,
n and D to construct a desirable elliptic curves described in Sec. 3.1. When D = 1
or 3, computing the j-invariant step can be skipped. For example, Algorithm 1
of [4], which is the original paper BN curves whose D is 3, is one of the most
efficient current one for constructing pairing-friendly elliptic curves. It skips the
main step of the CM method and takes 6 scalar multiplications on average.

After this, one searches for a point on the elliptic curve for a base point of
PBC. If there is an obvious point, for example, (1, 2) ∈ E3 : y2 = x3 + 3, finding
a point can be skipped, but if not, one has to compute a square root in Fp to
find a point. Therefore, one needs at least primality tests and order checking
to construct a pairing-friendly elliptic curve. Note that checking the order takes
nonnegligible cost in terms of implementation and time.

On the other hand, the proposed method for constructing BN curve does not
need to perform scalar multiplication, use the CM method, nor find a point. One
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just needs primality tests, which are also needed to construct not only PBCs but
also major public key cryptosystems such as RSA and ECC, to find a prime and
an order.

6 Conclusion

This paper has explicitly provided the order of elliptic curves E±16 : y2 = x3±16
and E±2 : y2 = x3±2 over Fp(z), which are BN curves or twists of BN curves, by
one of 6 polynomials using Gauss’ theorem and Euler’s conjecture, where p(z)
is a BN prime represented as p(z) = 36z4 + 36z3 + 18z2 + 6z + 1. Especially, E2

over Fp(z) with z ≡ 2, 11 (mod 12) and E−2 over Fp(z) with z ≡ 2, 5 (mod 12)
are BN curves with an obvious point for a base point of PBC. Consequently, one
can construct pairing-friendly elliptic curves without using the CM method or
even checking the order.
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A Proofs of Lemmas

A.1 Proof of Lemma 2

(a): If z is even, p(z) satisfies p(z) ≡ 1 (mod 4). Then, one has
(
−1
p(z)

)
= 1 due

to Theorem 2-(a). If z is odd, p(z) satisfies p(z) ≡ 3 (mod 4). Then, one has(
−1
p(z)

)
= −1.

(b): Due to Theorem 2-(b), if z ≡ 0, 1, 2, 3 (mod 4), one has
(

2
p(z)

)
= 1, 1,−1,−1

since p(z) ≡ 1, 7, 5, 3 (mod 8), respectively.
(c): If z is even, p(z) ≡ 1 (mod 4) and p(z) ≡ 1 (mod 3) are satisfied. Then,
one has (

3
p(z)

)
=

(
p(z)
3

)
due to Theorem 2-(d)

=
(

1
3

)

= 1.

If z is odd, p(z) ≡ 3 (mod 4) and p(z) ≡ 1 (mod 3) are satisfied. Then, one has

(
3

p(z)

)
= −

(
p(z)
3

)
due to Theorem 2-(d)

= −
(

1
3

)

= −1.

(d): It is easy to see that (d) is satisfied due to (a), (c) and Theorem 2-(c).
(e): Since −1 = (−1)3, −1 is a cubic residue modulo any prime.
(f): Since any BN prime can be represented as p(z) = (6z2 + 3z + 1)2 + 3z2, one
can set a = 6z2 + 3z + 1, b = z at Theorem 3-(b). Then, one sees the following
is true due to Eq. (8) of Theorem 3-(b).

(
2

p(z)

)

3

= 1 ⇔ 3 | z due to Eq. (8)

⇔ z ≡ 0 (mod 3).

(g): When a = 6z2 + 3z + 1, b = z are set at Theorem 3-(b), one has a + b =
6z2 + 4z + 1, a− b = 6z2 + 2z + 1. Due to Eq. (9), it is seen that

(
3

p(z)

)

3

= 1 ⇔




9 | z, or
9 | (6z2 + 4z + 1), or
9 | (6z2 + 2z + 1),

⇔




z ≡ 0 (mod 9), or
z ≡ 5 (mod 9), or
z ≡ 1 (mod 9).
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(h): When a = 6z2 + 3z + 1, b = z are set at Theorem 3-(b), one has a + 2b =
6z2 + 5z + 1, a− 2b = 6z2 + z + 1. Due to Eq. (10), it is seen that

(
6

p(z)

)

3

= 1 ⇔




9 | z, or
9 | (6z2 + 5z + 1), or
9 | (6z3 + z + 1),

⇔




z ≡ 0 (mod 9), or
z ≡ 4 (mod 9), or
z ≡ 2 (mod 9).

¤

A.2 Proof of Lemma 3

(a): Any BN prime p(z) is represented as p(z) = (6z2 + 3z + 1)2 + 3z2, and thus
a = 6z2 + 3z + 1 and b = z can be set for a and b of Theorem 3. Let m = a + b
and n = a − b. Then, exactly one of m = 6z2 + 4z + 1, n = 6z2 + 2z + 1, and
m − n = 2z is a multiple of 3 due to Theorem 3. Consider three cases divided
by the value z mod 3.
Case 1: z ≡ 0 (mod 3)
In this case, m− n = 2z is a multiple of 3. Thus, one has

4p(z) = (m + n)2 + 3(m− n)2 = (12z2 + 6z + 2)2 + 27
(

2z

3

)2

.

Therefore, A of Theorem 1 is written as A = −12z2−6z−2. One sees #C(Fp(z)) =
p(z) + 1 + A = 12z2(3z2 + 3z + 1) due to Theorem 1.
Case 2: z ≡ 1 (mod 3)
In this case, n = 6z2 + 2z + 1 is a multiple of 3. Thus, one has

4p(z) = (2m− n)2 + 3n2 = (6z2 + 6z + 1)2 + 27
(

6z2 + 2z + 1
3

)2

.

Therefore, A of Theorem 1 is written as A = 6z2 +6z +1. One sees #C(Fp(z)) =
p(z) + 1 + A = 3(12z4 + 12z3 + 10z2 + 4z + 1) due to Theorem 1.
Case 3: z ≡ 2 (mod 3)
In this case, m = 6z2 + 4z + 1 is a multiple of 3, so one has

4p(z) = (m− 2n)2 + 3m2 = (6z2 + 1)2 + 27
(

6z2 + 4z + 1
3

)2

,

and A of Theorem 1 is A = 6z2 + 1. Then, one sees #C(Fp(z)) = p(z) + 1 + A =
3(12z4 + 12z3 + 10z2 + 2z + 1) due to Theorem 1.
(b): The curve C is represented as

U3 + V 3 + W 3 = 0
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in the projective coordinate. Projective points on C (over the algebraic closure
of Fp(z)) satisfying W = 0 are exactly [−1, 1, 0], [−1, ω, 0], and [−1, ω2, 0], where
w is the primitive cubic root of 1. These 3 points are those at infinity of C. Then,
whether they are included in C(Fp(z)) or not has to be checked.

The point [−1, 1, 0] is included in C(Fp(z)) since −1, 0, 1 ∈ Fp(z). All BN
primes p(z) satisfy p(z) ≡ 1 (mod 3), so one sees w ∈ Fp(z), which means
[−1, ω, 0], [−1, ω2, 0] ∈ C(Fp(z)). Therefore, [1,−1, 0], [1, ω, 0], [1, ω2, 0] ∈ C(Fp(z)),
that is, C(Fp(z)) has 3 points at infinity.
(c): For curves E−432 : y2 = x3 − 432 and C : u3 + v3 + 1 = 0, let a mapping
ζ : E−432(Fp(z)) → C(Fp(z)) be defined as

(x, y) →
(−36 + y

6x
,
−36− y

6x

)
.

Moreover, let another mapping ξ : C(Fp(z)) → E−432(Fp(z)) be defined as

(u, v) →
( −12

u + v
,
−36(u− v)

u + v

)
.

Note that dividing by 6 in Fp(z) is possible because each BN prime p(z) ≥ 5 for
any integer z. These mappings are inexact because ζ is not defined for the point
at infinity and points the x coordinate of which are 0, and ξ is not defined for
points at infinity and points satisfying u + v = 0. Defining sets as

EO
−432 = {Set of the point at infinity in E−432(Fp(z))},

Ex=0
−432 = {(x, y) ∈ E−432(Fp(z)) : x = 0},
CO = {Set of points at infinity in C(Fp(z))},

Cu+v=0 = {(u, v) ∈ C(Fp(z)) : u + v = 0},
mappings ζ and ξ are strictly defined as follows.

ζ : E−432(Fp(z))\(EO
−432 ∪ Ex=0

−432) → C(Fp(z))

(x, y) 7→
„−36 + y

6x
,
−36− y

6x

«

ξ : C(Fp(z))\(CO ∪ Cu+v=0) → E−432(Fp(z))

(u, v) 7→
„ −12

u + v
,
−36(u− v)

u + v

«

Thus, one sees ξ ◦ ζ(x, y) = (x, y) for any (x, y) ∈ E−432(Fp(z))\(EO
−432∪Ex=0

−432)
and ζ ◦ ξ(u, v) = (u, v) for any (u, v) ∈ C(Fp(z))\(CO ∪ Cu+v=0). Therefore, ζ
and ξ are inverse to each other, which means that they are one-to-one mappings,
and thus one sees

#
(
E−432(Fp(z))\(EO

−432 ∪ Ex=0
−432)

)
= #

(
C(Fp(z))\(CO ∪ Cu+v=0)

)
.

Therefore, to show #E−432(Fp(z)) = #C(Fp(z)), it is enough to show

#EO
−432 + #Ex=0

−432 = #CO + #Cu+v=0, (12)
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because #EO
−432 ∩ #Ex=0

−432 and #CO ∩ #Cu+v=0 are empty sets. Due to (b),
one soon sees #CO = 3 and #EO

−432 = 1.
Next, consider #Ex=0

−432. Substituting x = 0 for y2 = x3 − 432 that is
equation of E−432, one has y = ±√−432 = ±12

√−3. Due to Lemma 2-(d),
one sees

√−3 ∈ Fp(z), and thus ±12
√−3 ∈ Fp(z). Thus, one has Ex=0

−432 =
{(0, 12

√−3), (0,−12
√−3)}, which means #Ex=0

−432 = 2.
Last, consider #Cu+v=0. Substituting v = −u for u3 + v3 + 1 = 0, which

is the equation of C, one has a contradictory equation 1 = 0, which means
#Cu+v=0 = 0.

Therefore, one sees #C(Fp(z)) = #E−432(Fp(z)) due to Eq. (12) since #EO
−432 =

1, #Ex=0
−432 = 2, #CO = 3, and #Cu+v=0 = 0. ¤

A.3 Proof of Lemma 4

(a): Due to the definition of twist, if E′ is a twist of E of degree 1 then
#E′(Fp(z)) = #E(Fp(z)). (Also refer to Remark 1. )
(b): One has the followings by direct computations.

n3(z) = 2p(z) + 1− n0(z),
n5(z) = 2p(z) + 1− n2(z),
n1(z) = 2p(z) + 1− n4(z).

By the assumption, E′ is a twist of E of degree 2. Therefore, if #E(Fp(z)) =
n0(z), n2(z), n4(z) then #E′(Fp(z)) = n3(z), n5(z), n1(z), respectively, due to
Lemma 1. ¤


